Supporting information

Stabilizing Defects in Metal-Organic Frameworks: Pendant Basic Sites as Capping Agents in UiO-66type MOFs toward Highly Stable and Defective Porous Materials

Caleb D. Fast,^{a†} Jason Woods,^a Jared Lentchner,^a and Tegan A. Makal^{*a}

^aDepartment of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, United States

⁺ Current address: Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States

Table of Contents

Section	Content	Contains Figure	Page Range
А	Overview of MOF Synthesis	N/A	\$3
В	PXRD Data	S1-S7	S3-S6
С	TGA Data	S8-S13	S7-S10
D	Experimental N ₂ Adsorption Isotherms	S14	S11
E	Metal Uptake Results	S15	S12
F	IR Spectra	S16-S21	S13-S18

A. Overview of MOF Synthesis

Name	ZrCl ₄	Acid modulator	Volume DMF	Mass H₂BDC-R	Temperatur e	Time in oven
UiO-66	132 mg (0.566 mmol)	HCl (1 mL)	15 mL	130 mg (0.782 mmol)	85 °C	12 h
UiO-2OH	134 mg (0.575 mmol)	HCl (1 mL)	15 mL	150 mg (0.503 mmol)	85 °C	12 h
UiO-2SH	100 mg (0.429 mmol)	HOAc (3.72 mL)	16 mL	145 mg (0.629 mmol)	75 °C	12 h
UiO-SMe	117 mg (0.502 mmol)	HCl (1 mL)	13.5 mL	100 mg (0.471 mmol)	85 °C	12 h
UiO-2SEtSMe	84 mg (0.36 mmol)	HOAc (0.6 mL)	4 mL)	90 mg (0.23 mmol)	110 °C	48 h

Table S1 Synthetic conditions for preparation of MOFs studied.

B. PXRD Data

Figure S1 PXRD patterns of as-synthesized UiO-66-type MOFs studied compared to the simulated PXRD pattern of UiO-66 (denoted UiO-66(sim)). Simulated PXRD pattern generated using the Mercury software package with λ = 1.54 Å.

Figure S2 PXRD patterns of UiO-66 under a variety of conditions.

Figure S3 PXRD patterns of UiO-66-2OH under a variety of conditions compared to UiO-66-as.

Figure S4 PXRD patterns of UiO-66-2SH under a variety of conditions compared to UiO-66-as.

Figure S5 PXRD patterns of UiO-66-SMe under a variety of conditions.

Figure S6 PXRD patterns of UiO-66-2SEtSMe under a variety of conditions.

Figure S7 PXRD patterns of as-synthesized forms of UiO-66, UiO-66-SMe, UiO-66-2OEtOMe, UiO-66-2SEtSMe, and the solid formed from solvothermal synthesis involving ZrCl₄ and H₂BDC-2OⁿBu under the same conditions that UiO-66-2SEtSMe and - 2OEtOMe were prepared.

C. TGA Data

Figure S8 TGA curve for UiO-66

Figure S9 TGA curve for UiO-66-2OH

Figure S10 TGA curve for UiO-66-2SH

Figure S11 TGA curve for UiO-66-SMe

Figure S12 TGA curve for UiO-66-2SEtSMe

Figure S13 TGA curve for UiO-66-2OEtOMe

	UiO-66	ОН	SH	SMe	SEtSMe,L ^a	SEtSMe,H ^a	OEtOMe,L ^a	OEtOMe,H ^a
ZrO ₂ mass%	100	100	100	100	100	100	100	100
Exptl dehyd. mass% ^b	191	240	270	210	218	250	235	250
T of dehyd., °C ^c	408	301	314	370	356	285	305	262
Ideal dehyd. mass% ^d	220.2	246.2	272.2	257.6	392.6	392.6	340.4	340.4
Ligands/fu ^e	4.54	5.75	5.92	4.19	2.42	3.08	3.37	3.74
Defects/fu ^f	1.46	0.25	0.08	1.81	3.58	2.92	2.63	2.26
%Defects	24.29	4.24	1.28	30.20	59.67	48.74	43.84	37.60
Dehyd. mass%, theor. w/ defects ^g	191.00	239.97	270.04	210.00	217.99	249.99	235.02	250.02

Table S2 Pertinent data related to determination of number of ligand defects in UiO-66-R MOFs.

^aWhen the TGA curve did not result in a clear plateau for the dehydrated MOF, an estimation of the number of ligand defects was determined by calculation of ligand defects in a "low-connectivity regime" and "high-connectivity regime", denoted by "xx,L" and "xx,H", respectively, where "xx" denotes the label for the specific MOF. In these instances, the low-connectivity regime is determined by taking the mass% immediately before the final large phenomena attributed to ligand combustion, whereas the high-connectivity regime is determined by taking the mass% immediately following the phenomena occurring before this final step, as determined from the first derivative plot of the TGA curve.

^bExptl dehyd. mass% = the mass% taken as that of the MOF after solvent removal and dehydration of the $Zr_6(OH)_4O_4$ SBU to produce the Zr_6O_6 SBU, and prior to combustion of the organic portion of the MOF, taken from the experimental TGA curve.

^cT of dehyd. = the temperature at which the exptl dehyd. mass% was taken.

^dIdeal dehyd. mass% = the theoretical mass% of the desolvated and dehydrated MOF if no defects are present.

^eLigands/fu = experimentally determined average number of ligands per formula unit. Calculated by: *Ligands Exptl dehvd.mass*% – *Final mass*%

$$\frac{Lightas}{fu} = \frac{Lipti ueryu.mass % - 1 that mas}{Ideal dehyd.mass%}$$

^fDefects/fu = experimentally determined average number of ligand defects per formula unit. Calculated by:

$$\frac{Defects}{fu} = 6 - \left(\frac{Ligands}{fu}\right)$$

^fDehyd. mass%, theor. w/ defects = the theoretical mass% of the desolvated and dehydrated MOF calculated using the number of ligand defects determined and balancing the charge of missing ligands with oxide.

mass
$$\%_{dehyd,theor,defects} = \frac{x * MW_L + (6 + (6 - x)) * 15.999 + 6 * 91.224}{(6 * 123.218)} * 100\%, x = \frac{ligands}{fu}, MW_L = molar mass of the ligand.$$

D. Experimental N₂ Sorption Isotherms

Figure S14 N₂ sorption isotherms collected at 77 K. Filled symbols = adsorption, empty symbols = desorption.

Table 3 BET and Langmuir surface areas for studied UiO-66-R MOFs as determined from N₂ sorption measurements at 77 K.

	UiO-66	UiO-66-2OH	UiO-66-2SH	UiO-66-SMe	UiO-66-2SEtSMe
BET surface area (m²/g)	1129	276	606	938	301
Langmuir surface area (m²/g)	1761	431	945	1463	380

E. Metal Uptake Results

Figure S15 Removal efficiency of UiO-66 and UiO-66-R MOFs for M^{n+} in acidic (pH = 2) aqueous solutions. Removal efficiency is defined by $C_f/C_i^*100\%$, where C_f = equilibrium concentration after exposure to MOF, and C_i = concentration prior to exposure to MOF.

F. IR Spectra

Figure S16 IR spectrum of UiO-66.

Figure S17 IR spectrum of UiO-66-2OH

Figure S18 IR spectrum of UiO-66-2SH.

Figure S19 IR spectrum of UiO-66-SMe

