Electronic Supplementary Information

Water soluble, optically active monofunctional Pd(II) and Pt(II) compounds: Promising adhesive and antimigratory effects on human prostate PC-3 cancer cells

Isabel de la Cueva-Alique,^a Laura Muñoz-Moreno,^b Elena de la Torre-Rubio,^a Ana M. Bajo, ^b Lourdes Gude,^a Tomás Cuenca,^a Eva Royo^a*

^a Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química Andrés del Río (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain

^b Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain

Selected characterization data:

- 1. Figures S1-S2: NMR spectra of proligands a and a'.
- 2. Figures S3-S8: NMR spectra of 1 and 1'.
- 3. Figures S9-S13: NMR spectra of 2 and 2'.
- 4. Figures S14-S15: UV-vis spectra of **a**, **1** and **2** (pH* = 2-3, pH* = 7.4).
- 5. Figure S16: CD spectra of **1** and **1'** in water.
- 6. Figures S17-S20: NMR spectra of 3.
- Figure S21: Time-dependent ¹H NMR spectra of **1** in water-*d*₂ (pH* = 2.3), with and without NaCI.
- 8. Figure S22: pH-dependent ¹H NMR spectra of **1** in water-*d*₂
- 9. Figures S23-S25: NMR spectra of **1** (pH* = 2.3) in water- d_2
- 10. Figure S26: HR-ESI-MS spectrum of $1 (pH^* = 7.4)$
- 11. Figures S27-S31: NMR spectra of **1** (pH* = 7.4) in water- d_2 .

- 12. Figure S32: Time-dependent ¹H NMR spectra of **2** in water- d_2 (pH* = 3.0), with and without NaCI.
- 13. Figure S33: Time-dependent ¹H NMR spectra of **2** in PBS (pH* = 7.4).
- 14. Figures S34-S35: NMR spectra of **2** (pH* = 3.0) in water- d_2 .
- 15. Figure S36: HR-ESI-MS spectrum of **2** (pH* = 7.4).
- 16. Figures S37-S41: NMR spectra of **2** (pH* = 7.4) in water- d_2
- 17. Figure S42. Time-dependent ¹H NMR spectra of **3** in water-d₂

Selected FRET DNA melting assay data:

1. Figure S43: FRET DNA melting curves of **1** and **2**.

Figure S1.¹H NMR spectrum of a in CDCl₃

Figure S2.¹H NMR spectrum of a' in CDCl₃

Figure S3.¹H NMR spectrum of 1 in CDCl₃

Figure S4.¹H NMR spectrum of 1' in $CDCI_3$

Figure S5. ¹³C-¹H HSQC NMR spectrum of **1** in CDCl₃.

Figure S6.¹³C-¹H HMBC NMR spectrum of **1** in CDCl₃ (Assignment of =NO<u>H</u>)

Figure S7.¹⁵N-¹H HMBC NMR spectrum of **1** in CDCl₃.

Figure S8. 2D NOESY NMR spectrum of 1 in CDCI₃

Figure S9.¹H NMR spectrum of 2 in CDCI₃

Figure S10.¹H NMR spectrum of 2' in CDCI₃

Figure S11. ¹³C-¹H HSQC NMR spectrum of 2 in CDCl₃.

Figure S12.¹⁵N-¹H HMBC NMR spectrum of 2 in CDCl₃.

Figure S13. 2D NOESY NMR spectrum of 2 in CDCI₃

Figure S14. Comparison of UV-vis spectra of pro-ligand a and compound 1 in water or PBS.

Figure S15. Comparison of UV-vis spectra of pro-ligand a and compound 2 in water or PBS.

Figure S16. CD spectra of enantiomers 1 and 1' in water solution.

Figure S17.¹H NMR spectrum of 3 in CDCl₃

Figure S18.¹³C-APT NMR spectrum of 3 in CDCl₃.

Figure S19.¹⁵N-¹H HMBC NMR spectrum of 3 in CDCl₃.

Figure S20. 2D NOESY NMR spectrum of 3 in CDCI₃

Figure S21. Time-dependent ¹H NMR spectra of **1** (10 mM) in water- d_2 (pH* = 2.3), with and without NaCl.

Figure S22. pH-dependent ¹H NMR spectra of **1** (10 mM) in water- d_2 and comparison with ¹H NMR of **1** (10 mM) in deuterated PBS.

Figure S23. ¹H NMR spectrum of **1** in water- d_2 (pH* = 2.3).

Figure S24. ¹³C APT NMR spectrum of 1 (10 mM) in water- d_2 (pH* = 2.3).

Figure S25. ¹⁵N-¹H HMBC NMR spectrum of **1** (10 mM) in water- d_2 (pH* = 2.3).

		Pd1			
MASA TEORICA	MASA EXPERIMENTAL	ERROR (ppm)	ERROR (amu)		
376.0802	376.0794	2.1272	-0.0008		
376.5805	376.58	1.3277	-0.0005		
377.0804	377.0808	-1.0608	0.0004		
377.5805	377.5806	-0.2648	0.0001		
378.0801	378.0794	1.8515	-0.0007		
378.5806	378.5794	3.1697	-0.0012		
379.0802	379.0784	4.7483	-0.0018		
379.5812	379.5786	6.8497	-0.0026		
380.0804	380.0769	9.2086	-0.0035		

Figure S27. ¹H NMR of **1** in water- d_2 (pH* = 7.4).

Figure S28. ¹³C-¹H HSQC NMR spectrum of **1** in water- d_2 (pH* = 7.4).

Figure S29. ¹⁵N-¹H HMBC NMR spectrum of **1** in water- d_2 (pH* = 7.4).

Figure S30. ¹H-¹H COSY NMR spectrum of **1** in water- d_2 (pH* = 7.4).

Figure S31. 2D NOESY NMR spectrum of **1** in water- d_2 (pH* = 7.4).

Figure S32. Time-dependent ¹H NMR spectra of **2** (10 mM) in water- d_2 at pH* = 3.0, with and without NaCl (100 mM).

Figure S33. Time dependent ¹H NMR of 2 (10 mM) in PBS at $pH^* = 7.4$.

Figure S35. APT ¹³C NMR spectrum of 2 (pH* = 3.0) in water- d_2

	Pt1			
MASA TEORICA	MASA EXPERIMENTAL	ERROR (ppm)	ERROR (amu)	
466.1385	466.1353	6.8649	-0.0032	
466.6396	466.638	3.4288	-0.0016	
467.1402	467.1387	3.2110	-0.0015	
467.641	467.6382	5.9875	-0.0028	
468.1415	468.1366	10.4669	-0.0049	
468,6424	468,6357	14.2966	-0.0067	

Figure S37. ¹H NMR spectrum of **2** in water- d_2 (pH* = 7.4, 72h).

Figure S38. ¹³C-¹H HSQC NMR spectrum of 2 in water- d_2 (pH* = 7.4, 72 h).

Figure S39. ¹⁵N-¹H HMBC spectrum of **2** in water- d_2 (pH* = 7.4, 72 h).

Figure S40. ¹H - ¹H COSY spectrum of **2** in water- d_2 (pH* = 7.4, 72 h).

Figure S41. 2D NOESY NMR spectrum of **2** in water- d_2 (pH* = 7.4, 72h).

(*) Singlet assigned to $[Cp_2Ti(OH)(H_2O)]^+$ according to reported data.

Figure S43. FRET DNA melting curves of A) **1**; B) **2**. The concentration of F10T is 0.2 μ M. A titration was performed by using 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 μ M concentration of tested compound.

