Supplementary Material

Dinuclear vs Tetranuclear Co^{II}Y^{III} complexes: The effect of increasing molecular size on the relaxation dynamics.

Alberto Masegosa, M. Palacios, Eliseo Ruiz, Silvia Gómez-Coca, J. Krzystek, José. M.

Moreno, Enrique Colacio

Formula	C ₅₄ H ₈₆ N ₈ O ₂₄ Co ₂ Y ₂		
Mw	1526.98		
Crystal system	Monoclinic		
Space group (no.)	P21/n (14)		
a (Å)	12.959(3)		
b (Å)	12.394(3)		
c (Å)	19.345(4)		
α (°)	90.000(3)		
β (°)	94.40(3)		
γ(°)	90.000(3)		
V (Å ³)	3097.9(11)		
Z	2		
Dc (g cm ⁻¹)	1.637		
μ(MoK _α) (mm ⁻¹)	2.468		
Т (К)	100(2)		
Observed reflections a6376 (5534)			
Rint	int 0.0536 (0.0290)		
Parameters	arameters 433		
GOF	OF 1.117		
R1 ^b	0.0413 (0.0305)		
wR ^{2 c}	0.0749 (0.0695)		
Largest peak and hole (e Å ⁻³) 0.432 and -0.866			
^a Values in parentheses for reflections with I > $2\sigma(I)$.			
^b R1 = Σ Fo - Fc / Σ Fo .			
c wR2 = { Σ [w(Fo ² - Fc ²) ²] / Σ [w(Fo ²) ²]} ^{3/2} .			

Table S1. Crystallographic data for $[{Co(\mu-L)Y(NO_3)}_2(\mu-CO_3)_2] \cdot 2CH_3OH \cdot 2H_2O$ (1).

Table S2. Selected distances and angles for $[{Co(\mu-L)Y(NO_3)}_2(\mu-CO_3)_2] \cdot 2CH_3OH \cdot 2H_2O$ (1).

Bond	amstrongs	Bond/distance	armstrongs
Co2- N1	2.182(2)	Y1-05	2.3607(17)
Co2-N2	2.199(2)	Y1-O5 (I)	2.3530(17)
Co2-N3	2.250(2)	Y1-07	2.3886(17)
Co2-O2	2.1542(17)	Y1-09	2.5818(18)
Co2-O3	2.0998(18)	Y1-O10	2.4613(18)
Co2-O6	2.0708(17)	Y1…Co2	3.4873(7)
Y1-N7	2.955(2)	Co2…Co2 (I)	8.278(2)

Y1-O2	2.2939(17)	Y1…Y1 (I)	3.9987(10)
Y1-O3	2.2833(17)	Co2…Co2 (II)	8.290(2)
Y1-04	2.5328(19)	Co2…Co2 (III)	8.4321(15)
l= 1-x, 1-y, -z; ll= -x, 1-y, -z; lll= ½-x, -½+y, ½-z or ½-x, ½+y, ½-z			
Angle	degrees	Angle	degrees
N1-Co2-N2	80.44(8)	O3-Co2-N3	90.18(8)
N1-Co2-N3	102.10(8)	O3-Co2-O2	77.37(7)
N2-Co2-N3	80.42(8)	O6-Co2-N1	96.18(8)
O2-Co2-N1	90.04(7)	O6-Co2-N2	167.60(7)
O2-Co2-N2	98.20(7)	O6-Co2-N3	88.70(8)
O2-Co2-N3	167.31(7)	O6-Co2-O2	93.72(7)
O3-Co2-N1	166.25(7)	O6-Co2-O3	90.17(7)
O3-Co2-N2	95.76(8)		

Table S3.- Continuous Shape Measures calculation for the CoN₃O₃ coordination polyhedron of

1.

						-
S H A P E (c) 2013 I	v2.1 Electronic Contact:	Continuc Structure C llunell@u	ous Shape Mo Group, Unive ıb.edu	easures cal ersitat de B	culation arcelona	_
JPPY-6 TPR-6 OC-6 PPY-6 HP-6	5 C5v 4 D3h 3 Oh 2 C5v 1 D6h	Johnson p Trigonal Octahedro Pentagona Hexagon	pentagonal p prism n al pyramid	yramid J2		
Structure [[ML6]	JPPY-6 25.478,	TPR-6 11.801,	OC-6 1.444,	PPY-6 22.035,	HP-6 30.762

Table S4.- Contributions to *D*-tensor from CASSCF QDPT calculations.

Compound	1	
	D	E
⁴ Φ ₁	52.477	-52.062
⁴ Φ ₂	31.225	-30.306
⁴ Φ ₃	-2.333	0.813
⁴ Φ ₄	-6.439	1.340
⁴ Φ ₅	-4.410	1.342

Figure S1 .- UV-vis-NIR solid state reflectance spectra for 1.

Figure S2. Field vs. frequency (or energy) dependence of the turning points in the powder spectra of **1** at 5 K. The squares represent experimental resonances while the lines were drawn using the same spin Hamiltonian parameters as in caption to Figure 3. Red lines: turning points with magnetic field parallel to the *x*-axis of the zero-field splitting tensor; blue lines: $B_0 \parallel y$; black lines: $B_0 \parallel z$. The lines that have no squares on them represent

turning points of the intra-Kramers transition within the $m_s = \pm 3/2$ doublet, which is not populated at low temperature, as *D* is large, and positive.

Figure S3.- Frequency dependence of the out-of-phase ac susceptibility for 1 under a magnetic field of 0.025 T at different temperatures.

Figure S4.- Temperature dependence of the out-of-phase ac susceptibility for **1** under a magnetic field of 0.025 T at different frequencies.

Figure S5.- Temperature dependence of the in-phase ac susceptibility for **1** under a magnetic field of 0.025 T at different frequencies.

Figure S6.- Temperature dependence of the out-of-phase ac susceptibility for **1** under a magnetic field of 0.2 T at different frequencies.

Figure S7.- Temperature dependence of the in-phase ac susceptibility for 1 under a magnetic field of 0.2 T at different frequencies.

Figure S8.- Frequency dependence of the out-of-phase ac susceptibility for **1** under a magnetic field of 0.20 T at different temperatures

Figure S9.- Temperature dependence of the ratio of the in-phase and out-of-phase *ac* components at different frequencies under a magnetic field of 0.2 T for **1**. Solid lines correspond to the fit of the experimental data to equation 4 (left) and equation 5 (right).

Figure S10.- Temperature dependence of the out-of-phase ac susceptibility for **1'** under a magnetic field of 0.20 T at different frequencies.

Figure S11.- Experimental and calculated Powder X-Ray diffraction diagrams for 1'.