Supplementary Information

Symmetry breaking structural phase transitions, dielectric properties and molecular motions of formamidinium cations in 1D and 2D hybrid compounds: (NH2CHNH2)3[Bi2Cl9] and (NH2CHNH2)3[Bi2Br9]

K. Mencel^a, P. Starynowicz^a, M. Siczek^a, A.Piecha-Bisiorek^a, R. Jakubas^a and W. Medycki^b

^oFaculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland ^bInstitute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland

Fig. S1. The single crystals of FBC and FBB.

Fig. S2. Comparison between experimental powder XRD diffractogram of FBC/FBB and its simulated diffractogram.

Fig. S3. Dilatometric measurements (the scanning rate of 3 K·min⁻¹) for FBC and FBB, respectively.

Dilatometric measurements for samples of **FBC** and **FBB** were carried out along the *a* and *c* directions, respectively. Results are presented in Fig. S3. For **FBC** crystal the sequence and nature of the phase transition obtained by the dilatometric measurements is consistent with the calorimetric studies. The high temperature PT is manifested only as a very subtle inflection of the baseline, what is typical for continuous PTs. Whereas the low temperature phase transition is characterized by a stepwise change in the crystal dimensions indicates the discontinuous character of this PT. In the case of a **FBB**, during cooling two anomalies of the linear thermal expansion, $\Delta L/L_0$, are visible. The transformation at 198 K and at 200 K, on cooling, are accompanied by a $\Delta L/L_0$ change characteristic of a discontinuous transformation. During heating the PT (II \rightarrow I) is associated with by a rapid increase of the dimensions of the sample. It should be noticed that the dilatometric anomaly around the PT (III \rightarrow II) are not reversible on heating.

Fig. S4. Simultaneous thermogravimetric and differential thermal analyses scan (ramp rate: 5 K·min⁻¹) for (a) **FBC** and (b) **FBB**.

Nonabromodibismuthate(III) planes

		I	
Br2 ⁱ —Bi—Br2	91.82 (11)	Br2—Bi—Br1 ⁱ	177.02 (8)
Br2 ⁱ —Bi—Br1	90.25 (7)	Bi—Br1—Bi ⁱⁱⁱ	180.0
Br1 ⁱⁱ —Bi—Br1	87.60 (6)		
Br3—Bi1—Br5	92.06 (13)	Br9—Bi2—Br10	90.72 (15)
Br3—Bi1—Br4	91.89 (14)	Br7—Bi2—Br11	90.13 (13)
Br5—Bi1—Br4	91.53 (13)	Br9—Bi2—Br11	87.55 (15)
Br3—Bi1—Br6	88.56 (13)	Br10—Bi2—Br11	176.71 (13)
Br5—Bi1—Br6	88.01 (13)	Br7—Bi2—Br11 ⁱⁱ	176.91 (13)
Br4—Bi1—Br6	179.38 (14)	Br9—Bi2—Br11 ⁱⁱ	86.64 (14)
Br3—Bi1—Br6 ⁱ	87.46 (13)	Br10—Bi2—Br11 ⁱⁱ	84.80 (13)
Br5—Bi1—Br6 ⁱ	177.41 (13)	Br11—Bi2—Br11 ⁱⁱ	92.29 (5)
Br4—Bi1—Br6 ⁱ	85.95 (12)	Br7—Bi2—Br8	89.43 (13)
Br6—Bi1—Br6 ⁱ	94.51 (5)	Br9—Bi2—Br8	174.84 (14)
Br3—Bi1—Br8	174.52 (13)	Br10—Bi2—Br8	90.92 (13)
Br5—Bi1—Br8	91.87 (12)	Br11—Bi2—Br8	90.56 (13)
Br4—Bi1—Br8	91.82 (13)	Br11 ⁱⁱ —Bi2—Br8	88.64 (13)
Br6—Bi1—Br8	87.77 (12)	Bi1—Br6—Bi1 ⁱⁱⁱ	163.88 (18)
Br6 ⁱ —Bi1—Br8	88.78 (12)	Bi1—Br8—Bi2	173.91 (15)
Br7—Bi2—Br9	95.37 (15)	Bi2—Br11—Bi2 ^{iv}	167.11 (17)
Br7—Bi2—Br10	92.82 (13)		

Table S1. Br-Bi-Br and Bi-Br-Bi angles (°) in I and III.

Symmetry codes for I: (i) -x+y+1, -x+1, z; (ii) -y+1, x-y, z; (iii) -x+1, -y, -z+1; symmetry codes for III: (i) -x+1, y-1/2, -z+1/2; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x, y-1/2, -z+1/2. N.B. Bi6, Bi8 and Bi11 belong to the Bi{1} family, the rest of Br atoms - to Br{2}.

Nonachlorodibismuthate(III) ribbons

The Bi-Cl distances are listed in Table S2. In Phase I both Bi atoms, as well as Cl2, Cl3 and Cl5, are located on the mirror $m \perp b$ plane, whereas in Phase II and III all Bi and Cl atoms are in general positions. The Bi-Cl distances vary among the phases generally within the limits of experimental error. Noteworthy are, however, short Bi1-Cl6, Bi21-Cl21 and Bi2-Cl4 bond lengths in Phase III in comparison with their parents (Bi2-Cl2 and Bi2-Cl4) in Phase I. Generally, bridging Cl{5} and Cl{6} atoms form longer Bi-Cl bonds than the terminal Cl atoms (the respective averages are 2.862 and 2.568 Å for Phase I, 2.869 and 2.566 Å for II, 2.859 and 2.562 Å for III).

I		II		III		
Bi1—Cl1	2.568 (4)	Bi1—Cl1	2.573 (6)	Bi1—Cl1	2.559 (6)	
		Bi1—Cl11	2.568 (6)	Bi1—Cl11	2.563 (6)	
		Bi11—Cl12	2.571 (7)	Bi11—Cl12	2.581 (6)	
		Bi11—Cl13	2.570 (7)	Bi11—Cl13	2.575 (6)	
Bi1—Cl3	2.566 (5)	Bi1—Cl3	2.569 (7)	Bi1—Cl3	2.567 (6)	
		Bi11—Cl31	2.549 (8)	Bi11—Cl31	2.550 (6)	

 Table S2. Bi-Cl distances (Å) in Phases I, II, III (FBC). Only symmetry independent bonds are listed.

Bi1—Cl5	2.875 (4)	Bi1—Cl5	2.868 (8)	Bi1—Cl5 ⁱ	2.885 (7)
		Bi11—Cl51 ⁱⁱ	2.878 (9)	Bi11—Cl51	2.849 (7)
Bi1—Cl6	2.859 (4)	Bi1—Cl6	2.869 (7)	Bi1—Cl6	2.806 (6)
		Bi1—Cl61	2.847 (6)	Bi1—Cl61 ⁱⁱⁱ	2.864 (6)
		Bi11—Cl62	2.844 (7)	Bi11—Cl62	2.834 (6)
		Bi11—Cl63	2.866 (7)	Bi11—Cl63	2.865 (6)
Bi2—Cl2	2.556 (4)	Bi2—Cl2	2.541 (8)	Bi2—Cl2	2.572 (7)
		Bi21—Cl21	2.564 (9)	Bi21—Cl21	2.512 (6)
Bi2—Cl4	2.571 (3)	Bi2—Cl4	2.568 (6)	Bi2—Cl4	2.540 (6)
		Bi2—Cl41	2.582 (7)	Bi2—Cl41	2.571 (6)
		Bi21—Cl42	2.573 (6)	Bi21—Cl42	2.579 (6)
		Bi21—Cl43	2.558 (6)	Bi21—Cl43	2.577 (6)
Bi2—Cl5 ⁱ	2.901 (4)	Bi2—Cl5 ^{iv}	2.898 (8)	Bi2—Cl5	2.902 (7)
		Bi21—Cl51	2.888 (9)	Bi21—Cl51 ^v	2.887 (7)
Bi2—Cl6	2.851 (4)	Bi2—Cl6	2.877 (6)	Bi2—Cl6	2.826 (6)
		Bi2—Cl61 ⁱⁱⁱ	2.851 (7)	Bi2—Cl61	2.871 (6)
		Bi21—Cl62	2.881 (7)	Bi21—Cl62 ^{vi}	2.864 (6)
		Bi21—Cl63 ⁱⁱⁱ	2.856 (6)	Bi21—Cl63	2.860 (6)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y+1/2, -z+1/2; (iii) x, y-1, z; (iv) -x+1/2, y-1/2, -z+1; (v) -x, y+1/2, -z+1/2; (vi) x, y+1, z.

More distinctly the Phase I \rightarrow II and II \rightarrow III PTs may be observed when geometry of the above mentioned rhombi is considered. In Phase I there is only one type of rhombi (for brevity hereinafter labelled as **rI**), namely that represented by Bi1-Bi2-Bi1ⁱ-Bi2ⁱ (see Fig. 2). Apart from the Bi-Cl distances its geometry may be described by the following angles: Bi1-Cl5-Bi2ⁱ, Cl5-Bi1-Cl6, Bi1-Cl6-Bi2 and Cl6-Bi2-Cl5ⁱ; the remaining angles are dependent as the rhombus is centrosymmetric. The relevant values (Table S3) show that the rhombus is essentially flat, as the Bi-Cl-Bi angles are very close to 180°. The Cl-Bi-Cl angles differ less than 3° from the right angle, what shows that the rhombus is a slightly distorted parallelepiped.

I		II		III		
Bi1—Cl5—Bi2 ⁱ	179.78 (19)	Bi1—Cl5—Bi2 ^{ix}	177.0 (3)	Bi1 ⁱ —Cl5—Bi2	178.5 (3)	
		Bi11 ^x —Cl51—Bi21	178.6 (3)	Bi11—Cl51—Bi21 ^{xi}	175.3 (3)	
Cl6—Bi1—Cl5	87.34 (12)	Cl5—Bi1—Cl6	85.8 (2)	Cl6—Bi1—Cl5 ⁱ	87.33 (19)	
		Cl61—Bi1—Cl5	86.5 (2)	Cl61 ⁱⁱⁱ —Bi1—Cl5 ⁱ	88.66 (18)	
		Cl62—Bi11—Cl51 ⁱⁱ	87.5 (2)	Cl51—Bi11—Cl63	84.88 (18)	
		Cl63—Bi11—Cl51 ⁱⁱ	86.2 (2)	Cl62—Bi11—Cl51	86.93 (18)	
Bi2—Cl6—Bi1	178.99 (16)	Bi1—Cl6—Bi2	171.7 (3)	Bi1—Cl6—Bi2	170.5 (3)	
		Bi1—Cl61—Bi2 ^{vi}	170.6 (3)	Bi1 ^{vi} —Cl61—Bi2	170.6 (2)	
		Bi11—Cl62—Bi21	171.0 (3)	Bi21—Cl63—Bi11	165.7 (2)	
		Bi21 ^{vi} —Cl63—Bi11	172.9 (3)	Bi11—Cl62—Bi21 ⁱⁱⁱ	164.8 (2)	
Cl6—Bi2—Cl5 ⁱ	93.82 (11)	CI6—Bi2—CI5 ^{iv}	93.4 (2)	Cl6—Bi2—Cl5	90.89 (19)	
		Cl61 ⁱⁱⁱ —Bi2—Cl5 ^{iv}	97.2 (2)	Cl61—Bi2—Cl5	95.97 (18)	
		Cl62—Bi21—Cl51	96.1 (2)	Cl63—Bi21—Cl51 ^v	93.41 (18)	

Table S3. Selected Cl-Bi-Cl and Bi-Cl-Bi angles (°)

		Cl63 ⁱⁱⁱ —Bi21—Cl51	93.0 (2)	Cl62 ^{vi} —Bi21—Cl51 ^v	99.65 (18)
Cl6—Bi1—Cl6 ^{vii}	84.28 (18)	Cl61—Bi1—Cl6	84.9 (3)	Cl6—Bi1—Cl61 ⁱⁱⁱ	83.3 (2)
		Cl62—Bi11—Cl63	85.0 (2)	Cl62—Bi11—Cl63	84.10 (18)
Cl6—Bi2—Cl6 ^{viii}	84.45 (18)	Cl61 ⁱⁱⁱ —Bi2—Cl6	83.8 (3)	Cl6—Bi2—Cl61	83.7 (2)
		Cl63 ⁱⁱⁱ —Bi21—Cl62	83.6 (2)	Cl63—Bi21—Cl62 ^{vi}	83.12 (18)

The symmetry codes are those from Table S2, apart from that: (vii) x, -y+1/2, z; (viii) x, -y+3/2, z, (ix) -x+1/2, y+1/2, -z+1; (x) -x+1, y-1/2, -z+1/2; (xi) -x, y-1/2, -z+1/2;

In II there are two independent ribbons. The first one is formed by Bi, Bi2, Cl5, C6, Cl61, as well as by terminal Cl1, Cl11, Cl2, Cl3, Cl4 and Cl41 atoms. Here is only one type of rhombi (rIICI5): Bi1-(Cl6)-Bi2-(Cl5^{iv})-Bi1^{iv}-(Cl61^{iv})-Bi2^{ix}-(Cl5). The other ribbon is formed by rhombi spanned by Bi11-(Cl62)-Bi21-(Cl51)-Bi11^x-(Cl63^x)-Bi21ⁱⁱ-(Cl51ⁱⁱ) (**rIICl51**). In **III** there are also two different ribbons. The first one is composed of two types of alternating centrosymmetric rhombi: Bi1-(Cl6)-Bi2-(Cl5)-Bi1ⁱ-(Cl6ⁱ)-Bi2¹-(Cl5ⁱ) (rIIICl5/Cl6) and Bi1-(Cl5¹)-Bi2ⁱ-(Cl61ⁱ)-Bi1^{xxxiii}-(CI5ⁱⁱⁱ)-Bi2ⁱⁱⁱ-(CI61ⁱⁱⁱ) (**rIIICI5/CI61**). Please note that the symmetry operations have been selected so to close the figures (loops); in Table S3 equivalent angles are listed. The other ribbon is composed of rhombi of one type: Bi11-(Cl63)-Bi21-(Cl51^v)-Bi11^v-(Cl62^v)-Bi21^v-(Cl51) (rIIICI51). A view of all the rhombi along the Bi{1}-Cl{5}-Bi{2} direction shows the essential differences between the phases (Fig. S5). In Phase I the constituent rhombus is practically flat, whereas in II both rIICI5 and rIICI51 are bent along the Cl{6}-Cl{6}' axis, the bending is approximately 7-10°; see Table S3 for the exact values of the Bi{1}-Cl{6}-Bi{2} angles. In Phase III two rhombi, forming the ribbon with Bi1 and Bi2, rIIICI5/CI6 and rIIICI5/CI61 are warped; this is a consequence of their centrosymmetry (see Fig. 4). The third rhombus, rIIICI51, is bent in a way similar to those in II, but the bending (ca. 15°) is greater. On the other hand the Bi{1}-(Cl{5})-Bi{2} sides remain rather undistorted, as the Bi{1}-Cl{5}-Bi{2} angles do no deviate much from 180°, the largest deviation being 4.7 (3)° for Bi11-Cl51-Bi21^{xi}. In **II** the ribbons of different types are shifted with respect to each other *ca*. 0.24 Å along the **b** direction; in III – 0.29 Å. In all three phase inclination of the adjacent rhombi, as measured by the Cl{6}-Bi{1}-Cl{6}' and Cl{6}-Bi{2}-Cl{6}' angles remains practically unchanged, being in the range 83-85°.

Fig. S5. A view of the constituent rhombi along the $Bi{1}-(Cl{5})-Bi{2}$ direction; see the text for the explanations.

Hydrogen bonds in FBC

The hydrogen bonds in the presented structures are listed in Table S4; for the reader's convenience the parent C atoms in the formamidinium cations are listed in the first column. The bonds are exclusively of the N-H-Cl type and generally are rather weak. If, as it is commonly accepted, formation of the hydrogen bond is recognized when the D-A distance is smaller than the sum of Van der Waals radii of the donor and acceptor, only such N-Cl pairs may be safely regarded as connected via an H-bond, if the N-Cl distance is shorter than 3.3-3.4 Å [1, 2]. In Phase I and III weak bifurcated H-bonds have been found. In Phase I H4A, H5B and H51B are involved in such interactions, moreover, H41B is the centre of a trifurcate bond. In Phase III bifurcate bonds/interactions are mediated by H2B, H4A, H7A and H12A. The general weakness of the hydrogen bonds in the described structures may be one of the factors that facilitate the phase transitions.

parent C atom		D-H (Å)	H A (Å)	D A (Å)	∠DHA (°)
	1				
C1	N1-H1ACl2xii	0.86	2.73	3.35(3)	130
C1	N1-H1BCl4xiii	0.86	2.50	3.31(2)	157
C1	N2-H2ACl1xiv	0.92	2.82	3.00(3)	92
C1	N2-H2A···Cl1×v	0.92	2.75	3.64(3)	164
C1	N2-H2B-Cl1xiv	0.86	2.64	3.00(3)	107
C2	N3-H3B Cl5 ^{xvi}	0.86	2.53	3.23(4)	138
C21	N31-H31B Cl5 ^{xvi}	0.87	2.85	3.71(5)	170
C2	N4-H4ACl4xvii	0.86	2.74	3.38(4)	133
C2	N4-H4A···Cl4 ^{xviii}	0.86	2.74	3.38(4)	133
C2	N4-H4B Cl3 ⁱ	0.86	2.57	3.34(4)	150
C21	N41-H41BCl1xiv	0.86	2.69	3.29(4)	128
C21	N41-H41BCl1×v	0.86	2.69	3.29(4)	128
C21	N41-H41B Cl3 ⁱ	0.86	2.82	3.18(5)	107
C3	N5-H5B Cl4 ^{xix}	0.86	2.59	3.21(4)	129
C3	N5-H5B···Cl4 ^{xx}	0.86	2.59	3.21(4)	129
C31	N51-H51ACl5 ^{xxi}	0.86	2.46	3.20(6)	144
C31	N51-H51B···Cl4xix	0.86	2.78	3.37(4)	127
C31	N51-H51B···Cl4xx	0.86	2.78	3.37(4)	127
C31	N61-H61BCl2	0.85	2.88	3.36(5)	118
	II				
C1	N1-H1ACl43xxii	0.86	2.80	3.34(2)	123
C1	N1-H1BCl42xxiii	0.86	2.58	3.40(2)	159
C1	N2-H2A···Cl21 ^{xxii}	0.86	2.78	3.52(2)	144
C1	N2-H2B Cl11 ^v	0.86	2.66	3.29(2)	131
C11	N3-H3A···Cl2 ^{xxiv}	0.86	2.84	3.32(3)	120
C11	N3-H3B-Cl4 ^{vi}	0.86	2.45	3.31(2)	177
C11	N4-H4ACl41 ^{xxiv}	0.86	2.68	3.43(3)	146
C11	N4-H4B Cl13 ^{iv}	0.86	2.75	3.30(3)	123
C2	N5-H5A···Cl42 ^{xxv}	0.86	2.64	3.4292)	171
C2	N5-H5B Cl3 ^{xxvi}	0.86	2.68	3.30(2)	131
C2	N6-H6A···Cl63 ^{xxvii}	0.86	2.79	3.34(3)	123
C2	N6-H6B C51 ^{xxiii}	0.86	2.67	3.48(3)	157
C21	N7-H7A Cl41 ⁱ ^v	0.86	2.68	3.52(3)	165
C21	N7-H7BCl31xxvii	0.86	2.61	3.33(3)	143

Table S4. N-H-Cl hydrogen bonds and contacts in FBC.

C22	N7-H7C Cl11	0.86	2.67	3.49(3)	160
C22	N7-H7DCl31xxvii	0.86	2.74	3.33(3)	128
C21	N8-H8A Cl6 ^{iv}	0.86	2.88	3.66(3)	153
C21	N8-H8BCI5 ^{iv}	0.86	2.80	3.41(3)	129
C22	N8-H8C Cl6	0.86	2.83	3.64(3)	156
C22	N8-H8D Cl5 ^{iv}	0.86	2.75	3.41(3)	135
C3	N9-H9A Cl61 ⁱⁱⁱ	0.86	2.81	3.45(3)	132
C3	N10-H10ACl1 ⁱⁱⁱ	0.86	2.61	3.41(4)	153
C3	N10-H10B-Cl42xxviii	0.86	2.59	3.31(4)	143
C31	N11-H11B Cl21 ^{xxvii}	0.86	2.83	3.35(3)	121
C32	N11-H11C Cl1	0.86	2.76	3.56(3)	155
C32	N11-H11D Cl21xxvii	0.86	2.74	3.35(3)	130
C31	N12-H12BCl4 ^{ix}	0.86	2.85	3.41(3)	124
C32	N12-H12C Cl5	0.86	2.83	3.65(3)	159
C32	N12-H12DCl4ix	0.86	2.83	3.41(3)	127
	III				
C1	N1-H1A Cl21	0.86	2.73	3.30(2)	125
C1	N1-H1B Cl42 ^{xxix}	0.86	2.42	3.27(2)	172
C1	N2-H2A Cl43	0.86	2.67	3.47(2)	155
C1	N2-H2B···Cl1 ^{xxx}	0.86	2.72	3.24(2)	121
C1	N2-H2B···Cl11 ^{xxxi}	0.86	2.83	3.52(2)	138
C11	N3-H3B Cl41	0.86	2.49	3.34(2)	168
C11	N4-H4A Cl2 ⁱⁱⁱ	0.86	2.87	3.48(2)	130
C11	N4-H4A Cl41 ^x	0.86	2.75	3.43(2)	137
C11	N4-H4B Cl13 ^x	0.86	2.63	3.24(2)	129
C2	N5-H5A Cl63 ^x	0.86	2.70	3.50(3)	155
C2	N5-H5B···Cl51 ^{xxxii}	0.86	2.71	3.40(3)	138
C2	N6-H6ACl13x	0.86	2.47	3.32(2)	168
C2	N6-H6B Cl3	0.86	2.71	3.31(3)	128
C21	N7-H7A Cl1 ⁱ	0.86	2.86	3.42(2)	125
C21	N7-H7ACl11xxxiii	0.86	2.71	3.44(2)	143
C21	N7-H7BCl31	0.86	2.69	3.27(3)	126
C21	N8-H8A Cl61 ⁱ	0.86	2.83	3.56(4)	144
C21	N8-H8A Cl5 ⁱ	0.86	2.64	3.33(4)	138
C3	N9-H9A Cl61	0.86	2.61	3.44(2)	162
C3	N9-H9B Cl2	0.86	2.80	3.38(2)	126
C3	N10-H10ACl11 ^{vi}	0.86	2.58	3.40(2)	159
C3	N10-H10ACl42xxxii	0.86	2.53	3.30(2)	150
C31	N11-H11ACl5	0.86	2.75	3.54(3)	153
C31	N11-H11BCl4	0.86	2.78	3.38(3)	129
C31	N12-H12ACl1 ⁱ	0.86	2.58	3.44(3)	173
C31	N12-H12ACl21	0.86	2.68	3.41(3)	143

The symmetry codes are those from Tables S2 and S3, apart from that: (xii) x, y, z+1; (xiii) -x+1, y-1/2, -z+1; (xiv) x+1/2, y+1, -z+3/2; (xv) x+1/2, -y+1/2, -z+3/2; (xvi) -x+3/2, -y+1, z+1/2; (xvii) -x+3/2, y-1/2, z+1/2; (xviii) -x+3/2, -y+2, z+1/2; (xix) x-1/2, y, -z+1/2; (xx) x-1/2, -y+3/2, -z+1/2; (xxi) -x+1/2, -y+1, z-1/2; (xxii) x-1/2, -y+3/2, z; (xxiii) x-1/2, -y+1/2, z; (xxiv) -x+1/2, -y+1, -z+3/2; (xv) -x+1/2, -y, -z+1/2; (xvi) -x, -y+1, -z+1/2; (xvii) -x+1/2, -y+1, -z+1/2; (xvii) -x+1/2, -y+1, -z+1/2; (xvii) x-1/2, y, z+1/2; (xxi) -x, -y-1/2; (xxi) -x, -y+1, -z+1/2; (xxii) x-1/2, -y+1, -z+1/2; (xxii) x-1/2, y, z+1/2; (xxii) -x+1/2, -y, -z+1/2; (xxi) x-1, y+1, -z+1/2; (xxiii) x-1/2, y, z+1/2; (xxii) -x, -y, 1-z; (xxxi) x-1, y, z; (xxii) x-1, y+1, z; (xxxii) x+1, y, z; (xxxii) -x+1, -y, -z+1;

Hydrogen bonds in FBB

As previously, it may be noticed that the N-H^{...}Br interactions, collected in Table S5, are rather weak. Only those contacts may be regarded as hydrogen bonds, for which the N^{...}Br distance is smaller than 3.4-3.5 Å.¹⁻² In Phase I a weak symmetric bifurcated H-bond (that mediated by H111) is present. In Phase III this symmetry breaks down and only trace of the bifurcation may be observed (in the bond mediated by H5B).

parent C atom	<i>D</i> —H···A	<i>D</i> —Н (Å)	H…A (Å)	<i>D</i> …A (Å)	<i>D</i> —Н…А (°)		
	1	I					
C11	N11—H111 Br2 ⁱ	0.94	2.84	3.30(2)	112		
C11	N11—H111 Br2 ⁱⁱ	0.94	2.84	3.30(2)	112		
C11	N11—H112 Br1	0.88	2.80	3.60(5)	151		
C11	N21—H211 […] Br2 ⁱⁱⁱ	0.87	2.49	3.28(5)	151		
C11	N21—H212 Br2 ^{iv}	0.87	2.36	3.17(5)	156		
C12	N12—H12B Br2 ⁱⁱ	0.94	2.87	3.25(5)	105		
C12	N22—H22A […] Br1 ^v	0.87	2.23	3.02(7)	152		
C12	N22—H22B Br2 ^{vi}	0.87	2.39	3.12(5)	142		
III							
C3	N1—H1A…Br5 ⁱ	0.88	2.79	3.64(3)	162.4		
C3	N1—H1B…Br8	0.88	2.74	3.52(3)	149.2		
C4	N2—H2A…Br4 ⁱⁱ	0.88	2.86	3.68(4)	156.6		
C4	N2—H2B····Br3 ⁱⁱⁱ	0.88	2.60	3.45(4)	161.8		
C4	N3—H3A…Br3 ⁱⁱ	0.88	2.80	3.54(4)	143.0		
C4	N3—H3B···Br10	0.88	2.57	3.39(4)	154.4		
C3	N4—H4A…Br8 ⁱ	0.88	2.93	3.49(4)	123.4		
C3	N4—H4B…Br10 ⁱ	0.88	2.66	3.54(4)	173.5		
C19	N5—H5A…Br10 ^{iv}	0.88	2.78	3.59(6)	152.5		
C19	N5—H5B…Br9 ^v	0.88	2.92	3.38(5)	114.7		
C19	N5—H5B…Br11 ^v	0.88	2.87	3.72(7)	161.4		
C19	N6—H6A…Br10 ^{iv}	0.88	2.91	3.66(5)	145.0		
C19	N6—H6B…Br9 ^{vi}	0.88	2.47	3.33(4)	167.4		

Table S5. N-H. Br hydrogen bonds and contacts in FBB.

Symmetry codes for I: (i) -y, x-1, z; (ii) -x+y+1, -x+1, z; (iii) -x+1, -x+y, -z; (iv) -x+y+1, -x, z; (v) x-1, y, z; (vi) x-y-1; -y, -z+1; symmetry codes for II: (i) x, y-1, z; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) x, -y+1/2, z-1/2; (v) -x, y+1/2, -z+1/2; (vi) -x, y-1/2, -z+1/2.

Fig. S6. The temperature dependence of the imaginary part of the complex electric permittivity of the (a) FBC and (b) FBB crystal.

Fig. S7. Cole–Cole plots of ϵ'' versus ϵ' at selected temperatures showing the relaxation nature of the dielectric dispersion for FBB.

Fig. S8. Temperature dependence of the macroscopic relaxation time (s) and its inverse (s⁻¹) in FBB.

Fig. S9. The crystal structure of **(a) FBC** (the view along the *b*-axis) and **(b) FBB** (the view along the *c*-axis) in phase **III** with FA⁺ cations.

Ferroelastic domain structure of FBB

Fig. S10. The evolution of the ferroelastic domain pattern for FBB during the cooling cycle.

Fig. S10 shows the appearance of the ferroelastic domain structure through the $PT(I \rightarrow II)$ (Fig. S10 a-b) and strong twinning through (II \rightarrow III) (Fig. S10 d-e).

Second moment of ¹H NMR for FBC

The theoretical calculation of the dipolar second moment M_2 for the rigid structure obtained from XRD was derived by van Vleck³:

$$M_{2} = \frac{3}{5}I(I+1)\gamma^{2}h^{2}\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{N}R_{ij}^{-6}$$
(1)

where N is the number of protons in the unit cell, R_{ij} are distances between interacting protons. The rigid value of M_2 calculated from the crystal structure appeared to be about 12.2 G² with assumed lengths of bonds: C-H 1.09 Å and N-H 1.03 Å (please note, that the positions of hydrogen nuclei are only theoretically estimated). The obtained result is twice lower than that found from the experimental plateau for formamidinium iodie 24 G^{2.4} The reason of it is that assumed length of N-H bond (1.03 Å), usually used in NMR data analysis is

in fact, shorter and equals 0.9 Å. On the other hand, the effect of quadrupole interaction of the chlorine atoms is not excluded.

The second-moment of ¹H NMR line for **FBC** (Fig. S11) shows that between 100 and 290 K the value of the M_2 is continuously reduced from about 10 G² to about 3 G².

The first reduction is caused probably by start-up of axial rotation of whole formamidinium cation around the axis parallel to N - N line after breaking the hydrogen bonds. Please note, that for **FBC** the reached M₂ value above 160 K is practically equals to ¼ of the second moment value before reduction (expected 6 G²) and this fact denotes that all formamidinium cations perform freely axial rotations. In turn, the next reduction is the onset of motion of parts of formamidinium cations in the disorder state.

Fig. S11. Temperature dependence of M₂ for **FBC** (green points) and theoretical calculations (solid line), the results of fitting : E_{a1} = 1.08 kcal mol⁻¹, τ_{01} = 4.22·10⁻⁸ s, E_{a2} = 5.77 kcal ·mol⁻¹, τ_{02} = 2.08·10⁻¹¹ s.

Parameter	FBB
E _{a1} [kcal mol ⁻¹]	2.68
$\tau_{01} [s]$	2.36 10-13
$C_1 [s^{-2}]$	1.3 109
E _{a2} [kcal mol ⁻¹]	4.97
τ_{02} [s]	5.36 10-15
C ₂ [s ⁻²]	6.5 10 ⁸

Table S6. The	obtained	fitting	parameters	for FBB	(eq	. 1).
---------------	----------	---------	------------	----------------	-----	-----	----

- 1 A. Bondi, J. Phys. Chem., 1964, **68**, 441.
- 2 S. S. Batsanov, Inorg. Materials, 2001, **37**, 871.
- 3 J. H. Van Vleck, Phys. Rev., 1948, **74**, 1168.
- 4 K. Mencel, P. Durlak, M. Rok, R. Jakubas, J. Baran, W. Medycki, A. Ciżman and A. Piecha-Bisiorek, RSC Adv., 2018, **8**, 26506.