Computational assessment on the Tolman cone angles for P-ligands

Jesús Jover* and Jordi Cirera*

Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química

Teòrica i Computacional, Universitat de Barcelona,

Diagonal 645, 08028 Barcelona, Spain

email: jesus.jover@qi.ub.es, jordi.cirera@qi.ub.es

Table S1. Schematic representation of Buchwald and other bulky biaryl P-ligands.	2
Table S2. Linear cone angle values (θ_L) for biaryl ligands in their open and close	
conformations, and energy difference between both structures.	6
Table S3. List of steric descriptors of the studied ligands, form literature: solid	
angle (Θ), ¹ LKB-P He ₈ , ² angular symmetric deformation coordinate (S ₄ '), ³ and	
computed %V _{bur} parameter ⁴ for linear (%V _{bur-L}), tetrahedral (%V _{bur-T}) and	_
octahedral ($%V_{hur-\Omega}$) coordination environments.	
Table S4. Predicted P-ligand dissociation (ΔH_R) from open titanocene [Ti(2,4-	
C_7H_{11} (PR ₃)] complexes.	12
Table S5. Computed reaction barriers and ligand descriptors for the Suzuki-	
Miyaura reaction between bromobenzene and [Pd-PR ₃] catalyst.	17
Table S6. Ligand descriptors and predicted reaction barriers for the Suzuki-	
Miyaura reaction between bromobenzene and [Pd-PR ₃] catalyst.	18
Figure S1. Correlation between the computed tetrahedral (θ_T) and octahedral (θ_O)	
cone angles and their corresponding %V _{Bur} descriptors.	21
Table S7. Force Field parameters used in the MM conformational search	21
Keterences	22
	1

#	Ligand	Structure
36	BrettPhos	MeO iPr iPr iPr
37	<i>t</i> BuBrettPhos	MeO iPr iPr iPr
38	CataCxium-PCy	PCy ₂
39	CataCxium-POMeCy	MeO
40	CataCxium-POMetB	MeO
41	CataCxium-PtB	PtBu ₂

Table S1. Schematic representation of Buchwald and other bulky biaryl P-ligands.

56	<i>t</i> BuXPhos	iPr iPr iPr
57	cBridP	Ph Ph PtBu ₂
58	CycBridP	Ph Ph PCy ₂
59	vBridP	Ph Ph Ph
60	CyvBridP	Ph PCy ₂ Ph

#	Ligand	θ_L close	θ_L open	E _{REL} *
36	BrettPhos	251.3	202.4	7.8
37	<i>t</i> BuBrettPhos	250.9	218.6	9.6
38	CataCxium-PCy	216.6	178.9	6.2
39	CataCxium-POMeCy	221.2	178.7	4.7
40	CataCxium-POMetB	224.0	188.7	10.3
41	CataCxium-PtB	225.2	188.7	8.3
42	CPhos	214.7	174.2	12.3
43	DavePhos	211.2	177.3	5.9
44	<i>t</i> BuDavePhos	228.1	195.0	9.7
45	PhDavePhos	206.9	163.8	7.7
46	JackiePhos	236.2	209.5	3.8
47	JohnPhos	228.9	190.9	7.0
48	CyJohnPhos	208.0	180.2	3.9
49	MePhos	208.9	199.5	2.5
50	<i>t</i> BuMePhos	228.9	191.7	10.6
51	MeDalPhos	214.7	191.5	5.0
52	MorDalPhos	231.2	192.6	6.1
53	RuPhos	231.5	219.9	5.4
54	SPhos	227.4	218.3	1.0
55	XPhos	238.7	174.7	9.4
56	<i>t</i> BuXPhos	250.6	185.7	15.7
57	cBridP	226.0	186.6	10.0
58	CycBridP	224.3	185.0	6.0
59	vBridP	227.4	188.5	6.6
60	CyvBridP	211.1	181.8	4.1

Table S2. Linear cone angle values (θ_L) for biaryl ligands in their open and close conformations, and energy difference between both structures.

* EREL corresponds to the relative energy computed between the open and close conformations: $E_{REL} = E(\theta_L \text{ open}) - E(\theta_L \text{ close})$

Table S3. List of steric descriptors of the studied ligands, form literature: solid angle (Θ) ,¹ LKB-P He₈,² angular symmetric deformation coordinate (S_4') ,³ and computed $%V_{bur}$ parameter⁴ for linear ($%V_{bur-L}$), tetrahedral ($%V_{bur-T}$) and octahedral ($%V_{bur-O}$) coordination environments.

#	Ligand	Θ(°)	He ₈ (kcal mol ⁻¹)	S4' (°)	%V _{bur-L}	%V _{bur-T}	%V _{bur-O}
1	PH ₃		2.3	66.9	18.2	18.3	17.8
2	PMe ₃	124	3.0	39.4	23.3	23.3	22.6
3	PEt ₃	143	6.0	39.0	28.6	28.9	24.8
4	PPr ₃		6.1	39.2	27.0	27.0	24.7
5	PiPr ₃	163	12.2	28.4	31.6	30.5	27.4
6	PBu ₃	148	6.1	40.2	25.5	25.4	24.0
7	PtBu ₃	182	23.4	7.4	37.0	35.6	30.7
8	PNp ₃		31.3	48.6	39.0	35.9	30.0
9	PCyp ₃		9.2	33.3	33.1	31.4	29.3
10	PCy ₃		16.7	28.6	32.9	31.9	28.2
11	PPh ₃	129	8.0	32.6	29.8	29.5	27.0
12	P(o-Tol) ₃	142	30.1	31.0	35.0	33.7	30.1
13	$P(o-ClC_6H_4)_3$		23.6	28.4	40.5	38.5	30.9
14	P(p-Tol) ₃	135	6.6	33.6	29.8	29.4	27.0
15	$P(p-ClC_6H_4)_3$	129	8.2	33.7	29.9	29.6	27.0
16	$P(3,5-Me_2C_6H_3)_3$				29.8	29.4	27.1
17	$P(3,5-Cl_2C_6H_3)_3$				29.8	29.8	27.0
18	P(naph) ₃		23.5	21.9	35.5	34.0	30.4
19	PBn ₃	163	12.7	38.1	33.9	29.1	25.8
20	PF ₃		1.5	62.0	20.9	21.6	20.4
21	PCl ₃		2.2	48.3	23.8	24.5	22.7
22	PBr ₃		3.1	45.1	24.7	25.2	23.3
23	PI ₃		4.1	37.9	26.0	26.4	24.1
24	P(CF ₃) ₃		3.0	52.2	28.6	29.1	26.3
25	$P(CCl_3)_3$		20.7	28.7	38.3	38.3	31.8

26	$P(C_2F_5)_3$	9.9	39.9	37.0	37.1	31.0
27	$P(C_6F_5)_3$	11.6	35.7	36.3	35.5	30.8
28	P(OMe) ₃	4.2	40.2	26.3	29.0	25.9
29	P(OEt) ₃	3.0	45.9	31.6	30.2	26.4
30	P(OPr) ₃			33.7	30.7	25.5
31	P(O <i>i</i> Pr) ₃	4.4	47.9	32.5	31.5	25.4
32	P(OBu) ₃	7.1	49.4	33.1	29.0	26.0
33	$P(OtBu)_3$	9.4	46.4	33.6	33.4	27.5
34	P(ONp) ₃	4.3	49.7	33.8	27.3	24.5
35	P(OPh) ₃	5.9	48.9	32.6	27.7	22.2
36	BrettPhos			55.0	35.0	30.5
37	tBuBrettPhos			58.5	36.5	31.7
38	CataCxium-PCy	19.9	28.4	43.4	31.9	30.4
39	CataCxium-POMeCy	22.3		48.3	32.5	28.6
40	CataCxium-POMetB			51.4	34.6	30.6
41	CataCxium-PtB	37.4		48.7	34.7	30.6
42	CPhos	31.7	36.5	51.3	32.9	28.2
43	DavePhos	26.1	37.9	49.6	31.4	28.3
44	tBuDavePhos	43.7	14.2	51.4	36.1	31.2
45	PhDavePhos			47.9	30.5	27.5
46	JackiePhos			54.1	34.3	30.9
47	JohnPhos	45.9	19.0	50.4	34.9	30.7
48	CyJohnPhos			47.7	31.6	28.5
49	MePhos	23.5	32.2	43.6	31.4	28.3
50	tBuMePhos	43.0	19.7	51.0	34.9	30.1
51	MeDalPhos			44.9	35.1	30.4
52	MorDalPhos			47.6	35.3	30.8
53	RuPhos	18.0	36.3	54.0	35.1	32.7
54	SPhos	24.1	26.0	48.8	35.4	32.0

55	XPhos		22.2	28.6	52.4	31.9	29.9
56	tBuXPhos		34.6	10.6	53.8	33.8	30.4
57	cBridP		44.9	14.7	50.6	44.1	34.4
58	CycBridP				46.8	39.5	30.7
59	vBridP				50.2	43.6	34.1
60	CyvBridP				43.1	35.9	31.0
61	PH ₂ Me				19.4	19.5	18.9
62	PH ₂ Et				20.6	20.6	19.7
63	PH ₂ <i>i</i> Pr				21.7	21.6	20.9
64	PH ₂ <i>t</i> Bu				21.9	21.8	21.1
65	PH ₂ Np				19.5	19.5	19.0
66	PH ₂ Ph				21.1	21.1	19.7
67	PHMe ₂		2.6	45.2	21.1	21.2	20.7
68	PHEt ₂				23.3	23.2	21.8
69	PH <i>i</i> Pr ₂				24.6	24.3	23.0
70	PH <i>t</i> Bu ₂				29.8	28.9	26.0
71	PHNp ₂				26.0	26.6	23.8
72	PHAd ₂		11.3	31.4	29.9	28.9	26.1
73	PHPh ₂	112			24.9	24.7	23.3
74	PMe ₂ Et	133	3.6	38.4	25.1	25.1	23.6
75	PMe ₂ Pr		3.9	38.8	25.1	25.1	23.7
76	PMe ₂ <i>i</i> Pr		3.9	31.4	25.6	25.6	23.9
77	PMe ₂ <i>t</i> Bu	144	4.7	31.6	27.7	27.9	25.9
78	PMe ₂ Np				24.0	24.0	23.0
79	PMeAd ₂				33.0	31.9	28.6
80	PMe ₂ Ph	126	3.2	36.1	26.0	25.9	24.0
81	PMe ₂ Bn		4.6	39.3	27.8	23.5	22.7
82	PMeEt ₂	138	4.3	39.4	25.1	25.1	23.7
83	PMePr ₂				25.1	25.1	23.7

84	PMe <i>i</i> Pr ₂	151	5.4	20.9	29.0	28.5	26.2
85	PMetBu ₂	163	15.0	20.3	32.8	31.8	28.6
86	PMeNp ₂				31.4	30.3	26.3
87	PMePh ₂	124	4.8	34.6	27.8	27.1	25.5
88	PMeBn ₂				28.5	31.6	25.3
89	PMeEtPr				25.1	25.1	23.7
90	PEt ₂ Pr				27.1	25.5	23.9
91	PEt ₂ Ph	137	7.3	36.4	28.0	26.5	24.9
92	PEt ₂ Bn				32.1	27.5	25.1
93	PEtPr ₂				27.0	27.0	24.6
94	PEtPh ₂	140	5.4	34.3	29.8	28.4	26.4
95	PEtBn ₂				30.4	29.9	25.4
96	P <i>i</i> Pr ₂ Cy				33.0	31.9	28.5
97	P <i>i</i> PrCy ₂				32.9	32.0	28.2
98	P <i>i</i> PrAd ₂				35.5	33.8	29.7
99	P <i>i</i> Pr ₂ Ph		10.5	28.4	31.8	30.7	27.9
100	P <i>i</i> PrPh ₂	139	9.4	33.8	31.9	31.0	27.6
101	P <i>i</i> Pr ₂ Bn				33.8	32.6	29.0
102	P <i>i</i> PrBn ₂				31.9	30.8	27.1
103	PAd ₂ Bu (CataCxium-A)		19.3	17.6	34.3	32.8	29.5
104	PtBu ₂ Cy		22.9	5.3	35.3	33.8	29.9
105	PtBu ₂ Ph	168	22.9	13.1	36.1	34.5	29.9
106	PtBu ₂ Bn		22.6	21.2	38.1	35.3	30.6
107	PtBuCy ₂		18.5	21.9	34.4	33.1	28.7
108	PtBuAd ₂		32.2	5.9	37.3	35.7	30.4
109	PtBuPh ₂	149	9.2	20.8	32.3	31.1	28.2
110	PtBuBn ₂		15.4	19.1	36.9	32.8	29.2
111	PNp ₂ Ph				33.4	31.6	27.4
112	PNp ₂ Bn				37.9	35.2	30.3

113	PNpPh ₂				34.3	27.7	26.1
114	PNpBn ₂				38.4	34.1	26.4
115	PCy ₂ Ph		12.5	21.1	31.7	30.6	27.9
116	PCyPh ₂		10.9	33.2	31.9	30.9	27.7
117	PAd ₂ Bn (CataCxium-Abn)		26.4	21.6	38.5	35.0	29.3
118	PPh ₂ Bn	139	6.8	36.6	32.6	30.7	27.9
119	PBn ₂ Ph		9.3	28.9	32.0	26.9	26.4

#	Ligand	θο	ΔH _R (kcal mol ⁻¹)
1	PH ₃	101.0	17.7
2	PMe ₃	122.1	14.7
3	PEt ₃	157.8	9.5
4	PPr ₃	157.7	9.5
5	P <i>i</i> Pr ₃	163.1	8.7
6	PBu ₃	160.6	9.1
7	PtBu ₃	167.1	8.2
8	PNp ₃	155.0	9.9
9	PCyp ₃	161.5	9.0
10	PCy ₃	164.9	8.5
11	PPh ₃	152.0	10.4
12	P(o-Tol) ₃	175.6	6.9
13	$P(o-ClC_6H_4)_3$	173.7	7.2
14	P(<i>p</i> -Tol) ₃	152.1	10.3
15	$P(p-ClC_6H_4)_3$	152.0	10.4
16	$P(3,5-Me_2C_6H_3)_3$	164.9	8.5
17	$P(3,5-Cl_2C_6H_3)_3$	160.6	9.1
18	P(naph) ₃	173.1	7.3
19	PBn ₃	153.3	10.2
20	PF ₃	104.7	17.2
21	PCl ₃	116.4	15.5
22	PBr ₃	120.7	14.9
23	PI ₃	125.7	14.2
24	P(CF ₃) ₃	139.1	12.2
25	P(CCl ₃) ₃	159.3	9.3
26	$P(C_2F_5)_3$	165.3	8.4

Table S4. Predicted P-ligand dissociation (ΔH_R) from open titanocene [Ti(2,4-C₇H₁₁)₂(PR₃)] complexes. ΔH_R is computed as: $\Delta H_R = -0.145\theta_O + 32.389$

27	$P(C_6F_5)_3$	159.3	9.3
28	P(OMe) ₃	153.0	10.2
29	P(OEt) ₃	152.6	10.3
30	P(OPr) ₃	155.1	9.9
31	$P(OiPr)_3$	146.0	11.2
32	P(OBu) ₃	153.4	10.2
33	$P(OtBu)_3$	157.7	9.5
34	P(ONp) ₃	147.7	11.0
35	P(OPh) ₃	130.5	13.5
36	BrettPhos	181.6	6.1
37	<i>t</i> BuBrettPhos	182.3	6.0
38	CataCxium-PCy	179.7	6.3
39	CataCxium-POMeCy	163.2	8.7
40	CataCxium-POMetB	168.1	8.0
41	CataCxium-PtB	168.0	8.0
42	CPhos	164.2	8.6
43	DavePhos	164.4	8.6
44	tBuDavePhos	172.7	7.3
45	PhDavePhos	155.6	9.8
46	JackiePhos	193.6	4.3
47	JohnPhos	166.7	8.2
48	CyJohnPhos	164.8	8.5
49	MePhos	165.3	8.4
50	<i>t</i> BuMePhos	160.8	9.1
51	MeDalPhos	170.4	7.7
52	MorDalPhos	173.4	7.3
53	RuPhos	212.7	1.6
54	SPhos	201.7	3.1
55	XPhos	172.2	7.4

56	tBuXPhos	178.9	6.5
57	cBridP	198.3	3.6
58	CycBridP	194.1	4.2
59	vBridP	201.3	3.2
60	CyvBridP	174.6	7.1
61	PH ₂ Me	110.0	16.4
62	PH ₂ Et	126.0	14.1
63	PH ₂ <i>i</i> Pr	128.7	13.7
64	PH ₂ <i>t</i> Bu	128.9	13.7
65	PH ₂ Np	114.0	15.9
66	PH ₂ Ph	120.7	14.9
67	PHMe ₂	120.8	14.9
68	PHEt ₂	141.7	11.8
69	PH <i>i</i> Pr ₂	130.6	13.4
70	PHtBu ₂	162.8	8.8
71	PHNp ₂	152.8	10.2
72	PHAd ₂	164.2	8.6
73	PHPh ₂	139.2	12.2
74	PMe ₂ Et	138.5	12.3
75	PMe ₂ Pr	138.3	12.3
76	PMe ₂ <i>i</i> Pr	140.6	12.0
77	PMe ₂ <i>t</i> Bu	143.2	11.6
78	PMe ₂ Np	129.7	13.6
79	PMeAd ₂	165.7	8.4
80	PMe ₂ Ph	133.2	13.1
81	PMe ₂ Bn	123.9	14.4
82	PMeEt ₂	137.5	12.5
83	PMePr ₂	137.1	12.5
84	PMe <i>i</i> Pr ₂	160.1	9.2

85	PMetBu ₂	165.2	8.4
86	PMeNp ₂	151.0	10.5
87	PMePh ₂	142.3	11.8
88	PMeBn ₂	145.2	11.3
89	PMeEtPr	137.3	12.5
90	PEt ₂ Pr	140.0	12.1
91	PEt ₂ Ph	139.4	12.2
92	PEt ₂ Bn	145.8	11.2
93	PEtPr ₂	142.2	11.8
94	PEtPh ₂	148.2	10.9
95	PEtBn ₂	154.4	10.0
96	P <i>i</i> Pr ₂ Cy	164.5	8.5
97	P <i>i</i> PrCy ₂	164.2	8.6
98	P <i>i</i> PrAd ₂	169.2	7.9
99	P <i>i</i> Pr ₂ Ph	162.4	8.8
100	P <i>i</i> PrPh ₂	156.6	9.7
101	P <i>i</i> Pr ₂ Bn	172.7	7.3
102	P <i>i</i> PrBn ₂	171.0	7.6
103	PAd ₂ Bu (CataCxium-A)	169.2	7.9
104	PtBu ₂ Cy	168.6	7.9
105	PtBu ₂ Ph	167.7	8.1
106	PtBu ₂ Bn	177.4	6.7
107	PtBuCy ₂	169.4	7.8
108	PtBuAd ₂	173.0	7.3
109	PtBuPh ₂	155.6	9.8
110	PtBuBn ₂	166.3	8.3
111	PNp ₂ Ph	171.7	7.5
112	PNp ₂ Bn	173.0	7.3
113	PNpPh ₂	146.4	11.2

114	PNpBn ₂	159.8	9.2
115	PCy ₂ Ph	162.2	8.9
116	PCyPh ₂	158.2	9.4
117	PAd ₂ Bn (CataCxium-Abn)	165.2	8.4
118	PPh ₂ Bn	165.5	8.4
119	PBn ₂ Ph	171.3	7.6

		PMe ₃	PtBu ₃	PPh ₃	$P(CF_3)_3$
Barrier (kcal mol ⁻¹)	Oxidative addition	3.9	3.2	4.3	11.0
	Transmetalation	18.3	19.8	16.4	14.4
	Reductive elimination	4.7	3.2	3.9	1.7
Descriptors	HOMO (Hartree)	-0.190	-0.173	-0.187	-0.277
	LUMO (Hartree)	0.033	0.028	-0.051	-0.058

Table S5. Computed reaction barriers (in kcal mol⁻¹) and ligand descriptors for the Suzuki-Miyaura reaction between bromobenzene and [Pd-PR₃] catalyst.

Table S6. Standardized ligand descriptors and predicted reaction barriers (OA = oxidative addition, TM = transmetalation, RE = Reductive Elimination, in kcal mol⁻¹) for the Suzuki-Miyaura reaction between bromobenzene and [Pd-PR₃] catalyst. The reaction barriers are computed as:

$$\begin{split} OA &= 0.012 \theta_T - 78.600 E_{HOMO} - 12.478 \\ TM &= 0.033 \theta_T - 44.353 E_{LUMO} + 12.771 \\ RE &= -0.029 \theta_T + 27.906 E_{HOMO} + 13.595 \end{split}$$

#	Ligand	$\theta_{\rm T}$	E _{HOMO}	E _{lumo}	OA	ТМ	RE
1	PH ₃	-1.946	-0.957	0.280	8.2	16.2	3.6
2	PMe ₃	-1.354	0.398	1.058	3.9	18.2	4.8
3	PEt ₃	0.671	0.476	0.896	4.2	19.4	3.5
4	PPr ₃	0.677	0.465	0.884	4.3	19.4	3.4
5	P <i>i</i> Pr ₃	0.721	0.663	0.855	3.7	19.4	3.6
6	PBu ₃	0.777	0.493	0.933	4.2	19.6	3.4
7	PtBu ₃	1.287	0.829	0.936	3.3	20.0	3.4
8	PNp ₃	0.721	0.569	0.735	4.0	19.2	3.5
9	PCyp ₃	0.515	0.624	0.752	3.7	19.0	3.7
10	PCy ₃	0.913	0.729	0.898	3.5	19.6	3.6
11	PPh ₃	0.539	0.483	-0.906	4.2	15.9	3.6
12	P(o-Tol) ₃	1.276	0.610	-0.861	4.0	16.6	3.2
13	$P(o-ClC_6H_4)_3$	1.331	0.261	-1.226	5.1	16.0	2.7
14	P(p-Tol) ₃	0.535	0.641	-0.931	3.7	15.9	3.7
15	$P(p-ClC_6H_4)_3$	0.546	0.139	-1.364	5.3	15.1	3.2
18	P(naph) ₃	1.307	0.683	-1.440	3.8	15.5	3.3
19	PBn ₃	0.543	0.259	-0.613	4.9	16.5	3.3
20	PF ₃	-1.590	-1.817	-0.548	11.0	15.0	2.4
21	PCl ₃	-1.419	-1.578	-2.275	10.3	11.8	2.5
22	PBr ₃	-1.227	-1.471	-3.260	10.0	10.1	2.5
23	PI ₃	-0.996	-1.028	-3.618	8.7	9.6	2.9
24	P(CF ₃) ₃	-0.471	-1.709	-1.088	11.0	14.8	1.7
25	$P(CCl_3)_3$	0.784	-1.438	-2.369	10.5	13.4	1.2

26	$P(C_2F_5)_3$	0.861	-1.580	-1.379	11.0	15.3	1.0
28	P(OMe) ₃	0.161	-0.013	0.280	5.7	17.9	3.2
29	P(OEt) ₃	0.744	-0.159	0.377	6.3	18.5	2.7
31	P(O <i>i</i> Pr) ₃	0.818	0.232	0.382	5.1	18.6	3.1
32	P(OBu) ₃	1.107	0.113	0.386	5.5	18.8	2.7
33	$P(OtBu)_3$	0.965	0.406	0.433	4.6	18.8	3.2
34	P(ONp) ₃	0.551	0.028	0.299	5.7	18.2	3.0
35	P(OPh) ₃	0.001	0.140	-0.823	5.1	15.7	3.5
38	CataCxium-PCy	0.956	0.811	-0.729	3.2	16.6	3.6
41	CataCxium-PtB	1.274	0.746	-0.726	3.5	16.9	3.3
42	CPhos	1.031	1.121	-0.771	2.3	16.6	3.9
43	DavePhos	0.850	1.051	-0.903	2.4	16.2	4.0
44	tBuDavePhos	1.490	0.872	-0.886	3.2	16.7	3.3
47	JohnPhos	1.305	0.833	-0.936	3.3	16.5	3.4
48	CyJohnPhos	0.983	0.690	-0.945	3.6	16.2	3.5
49	MePhos	0.898	0.651	-0.835	3.7	16.4	3.5
50	tBuMePhos	1.292	0.845	-0.882	3.2	16.6	3.4
53	RuPhos	2.199	0.816	-0.835	3.6	17.4	2.8
54	SPhos	2.152	0.905	-0.613	3.3	17.8	2.9
55	XPhos	0.852	0.632	-0.898	3.8	16.2	3.5
56	<i>t</i> BuXPhos	1.073	0.750	-0.917	3.5	16.3	3.5
57	cBridP	2.389	0.862	-0.674	3.5	17.8	2.7
67	PHMe ₂	-1.419	0.079	0.745	4.9	17.5	4.5
72	PAd ₂ H	0.770	0.477	0.375	4.3	18.5	3.4
74	PMe ₂ Et	-0.430	0.431	0.961	4.1	18.7	4.2
75	PMe ₂ Pr	-0.425	0.445	0.912	4.0	18.6	4.2
76	PMe ₂ <i>i</i> Pr	-0.259	0.523	0.987	3.8	18.9	4.2
77	PMe ₂ tBu	-0.293	0.533	1.030	3.8	18.9	4.2
80	PPhMe ₂	-0.215	0.448	-0.641	4.1	15.9	4.0

81	PMe ₂ Bn	0.277	0.353	-0.488	4.5	16.5	3.6
82	PMeEt ₂	-0.476	0.455	0.912	4.0	18.6	4.2
84	PMe <i>i</i> Pr ₂	0.563	0.646	0.820	3.7	19.2	3.7
85	PMetBu ₂	0.712	0.680	0.818	3.6	19.3	3.7
87	PPh ₂ Me	-0.231	0.433	-0.836	4.1	15.5	4.0
91	PPhEt ₂	0.118	0.344	-0.811	4.5	15.8	3.7
94	PPh ₂ Et	-0.003	0.456	-0.839	4.1	15.6	3.9
99	PPhiPr ₂	0.679	0.506	-0.759	4.2	16.3	3.5
100	PPh ₂ <i>i</i> Pr	0.747	0.397	-0.910	4.5	16.1	3.3
103	PAd ₂ Bu (CataCxium-A)	0.979	0.818	0.735	3.2	19.4	3.6
104	PCytBu ₂	1.026	0.828	0.900	3.2	19.7	3.6
105	PPhtBu ₂	1.247	0.738	-0.630	3.6	17.0	3.4
106	PtBu ₂ Bn	1.506	0.599	-0.427	4.1	17.6	3.0
107	PCy ₂ <i>t</i> Bu	1.064	0.821	0.865	3.2	19.7	3.6
108	PAd ₂ <i>t</i> Bu	1.324	0.918	0.773	3.0	19.7	3.5
118	PPh ₂ Bn	0.697	0.431	-0.870	4.4	16.1	3.4

Figure S1. Correlation between the computed tetrahedral (θ_T) and octahedral (θ_O) cone angles and their corresponding %V_{Bur} descriptors.

Table S7. Force Field parameters used in the MM conformational search

All parameters where taken from the Generalized Amber Force Field (GAFF)^[5] except the metal related ones, that have been parameterized using a scan along the corresponding coordinate.

	k(kcal·mol ⁻¹)	r _{eq} /Å
Au-P	372.999	2.3483
Au-Cl	241.617	2.4435

	k(kcal·mol ⁻¹)	$\alpha_{eq}^{\prime o}$
Au-P-C	153.271	114.5268
Cl-Au-P	53.184	179.941

Van der Waals (Au): Lennard- Jones ε =2.41700, σ =0.2000

References

- 1. A. Immirzi and A. Musco, Inorg. Chim. Acta, 1977, 25, L41-L42.
- (a) J. Jover, N. Fey, J. N. Harvey, G. C. Lloyd-Jones, A. G. Orpen, G. J. J. Owen-Smith, P. Murray, D. R. J. Hose, R. Osborne and M. Purdie, *Organometallics*, 2010, 29, 6245-6258; (b) J. Jover, N. Fey, J. N. Harvey, G. C. Lloyd-Jones, A. G. Orpen, G. J. J. Owen-Smith, P. Murray, D. R. J. Hose, R. Osborne and M. Purdie, *Organometallics*, 2012, 31, 5302-5306; (c) J. Jover and N. Fey, *Dalton Trans.*, 2013, 42, 172-181.
- (a) B. J. Dunne, R. B. Morris and A. G. Orpen, J. Chem. Soc. Dalton Trans., 1991, 653-661;
 (b) K. D. Cooney, T. R. Cundari, N. W. Hoffman, K. A. Pittard, M. D. Temple and Y. Zhao, J. Am. Chem. Soc., 2003, 125, 4318-4324.
- (a) A. C. Hillier, W. J. Sommer, B. S. Yong, J. L. Petersen, L. Cavallo and S. P. Nolan, *Organometallics*, 2003, 22, 4322-4326; (b) H. Clavier and S. P. Nolan, *Chem. Commun.*, 2010, 46, 841-861.
- 5. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, *J. Comput. Chem.*, 2004, **25**, 1157-1174.