Supporting Information for the manuscript:

Influence of the pyrazine substituent on the structure and magnetic properties of dicyanamide-bridged cobalt(II) complexes

Joanna Palion-Gazda,^a, Katarzyna Czerwińska, Barbara Machura,^{*a} Rafal Kruszynski,^b Joan Cano^{*c}, Francesc Lloret^c and Miguel Julve^c

^aDepartment of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland

^bDepartment of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology,116 Żeromski St., 90-924 Łódź, Poland.

^cDepartament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, València, Spain

Table of Contents

1. Powder XPRD pattern of 1 .	Fig. S1
2. Powder XPRD pattern of 2 .	Fig. S2
3. IR spectrum of 1 .	Fig. S3
4. IR spectrum of 2 .	Fig. S4
5. UV-Vis spectra of 1 and 2.	Fig. S5
6. Crystal packing of 1 showing the hydrogen and $\pi \cdots \pi$ stacking interactions.	Fig. S6
7. View of a fragment of the supramolecular 3D structure of 1.	Fig. S7
 Two-dimensional coordination network of 2 formed by μ_{1,5}-dca and HO<i>pyz</i> bridges 	Fig. S8
9. Side view illustrating the 2D stair-like network of 2 .	Fig. S9
10. Crystal packing of 2 showing the hydrogen bonds.	Fig. S10
11. View of a fragment of the crystal packing of 2 showing $\pi - \pi$ stacking and C—X••• π (X = O, N) type interactions.	Fig. S11
12. The cobalt environment in $1-2$ together with shape values (S _Q (P)) with respect to the octahedral geometry (OC-6), calculated with SHAPE program.	Fig. S12
13. X-band EPR spectra on a powdered sample of 1 at the indicated temperatures.	Fig. S13
14. X-band EPR spectra on a powdered sample of 2 at the indicated temperatures.	Fig. S14
15. Q-band EPR spectra on a powdered sample of 2 at the indicated temperatures. The black trace corresponds to the best simulation for an effective spin $S_{\text{eff}} = \frac{1}{2}$ (see text).	Fig. S15
16. Thermal dependence of $\chi_{M'}$ (top) and $\chi_{M''}$ (middle) ac susceptibilities and frequency dependence of $\chi_{M''}$ (bottom) for 1 under an applied static field $H_{dc} = 2500$ G with a ±5.0 G oscillating field at frequencies in the range 0.3-10 kHz.	Fig. S16
17. Thermal dependence of $\chi_{M^{\circ}}$ (top) and $\chi_{M^{\circ}}$ (middle) ac susceptibilities and frequency dependence of $\chi_{M^{\circ}}$ (bottom) for 2 under an applied static fields $H_{dc} = 1000$ (left) and 2500 G (right) with a ±5.0 G oscillating field at frequencies in the range 0.3-10 kHz.	Fig. S17
18. Cole-Cole plots (top) in the temperature range 2.0–7.5 K and the thermal dependence of the χ_t , χ_s and α parameters (bottom) for 1 under an applied static field of $H_{dc} = 2500$ G. The solid lines are the best-fit curves.	Fig. S18
19. Cole-Cole plots (top) in the temperature range 2.0–5.25 K and the thermal dependence of the χ_t , χ_s and α parameters (bottom) for 2 under an applied static fields of $H_{dc} = 1000$ (left) and 2000 G (right). The solid lines are the best-fit curves.	Fig. S19
20. Arrhenius plots for 1 under an applied static field of $H_{dc} = 2500$ G obtained from temperature- (blue) and field- (red) dependences of $\chi_{M''}$ (top), and through the $\chi_{M}'' vs. \chi_{M}''/\varpi$ (blue),	Fig. S20

χ_{M} vs. χ_{M} $\tilde{\sigma}$ (green) and χ_{M} $\tilde{\sigma}$ vs. χ_{M} $\tilde{\sigma}$ (red) methods (bottom) which are described in the main text. The solid lines are	
the best-fit curves using Orbach-Orbach (dark) Orbach-direct	
(moderate) and Raman-direct (nale) approaches	
21 y_{x} , against either y_{x} , $y'_{\pi}(\tan)$ or y_{x} , $\pi(\operatorname{middle})$ and y_{x} , y'_{π} , y_{π}	Fig S21
21. $\chi_{\rm M}$ against efficience $\chi_{\rm M} / \omega$ (top) of $\chi_{\rm M} - \omega$ (initially) and $\chi_{\rm M} / \omega / s$.	115.021
$\chi_{\rm M}$ w plots for 1 under an applied static field of $H_{\rm dc} = 2500$ G m the temperature range 2.0–10.5 K	
$\frac{1}{22} \text{ Arrhonius plots for } 2 \text{ under an applied static field of } H_{-} = 1000$	Fig S22
G obtained from temperature- (blue) and field- (red)	11g. 522
dependences of $\chi_{M'}$ (top), and through the $\chi_{M'}$ vs. $\chi_{M''}/\sigma$ (blue),	
$\chi_{\rm M}$ vs. $\chi_{\rm M}$ σ (green) and $\chi_{\rm M}$ σ vs. $\chi_{\rm M}$ σ (red) methods	
(bottom) which are described in the main text. The solid lines are	
the best-fit curves using Orbach-Orbach (dark), Orbach-direct	
(moderate) and Raman-direct (pale) approaches.	
23. Arrhenius plots for 2 under an applied static field of $H_{dc} = 2000$	Fig. S23
G obtained from temperature- (blue) and field- (red)	
dependences of $\chi_{M''}$ (top), and through the χ_{M}'' vs. χ_{M}''/ϖ (blue),	
$\chi_{\rm M}$ ' vs. $\chi_{\rm M}$ "· σ (green) and $\chi_{\rm M}$ "/ σ vs. $\chi_{\rm M}$ "· σ (red) methods	
(bottom) which are described in the main text. The solid lines are	
the best-fit curves using Orbach-Orbach (dark), Orbach-direct	
(moderate) and Raman-direct (pale) approaches.	
24. Crystal data and structure refinement of 1 and 2.	Table S1
25. Selected bond lengths [Å] and angles [°] for 1.	Table S2
26. Selected bond lengths [Å] and angles [°] for 2 .	Table S3
27. Hydrogen bonds and C–H···N type interactions in 1 and 2^{a}	Table S4
28. Short $\pi \cdots \pi$ interactions for 1 and 2 ^a	Table S5
29. C—X···Cg(J)(π -ring) (X = O, N) interactions for 2^a	Table S6
30. Energy of all calculated excited states and their contributions to the	Table S7
D and E values for the real geometries of Co1 in 1 and Co2 in 2	
obtained from CASSCF/NEVPT2 calculations.	
31. Energy of all calculated excited states and their contributions to the	Table S8
D and E values for the real geometries of Co1 and Co1e in 2	
obtained from CASSCF/NEVPT2 calculations.	
22. Energies of the low-lying Kramers doublets corresponding to the	Table S9
ground and first excited states, which should be related to those	
generated from the 1 st order spin-orbit coupling, of the real	
geometries of Co1 in I and Co1, Co1e and Co2 in 2 obtained from	
CASSUF/INEVEL2 calculations.	
23. Selected ac magnetic data for 1 under $H_{dc} = 1000 \text{ G}$	Table S10
24. Selected ac magnetic data for 1 under $H_{dc} = 2500 \text{ G}$	Table S11
25. Selected ac magnetic data for 2 under $H_{dc} = 1000 \text{ G}$	Table S12
26. Selected ac magnetic data for 2 under $H_{dc} = 2000 \text{ G}$	Table S13
27. Selected ac magnetic data for 2 under $H_{dc} = 3500 \text{ G}$	Table S14

Figure S1. Powder XRPD pattern of **1** (experimental - black) and the simulation of its powder pattern from the crystal structure (red).

Figure S2. Powder XRPD pattern of **2** (experimental - black) and the simulation of its powder pattern from the crystal structure (red).

Figure S4. IR spectrum of 2.

Figure S5. UV-Vis spectra of powder samples of 1 and 2.

Figure S6. Crystal packing of 1 showing the hydrogen bonds (green dashed lines) and $\pi \cdots \pi$ stacking interactions (red dashed lines).

Figure S7. View of a fragment of the supramolecular 3D structure of 1.

Figure S8. Two-dimensional coordination network of **2** formed by $\mu_{1,5}$ -dca and HO*pyz* bridges [symmetry codes: (a) = x, -1+y, z, : (b) = x, 1+y, z; (c) = -x, -y, -z; (d) = -x, 1-y, -z and (e) = 2-x, -y, -z];

Figure S9. Side view illustrating the 2D stair-like network of 2.

Figure S10. Crystal packing of 2 showing the hydrogen bonds.

Figure S11. View of a fragment of the crystal packing of **2** showing π - π stacking and C—X••• π (X = O, N) type interactions.

Figure S12. The cobalt environment in 1–2 together with shape values (S_Q(P)) with respect to the octahedral geometry (OC-6), calculated with SHAPE program. The shape measure $S_Q(P)$ is defined as $S_Q(P) = \min\left[(\sum_{i=1}^n |\vec{q}_i - \vec{p}_i|^2)/(\sum_{i=1}^n |\vec{q}_i - \vec{q}_0|^2)\right] \times 100$, where \vec{q}_i are *N* vectors that contain the 3*N* Cartesian coordinates of the problem structure Q; \vec{p}_i contain the coordinates of the ideal polyhedron P; \vec{q}_0 is the position vector

of the geometric centre that is chosen to be the same for the two polyhedra. [M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, *SHAPE version 2.0.*, Universitat de Barcelona, **2010**; J. Cirera, P. Alemany and S. Alvarez, *Chem. Eur. J.*, 2004, **10**, 190; D. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir and S. Alvarez, *J. Am. Chem. Soc.*, 2004, **126**, 1755; J. Cirera, E. Ruiz and S. Alvarez, *Inorg. Chem.*, 2008, **47**, 2871].

Figure S13. X-band EPR spectra on a powdered sample of 1 at the indicated temperatures.

Figure S14. X-band EPR spectra on a powdered sample of 2 at the indicated temperatures.

Figure S15. Q-band EPR spectra on a powdered sample of **2** at the indicated temperatures. The black trace corresponds to the best simulation for an effective spin $S_{\text{eff}} = \frac{1}{2}$ (see text).

Figure S16. Thermal dependence of $\chi_{M'}$ (top) and $\chi_{M''}$ (middle) ac susceptibilities and frequency dependence of $\chi_{M''}$ (bottom) for 1 under an applied static field of $H_{dc} = 1000$ G with a ±5.0 G oscillating field at frequencies in the range 0.3-10 kHz.

Figure S17. Thermal dependence of $\chi_{M^{\circ}}$ (top) and $\chi_{M^{\circ}}$ (middle) ac susceptibilities and frequency dependence of $\chi_{M^{\circ}}$ (bottom) for **2** under an applied static fields of $H_{dc} = 1000$ (left) and 2000 G (right) with a ±5.0 G oscillating field at frequencies in the range 0.3-10 kHz.

Figure S18. Cole-Cole plots (top) in the temperature range 2.0–7.5 K and the thermal dependence of the χ_t , χ_s and α parameters (bottom) for **1** under an applied static field of $H_{dc} = 2500$ G. The solid lines are the best-fit curves.

Figure S19. Cole-Cole plots (top) in the temperature range 2.0–5.25 K and the thermal dependence of the χ_t , χ_s and α parameters (bottom) for **2** under an applied static fields of $H_{dc} = 1000$ (left) and 2000 G (right). The solid lines are the best-fit curves.

Figure S20. Arrhenius plots for 1 under an applied static field of $H_{dc} = 2500$ G obtained from temperature- (blue) and field- (red) dependences of $\chi_{M''}$ (top), and through the $\chi_{M}' vs. \chi_{M''}/\varpi$ (blue), $\chi_{M}' vs. \chi_{M''} \cdot \varpi$ (green) and $\chi_{M''}/\varpi vs. \chi_{M''} \cdot \varpi$ (red) methods (bottom) which are described in the main text. The solid lines are the best-fit curves using Orbach-Orbach (dark), Orbach-direct (moderate) and Raman-direct (pale) approaches.

Figure S21. $\chi_{\rm M}$ ' against either $\chi_{\rm M}$ ''/ σ (top) or $\chi_{\rm M}$ '' σ (middle) and $\chi_{\rm M}$ ''/ σ vs. $\chi_{\rm M}$ '' σ plots for 1 under an applied static field of $H_{\rm dc} = 2500$ G in the temperature range 2.0–10.5 K.

Figure S22. Arrhenius plots for **2** under an applied static field of $H_{dc} = 1000$ G obtained from temperature- (blue) and field- (red) dependences of $\chi_{M"}$ (top), and through the $\chi_{M}' vs. \chi_{M}''/\varpi$ (blue), $\chi_{M}' vs. \chi_{M}'' \cdot \varpi$ (green) and $\chi_{M}''/\varpi vs. \chi_{M}'' \cdot \varpi$ (red) methods (bottom) which are described in the main text. The solid lines are the best-fit curves using Orbach-Orbach (dark), Orbach-direct (moderate) and Raman-direct (pale) approaches.

Figure S23. Arrhenius plots for **2** under an applied static field of $H_{dc} = 2000$ G obtained from temperature- (blue) and field- (red) dependences of $\chi_{M"}$ (top), and through the χ_{M} ' *vs*. χ_{M}''/ϖ (blue), χ_{M} ' *vs*. $\chi_{M}'' \cdot \varpi$ (green) and $\chi_{M''}/\varpi vs$. $\chi_{M''} \cdot \varpi$ (red) methods (bottom) which are described in the main text. The solid lines are the best-fit curves using Orbach-Orbach (dark), Orbach-direct (moderate) and Raman-direct (pale) approaches.

Table S1. Crystal data and structure refinement of 1 and 2.

Compound	1	2
Empirical formula	$C_{12}H_{12}CoN_{12}O$	C ₃₂ H ₂₃ Co ₃ N ₂₈ O ₇
Formula weight	399.27	1088.7
<i>T</i> [K]	295.0(2)	295.0(2)
Wavelength [Å]	0.71073	0.71073
Crystal system	Orthorhombic	Triclinic
Space group	Pnna	P1
Unit cell dimensions [Å, °]		
a	13.5668(6)	6.9942(3)
b	12.9364(6)	12.0232(4)
С	9.2522(4)	12.8819(6)
α		93.330(3)
β		95.046(4)
γ		95.499(3)
V[Å ³]	1623.81(12)	1071.70(8)
Z	4	1
$D_c [{\rm Mg} {\rm m}^{-3}]$	1.633	1.687
Absorption coefficient [mm ⁻¹]	1.090	1.231
F(000)	812.0	548.0
Crystal size [mm]	0.177×0.112×0.080	0.158×0.112×0.099
θ range for data collection [°]	3.39 to 25.05	3.41 to 25.05
	$-15 \le h \le 16$	$-6 \le h \le 8$
Index ranges	$-15 \le k \le 12$	$-14 \le k \le 12$
	$-8 \le l \le 11$	$-15 \leq l \leq 14$
Reflections collected	4437	7963
Independent reflections	$1441(R_{int} = 0.0267)$	$3781 \ (R_{\rm int} = 0.0228)$
Completeness to 2θ [%]	99.7	99.8
Min. and max. transm.	0.860 and 1.000	0.677 and 1.000
Data/restraints/parameters	1441/0/123	3781/0/333
Goodness-of-fit on F^2	1.030	1.035
Final <i>R</i> indices $[I > 2\sigma(I)]$		
<i>R</i> 1	0.0293	0.0304
wR2	0.0742	0.0676
<i>R</i> indices (all data)		
<i>R</i> 1	0.0386	0.0381
wR2	0.0789	0.0703
Largest diff. peak/hole [e Å ⁻³]	0.29 and -0.22	0.28 and -0.25

Bond ler	ngths	Bond angles				
Co(1)–N(1)	2.1712(17)	N(1)-Co(1)-N(1e)	178.36(9)			
Co(1)-N(97)	2.1098(18)	N(1)-Co(1)-N(97)	88.18(6)			
Co(1)-N(99)	2.1194(18)	N(1)-Co(1)-N(99)	90.84(6)			
		N(1)-Co(1)-N(97e)	90.68(6)			
		N(1)-Co(1)-N(97e)	90.33(6)			
		N(97)-Co(1)-N(97e)	92.18(10)			
		N(97)-Co(1)-N(99)	89.63(7)			
		N(97)-Co(1)-N(99e)	177.67(7)			
		N(99)-Co(1)-N(99e)	88.60(10)			
		Co(1)-N(97)-C(98)	173.67(17)			
		Co(1)-N(99)-C(99)	169.84(18)			
		N(97)-C(98)-N(98)	172.6(2)			
		C(98) = N(98) = C(99h)	122 31(19)			

Table S2. Selected bond lengths (\AA) and angles (deg) for 1.

 $\frac{|C(98)-N(98)-C(99b)|}{\text{Symmetry transformations used to generate equivalent atoms: (b) = 1/2+x, y, 1-z; (e) = x, 1/2-y, 3/2-z.}$

Bond ler	ngths	Bond angle	es
Co(1)-N(1)	2.2213(18)	N(1)-Co(1)-N(3)	175.82(7)
Co(1) - N(3)	2.2024(18)	N(1)-Co(1)-N(91)	90.95(7)
Co(1)–N(91)	2.056(2)	N(1)-Co(1)-N(94)	92.42(7)
Co(1)-N(94)	2.078(2)	N(1)-Co(1)-N(97)	86.15(7)
Co(1)–N(97)	2.071(2)	N(1)-Co(1)-O(99)	91.20(7)
Co(1)-O(99)	2.1653(16)	N(3)-Co(1)-N(91)	85.96(7)
Co(2)–N(4)	2.1868(19)	N(3)-Co(1)-N(94)	91.07(7)
Co(2)-N(96a)	2.114(2)	N(3)-Co(1)-N(97)	91.42(7)
Co(2)–N(99)	2.073(2)	N(3)-Co(1)-O(99)	91.45(7)
		N(91)-Co(1)-N(94)	170.58(9)
		N(91)-Co(1)-N(97)	97.02(9)
		N(91)-Co(1)-O(99)	86.97(7)
		N(94)-Co(1)-N(97)	91.98(8)
		N(94)-Co(1)-O(99)	84.17(7)
		N(97)-Co(1)-O(99)	175.24(7)
		N(4)-Co(2)-N(4d)	180.0
		N(4)-Co(2)-N(96b)	88.42(8)
		N(4)-Co(2)-N(96c)	91.58(8)
		N(4d)-Co(2)-N(96b)	91.57(8)
		N(4d)-Co(2)-N(96c)	88.43(8)
		N(4)-Co(2)-N(99)	91.12(8)
		N(4)-Co(2)-N(99d)	88.88(8)
		N(96c)-Co(2)-N(96b)	180.00(12)
		N(96c)-Co(2)-N(99)	90.37(9)
		N(96c)-Co(2)-N(99d)	89.63(9)
		N(99d)-Co(2)-N(99)	180.0
		Co(1)-N(91)-C(94)	174.0(2)
		Co(1)-N(94)-C(96)	167.2(2)
		Co(1)-N(97)-C(98)	170.2(2)
		Co(2)–N(99)–C(99)	166.4(2)
		Co(2b)–N(96)–C(97)	159.4(2)
		N(91)-C(94)-N(92)	174.2(3)
		N(93)-C(95)-N(92)	173.6(4)
		N(94)-C(96)-N(95)	171.9(3)
		N(96)-C(97)-N(95)	172.4(3)
		N(97)-C(98)-N(98)	171.3(3)
		N(99)-C(99)-N(98)	171.5(3)
		C(94)–N(92)–C(95)	120.2(2)
		C(96)–N(95)–C(97)	123.8(2)
		C(98)–N(99)–C(99)	126.8(2)

Table S3. Selected bond lengths (\AA) and angles (deg) for 2.

Symmetry transformations used to generate equivalent atoms: (a) = x, -1+y, z; (b) = x, 1+y, z; (c) = -x, -y, -z; (d) = -x, 1-y, -z.

D	A	D—H [Å]	H…A [Å]	D…A [Å]	D—H…A [°]					
1										
O(1)	N(2) ^f	0.85	2.37	3.190(2)	162.0					
O(1)	N(2)	0.85	2.47	3.190(2)	143.0					
N(3)	O(1) ^g	0.86	2.32	3.137(3)	158.0					
N(3)	N(98) ⁱ	0.86	2.37	3.130(3)	147.0					
C(4)	N(98) ^j	0.93	2.58	3.470(3)	159.0					
	•		2							
O(2)	O(99)	0.82	1.68	2.500(4)	175.0					
N(2)	$O(3)^k$	0.85	2.02	2.813(3)	157.0					
N(5)	N(93) ¹	0.80	2.21	2.2975(4)	161.0					
O(99)	O(3) ^m	0.87	2.26	3.066(2)	154.0					
O(99)	$O(1)^n$	0.87	2.44	2.963(2)	119.0					
O(99)	O(1)°	0.87	1.80	2.667(2)	170.0					
C(1)	N(94)	0.93	2.61	3.188(3)	121.0					
C(6)	N(97)	0.93	2.49	3.093(3)	122.0					

Table S4. Hydrogen bonds and C–H…N type interactions in 1 and 2^a

^a Symmetry transformations used to generate equivalent atoms: (f) = x, 3/2-y, 1/2-z, (g) = 1/2-x, 1-y, z; (h) = 1-x, 1/2+y, -1/2+z; (i) = 1-x, 1/2+y, 1/2+z; (j) = 2-x, -y, -z; (k) = 1-x, 1-y, 1-z; (l) = 1+x, -1+y, z; (m) = 1-x, -y, 1-z; (n) = 1+x, y, z; (o) = 1/2-x, -1/2+y, 3/2-z.

Table S5. Short $\pi \cdots \pi$ interactions for 1 and 2^a

$Cg(I) \cdots Cg(J)$	$Cg(I) \cdots Cg(J) [Å]$	α [°] ^b	β[°]¢	γ [°] ^d	Cg(I)–Perp [Å] ^e	Cg(J)–Perp [Å] ^f					
1											
$Cg(1)\cdots Cg(1q)^{g}$	3.4575(12)	8	12.11	12.11	-3.3805(8)	-3.3805(8)					
$Cg(1)\cdots Cg(1p)$	3.5870(12)	0	19.81	19.81	3.3748(8)	3.3748(8)					
2											
$Cg(1)\cdots Cg(1r)$	3.8706(12)	0	30.49	30.49	-3.3352(9)	-3.3352(9)					

^a Symmetry code: (q) = 1/2-x, 1-y, z; (p) = 1-x, 1-y, 1-z; (r) = 1-x, -y, 1-z; (s) = 3/2-x, -1/2+y, 3/2-z. ^b α = dihedral angle between Cg(I) and Cg(J). ^c β = angle Cg(I) \rightarrow Cg(J) vector and normal to ring I. ^d γ = angle between the Cg(I) \rightarrow Cg(J) vector and the normal to plane J. ^e Cg(I)–Perp = Perpendicular distance of Cg(I) on ring J. ^f Cg(J)–Perp = perpendicular distance of Cg(J) on ring I. ^g Cg1 is the centroid of the N(1)/C(1)/C(2)/N(2)/C(3)/C(4) set of atoms.

Table S6. C—X···Cg(J)(π -ring) (X = O, N) interactions for 2^a

$C-X(I)\cdots Cg(J)$	X(I)···Cg(J) [Å]	X-Perp [Å]	γ [°] ^b
$C(2)-O(1)\cdots Cg(1r)^{c}$	3.6346(19)	-3.224	27.49
$C(95)-N(93)\cdots Cg(2t)^d$	3.847(3)	3.755	12.56

^a Symmetry codes: (r) = 1–x, –y, 1–z; (t) = 1+x, y, z. ^b γ = angle X(I) \rightarrow Cg(J) vector and normal to plane J. ^c Cg1 is the centroid of the N(1)/C(1)/C(2)/N(2)/C(4) set of atoms. ^dCg2 is the centroid of the N(4)/C(7)/C(8)/N(5)/C(9)/C(10) set of atoms.

Co1 in 1					Co2 in 2				
State	Energy ^a	S	D^{a}	E^{a}	State	Energy ^a	S	D^{a}	E^{a}
$D_{\rm SS}$		4	1.874	0.007	$D_{\rm SS}$		4	1.762	0.046
$D_{ m Q}$		4	80.905	16.961	$D_{ m Q}$		4	81.737	15.839
D_{D}		2	14.527	-0.129	D_{D}		2	12.425	0.582
Q_1	564.7	4	43.604	43.620	Q ₁	581.4	4	44.434	43.241
Q_2	1089.3	4	26.264	-26.264	Q ₂	973.9	4	29.632	-27.792
Q ₃	9461.7	4	5.838	-5.838	Q ₃	9204.4	4	0.879	-0.549
Q_4	9636.2	4	4.172	4.476	Q4	9470.1	4	3.645	1.632
Q5	9822.5	4	0.898	0.979	Q5	10213.4	4	3.053	-0.682
Q ₆	19845.4	4	0.000	0.000	Q6	20065.4	4	-0.001	0.000
Q_7	22730.4	4	0.070	-0.070	Q7	22104.0	4	0.048	-0.027
Q_8	22776.0	4	0.058	0.059	Q ₈	23095.5	4	0.041	0.010
Q9	24441.7	4	0.001	-0.001	Q9	25006.9	4	0.006	0.006
D_1	10559.8	2	12.521	-0.113	\mathbf{D}_1	9666.7	2	10.712	0.778
D_2	11404.9	2	-0.046	0.046	D ₂	11856.5	2	0.279	-0.213
D_3	19187.2	2	-0.001	0.001	D ₃	18537.4	2	-0.016	-0.014
D_4	19760.1	2	-1.136	-1.136	D_4	19054.1	2	-0.090	0.073
D_5	19809.4	2	-0.667	0.667	D_5	19436.2	2	-0.867	-0.584
D_6	19873.5	2	-0.087	-0.088	D_6	20021.1	2	-0.848	0.014
D_7	19897.1	2	-0.010	-0.010	D_7	20277.2	2	-0.510	0.481
D_8	20240.6	2	-0.513	0.513	D_8	20480.4	2	-0.018	0.018
D_9	22728.8	2	3.228	0.000	D ₉	22939.5	2	2.780	0.004
D ₁₀	23546.5	2	-0.002	0.002	D ₁₀	23086.3	2	-0.133	-0.104

Table S7. Energy of all calculated excited states and their contributions to the D and E values for the real geometries of Co1 in **1** and Co2 in **2** obtained from CASSCF/NEVPT2 calculations.

D ₁₁	23573.1	2	-0.105	-0.106	D ₁₁	23566.0	2	-0.057	-0.046
D ₁₂	26811.2	2	-0.116	0.116	D ₁₂	26870.6	2	-0.122	0.114
D ₁₃	29647.4	2	-0.191	0.191	D ₁₃	29565.4	2	0.053	0.018
D ₁₄	29898.0	2	-0.060	-0.072	D ₁₄	29829.2	2	0.024	0.001
D ₁₅	30061.2	2	-0.026	-0.041	D ₁₅	30213.0	2	-0.032	0.057
D ₁₆	31480.3	2	-0.405	0.405	D ₁₆	31536.9	2	-0.047	-0.048
D ₁₇	31565.3	2	-0.492	-0.496	D ₁₇	31617.3	2	-0.562	0.158
D ₁₈	31903.3	2	-0.003	0.003	D ₁₈	31897.0	2	-0.547	-0.220
D ₁₉	32642.1	2	2.644	-0.017	D ₁₉	32760.7	2	2.377	0.124
D ₂₀	33504.8	2	-0.006	0.006	D ₂₀	33371.4	2	0.049	-0.029

^aValues in cm⁻¹.

Col							Co	le	
State	Energy ^a	S	D^{a}	E^{a}	State	Energy ^a	S	D^{a}	E^{a}
$D_{\rm SS}$		4	1.859	0.046	$D_{\rm SS}$		4	1.857	0.052
$D_{ m Q}$		4	92.234	19.658	$D_{ m Q}$		4	95.549	29.759
D_{D}		2	14.383	-0.114	$D_{ m D}$		2	14.569	-0.166
\mathbf{Q}_1	521.0	4	49.809	49.270	Q_1	389.7	4	56.517	56.487
Q_2	820.0	4	31.029	-30.073	Q ₂	925.7	4	27.254	-27.199
Q ₃	8533.2	4	4.800	4.895	Q3	8465.7	4	5.852	6.028
Q ₄	8746.7	4	1.198	0.801	Q4	8791.2	4	0.256	0.002
Q5	9644.5	4	5.304	-5.225	Q5	9578.7	4	5.572	-5.548
Q ₆	18748.0	4	-0.009	-0.000	Q ₆	18766.4	4	-0.012	-0.000
Q ₇	21237.8	4	0.056	-0.054	Q ₇	20999.6	4	0.060	-0.060
Q_8	23098.7	4	0.045	0.044	Q ₈	23452.4	4	0.049	0.049
Q9	24140.1	4	0.002	0.000	Q9	24008.8	4	0.001	0.000
\mathbf{D}_1	10220.6	2	10.858	0.023	\mathbf{D}_1	10109.9	2	10.393	-0.009
D_2	12439.4	2	1.617	-0.042	D ₂	12452.6	2	2.221	-0.053
D_3	18373.6	2	-0.002	0.002	D ₃	18348.3	2	-0.001	0.001
D_4	19008.1	2	-0.005	0.003	D_4	18963.9	2	-0.003	0.000
D_5	19479.3	2	-1.134	-1.105	D_5	19349.9	2	-1.159	-1.152
D_6	20157.4	2	-1.180	1.120	D_6	20157.5	2	-0.851	0.840
D_7	20216.7	2	-0.087	0.044	D_7	20220.2	2	-0.367	0.360
D_8	20245.6	2	-0.025	0.017	D_8	20268.7	2	-0.078	0.073
D_9	22581.6	2	2.967	-0.001	D ₉	22532.2	2	3.026	-0.000
D ₁₀	23009.8	2	-0.011	-0.011	D ₁₀	22855.4	2	-0.004	-0.005

Table S8. Energy of all calculated excited states and their contributions to the D and E values forthe real geometries of Co1 and Co1e in 2 obtained from CASSCF/NEVPT2 calculations.

D ₁₁	23541.5	2	-0.211	-0.210	D ₁₁	23620.0	2	-0.213	-0.216
D ₁₂	26231.1	2	-0.073	0.073	D ₁₂	26232.0	2	-0.052	0.052
D ₁₃	29192.8	2	-0.000	0.007	D ₁₃	29255.9	2	-0.011	0.021
D ₁₄	29369.1	2	-0.010	0.012	D ₁₄	29373.4	2	0.002	0.001
D ₁₅	29896.4	2	-0.145	0.169	D ₁₅	29833.8	2	-0.205	0.213
D ₁₆	30961.8	2	-0.272	-0.267	D ₁₆	30842.7	2	-0.557	-0.545
D ₁₇	30974.0	2	-0.365	-0.306	D ₁₇	31066.6	2	-0.172	0.043
D ₁₈	31155.7	2	-0.365	0.363	D ₁₈	31073.1	2	-0.212	0.218
D ₁₉	32129.9	2	2.544	-0.001	D ₁₉	32007.6	2	2.383	-0.003
D ₂₀	32897.5	2	0.282	-0.004	D ₂₀	32964.6	2	0.429	-0.005

^aValues in cm⁻¹.

Kramers doublet	Energy ^a							
-	Col in 1	Co2 in 2	Co1 in 2	Cole in 2				
Ground	0.0	0.0	0.0	0.0				
1st	196.2	196.9	220.1	239.4				
2nd	720.5	737.9	687.4	639.9				
3rd	1029.9	1055.0	1040.1	975.3				
4th	1461.2	1368.4	1275.6	1381.0				
5th	1556.1	1467.6	1360.6	1436.6				

Table S9. Energies of the low-lying Kramers doublets corresponding to the ground and first excited states, which should be related to those generated from the 1st order spin-orbit coupling, of the real geometries of Co1 in 1 and Co1, Co1e and Co2 in 2 obtained from CASSCF/NEVPT2 calculations.

^aValues in cm⁻¹.

Method	Model ^a	$\tau_{01}{}^{b} \times 10^{7} (s)$	E_{a1}^{b} (cm ⁻¹)	$\tau_{02}^{b} \times 10^{5} (s)$	E_{a2}^{b} (cm ⁻¹)	A^{c} (s ⁻¹ K ⁻¹)	C^{d} $(s^{-1} K^{-n})$	n ^d
	0-0	14.7 ± 1.44	9.2 ± 0.4	13 ± 6	0.4 ± 0.6			
χ _M ' <i>vs</i> . <i>T</i>	O-D	13.1 ± 0.3	10.26 ± 0.21			3090 ± 70		
	R-D					1600 ± 400	330 ± 120	3.00 ± 0.18
	0-0	9.66 ± 0.05	14.2 ± 0.3	3.20 ± 0.15	2.71 ± 0.07			
χ _M ' <i>vs. ν</i>	O-D	17.8 ± 1.8	11.5 ± 0.4			2350 ± 60		
	R-D					1580 ± 30	170 ± 8	3.065 ± 0.023
	0-0	7.7 ± 1.0	17.8 ± 0.8	2.66 ± 0.25	2.81 ± 0.16			
χ_{M} ' vs. χ_{M} "/ σ	O-D	13.7 ± 1.5	14.6 ± 0.6			2900 ± 90		
	R-D					2110 ± 100	140 ± 22	2.89 ± 0.07
	0-0	2.6 ± 0.4	21.81 ± 0.10	2.01 ± 0.18	2.66 ± 0.16			
χ_{M} ' vs. χ_{M} "· σ	O-D	3.8 ± 0.6	19.7 ± 0.9			4370 ± 110		
	R-D					3850 ± 70	25 ± 4	3.84 ± 0.07
	0-0	4.7 ± 0.7	19.0 ± 1.0	1.93 ± 0.20	3.04 ± 0.18			
$\chi_{\rm M}$ "/ σ vs. $\chi_{\rm M}$ "· σ	O-D	9.1 ± 1.2	15.2 ± 0.7			3540 ± 120		
	R-D					2660 ± 90	131 ± 17	3.05 ± 0.06

Table S10. Selected ac magnetic data for **1** under $H_{dc} = 1000 \text{ G}$

^a O-O, O-D, and R-D stand for Orbach-Orbach, Orbach-Direct, and Raman-Direct combinations, respectively. ^b The values of the preexponential factor (τ_0) and activation energy (E_a) are calculated through the Arrhenius law [$\tau^{-1} = \tau_0^{-1} \exp(-E_a/k_BT)$]. ^c The preexponential coefficient for the Direct mechanism [$\tau^{-1} = AT$]. ^d The preexponential and exponential coefficients for the Raman mechanism [$\tau^{-1} = CT^n$].

Method	Model ^a	$\tau_{01}{}^{b} \times 10^{7} (s)$	E_{a1}^{b} (cm ⁻¹)	$\tau_{02}^{b} \times 10^{5} (s)$	$E_{a2}{}^{b}$ (cm ⁻¹)	$A^{c} \left(s^{-l} K^{-l} \right)$	$C^{d}(s^{-l}K^{-n})$	n ^d
	0-0	0.29 ± 0.13	37 ± 3	0.47 ± 0.04	7.44 ± 0.22			
χ _M ' <i>vs</i> . <i>T</i>	O-D	7.7 ± 1.7	16.6 ± 1.2			2920 ± 21		
	R-D					1500 ± 400	100 ± 50	3.22 ± 0.22
	0-0	5.8 ± 0.8	18.8 ± 0.6	8.3 ± 0.6	1.17 ± 0.13			
χ _M ' <i>vs. ν</i>	O-D	2.5 ± 0.6	24.0 ± 1.0			2410 ± 40		
	R-D					2350 ± 50	0.5 ± 0.3	5.7 ± 0.3
	0-0	2.5 ± 0.3	24.5 ± 0.7	5.7 ± 0.3	1.62 ± 0.11			
χ_{M} ' vs. χ_{M} "/ σ	O-D	1.27 ± 0.16	29.3 ± 0.7			2660 ± 80		
	R-D					2580 ± 50	0.27 ± 11	5.70 ± 0.20
	0-0	1.19 ± 0.16	28.2 ± 0.8	3.56 ± 0.16	1.94 ± 0.09			
χ_{M} ' vs. χ_{M} "· σ	O-D	0.65 ± 0.05	32.8 ± 0.5			3583 ± 21		
	R-D					3480 ± 40	0.16 ± 0.05	5.97 ± 0.14
	0-0	1.48 ± 0.24	27.0 ± 1.0	3.03 ± 0.20	2.37 ± 0.13			
$\chi_{\rm M}$ "/ σ vs. $\chi_{\rm M}$ "· σ	O-D	1.38 ± 0.19	28.0 ± 0.8			3440 ± 50		
	R-D					3230 ± 40	1.4 ± 0.3	4.99 ± 0.10

Table S11. Selected ac magnetic data for **1** under $H_{dc} = 2500 \text{ G}$

^a O-O, O-D, and R-D stand for Orbach-Orbach, Orbach-Direct, and Raman-Direct combinations, respectively. ^b The values of the preexponential factor (τ_0) and activation energy (E_a) are calculated through the Arrhenius law [$\tau^{-1} = \tau_0^{-1} \exp(-E_a/k_BT)$]. ^c The preexponential coefficient for the Direct mechanism [$\tau^{-1} = AT$]. ^d The preexponential and exponential coefficients for the Raman mechanism [$\tau^{-1} = CT^n$].

Method	Model ^a	$\tau_{01}{}^{b} \times 10^{7} (s)$	E_{a1}^{b} (cm ⁻¹)	$\tau_{02}^{b} \times 10^{5} (s)$	E_{a2}^{b} (cm ⁻¹)	A^{c} (s ⁻¹ K ⁻¹)	$C^{d}(s^{-l}K^{-n})$	n ^d
	0-0	4.7 ± 1.3	9.4 ± 0.9	7 ± 7	0.3 ± 1.1			
χ _M ' <i>vs</i> . <i>T</i>	O-D	0.36 ± 0.04	10.5 ± 0.3			5600 ± 130		
	R-D					4000 ± 400	250 ± 70	4.10 ± 0.21
	0-0	4.0 ± 1.0	15.6 ± 0.9	1.62 ± 0.07	1.68 ± 0.06			
χ _M ' <i>vs. ν</i>	O-D	3.6 ± 1.2	17.4 ± 1.1			9400 ± 50		
	R-D					9300 ± 60	2.0 ± 1.0	5.7 ± 0.3
	0-0	23.2 ± 1.7	9.6 ± 0.4	4.0 ± 0.4	0.41 ± 0.15			
$\chi_{\rm M}$ ' vs. $\chi_{\rm M}$ ''/ σ	O-D	10 ± 7	18 ± 3			8610 ± 150		
	R-D					8140 ± 230	3 ± 7	4.6 ± 0.9
	0-0	4.1 ± 0.3	16.8 ± 0.4	1.48 ± 0.05	1.79 ± 0.06			
χ_{M} ' vs. χ_{M} "· ω	O-D	3.7 ± 0.4	18.8 ± 0.5			9570 ± 60		
	R-D					9170 ± 140	17 ± 6	4.18 ± 0.17
	0-0	21.1 ± 1.0	9.3 ± 0.3	3.7 ± 0.3	0.48 ± 0.18			
$\chi_{\rm M}$ "/ σ vs. $\chi_{\rm M}$ "· σ	O-D	16 ± 4	14.4 ± 1.2			9130 ± 140		
	R-D					8800 ± 4300	40 ± 40	3.4 ± 0.4

Table S12. Selected ac magnetic data for **2** under $H_{dc} = 1000$ G

^a O-O, O-D, and R-D stand for Orbach-Orbach, Orbach-Direct, and Raman-Direct combinations, respectively. ^b The values of the preexponential factor (τ_0) and activation energy (E_a) are calculated through the Arrhenius law [$\tau^{-1} = \tau_0^{-1} \exp(-E_a/k_{\rm B}T)$]. ^c The preexponential coefficient for the Direct mechanism [$\tau^{-1} = AT$]. ^d The preexponential and exponential coefficients for the Raman mechanism [$\tau^{-1} = CT^n$].

Method	Model ^a	$\tau_{01}^{b} \times 10^{7} (s)$	E_{a1}^{b} (cm ⁻¹)	$\tau_{02}^{b} \times 10^{5} (s)$	$E_{a2}^{b} (cm^{-1})$	$A^{c} (s^{-l} K^{-l})$	$C^{d}(s^{-l}K^{-n})$	n^{d}
	0-0	3 ± 4	11 ± 6	10 ± 150	0 ± 16			
χ _M ' <i>vs</i> . <i>T</i>	O-D	2.5 ± 1.0	12.0 ± 1.1			3000 ± 700		
	R-D					700 ± 1500	230 ± 200	4.0 ± 0.6
	0-0	1.2 ± 0.3	20.0 ± 0.8	1.75 ± 0.05	1.49 ± 0.04			
χ _M ' <i>vs. v</i>	O-D	0.06 ± 0.06	32 ± 4			9570 ± 70		
	R-D					9560 ± 30	0.0011 ± 0.0023	10.2 ± 1.3
	0-0	14.1 ± 1.3	11.6 ± 0.5	4.3 ± 0.4	0.33 ± 0.16			
χ_{M} ' vs. χ_{M} "/ σ	O-D	5 ± 3	20 ± 3			7920 ± 200		
	R-D					7800 ± 300	2 ± 4	4.9 ± 1.0
	0-0	1.73 ± 0.12	20.1 ± 0.4	1.96 ± 0.06	1.07 ± 0.05			
χ_{M} ' vs. χ_{M} "· σ	O-D	0.39 ± 0.23	30 ± 3			10340 ± 210		
	R-D					10300 ± 300	0.2 ± 0.3	6.5 ± 0.8
$\chi_{\rm M}$ "/ σ vs. $\chi_{\rm M}$ ". σ	0-0	4.7 ± 0.7	16.2 ± 0.8	2.09 ± 0.17	1.26 ± 0.14			
	O-D	2.0 ± 0.6	22.7 ± 1.4			9060 ± 120		
	R-D					8890 ± 190	2.4 ± 2.0	5.1 ± 0.4

Table S13. Selected ac magnetic data for **2** under $H_{dc} = 2000 \text{ G}$

^a O-O, O-D, and R-D stand for Orbach-Orbach, Orbach-Direct, and Raman-Direct combinations, respectively. ^b The values of the preexponential factor (τ_0) and activation energy (E_a) are calculated through the Arrhenius law [$\tau^{-1} = \tau_0^{-1} \exp(-E_a/k_BT)$]. ^c The preexponential coefficient for the Direct mechanism [$\tau^{-1} = AT$]. ^d The preexponential and exponential coefficients for the Raman mechanism [$\tau^{-1} = CT^n$].

Method	Model ^a	$\tau_{01}{}^{b} \times 10^{7} (s)$	E_{a1}^{b} (cm ⁻¹)	$\tau_{02}^{b} \times 10^{5} (s)$	E_{a2}^{b} (cm ⁻¹)	A^{c} $(s^{-l} K^{-l})$	$C^{d}(s^{-l}K^{-n})$	n ^d
	0-0	1.9 ± 0.4	12.4 ± 0.5	12.5 ± 0.8	0 ± 0.07			
χ _M ' <i>vs</i> . <i>T</i>	O-D	1.2 ± 0.3	14.1 ± 0.6			3830 ± 160		
	R-D					3000 ± 300	36 ± 17	5.3 ± 0.3
	0-0	4.0 ± 0.4	15.9 ± 0.4	1.93 ± 0.04	1.36 ± 0.03			
χ _M ' <i>vs. ν</i>	O-D	0.3 ± 0.3	27 ± 3			9520 ± 60		
	R-D					9500 ± 80	0.012 ± 0.021	8.7 ± 1.1
	0-0	2.7 ± 0.4	20.0 ± 0.7	2.15 ± 0.09	1.37 ± 0.08			
χ_{M} ' vs. χ_{M} "/ σ	O-D	0.6 ± 0.4	30 ± 3			8090 ± 120		
	R-D					8040 ± 160	0.08 ± 0.11	6.7 ± 0.7
	0-0	0.90 ± 0.05	23.9 ± 0.3	2.27 ± 0.07	0.51 ± 0.05			
χ_{M} ' vs. χ_{M} "· ω	O-D	0.15 ± 0.12	37 ± 5			11000 ± 400		
	R-D					10900 ± 500	0.04 ± 0.08	7.0 ± 1.0
	0-0	2.9 ± 0.5	29.1 ± 1.0	2.16 ± 0.17	1.00 ± 0.14			
$\chi_{\rm M}$ "/ σ vs. $\chi_{\rm M}$ "· σ	O-D	0.7 ± 0.5	30 ± 4			9580 ± 230		
	R-D					9500 ± 300	0.2 ± 0.3	6.2 ± 0.9

Table S14. Selected ac magnetic data for **2** under $H_{dc} = 3500 \text{ G}$

^a O-O, O-D, and R-D stand for Orbach-Orbach, Orbach-Direct, and Raman-Direct combinations, respectively. ^b The values of the preexponential factor (τ_0) and activation energy (E_a) are calculated through the Arrhenius law [$\tau^{-1} = \tau_0^{-1} \exp(-E_a/k_{\rm B}T)$]. ^c The preexponential coefficient for the Direct mechanism [$\tau^{-1} = AT$]. ^d The preexponential and exponential coefficients for the Raman mechanism [$\tau^{-1} = CT^n$].