Rational design of Ni/Ni₂P heterostructures encapsulated in 3D porous carbon networks for improved lithium storage

Jiapeng He,^a Lu Shen,^a Cuiping Wu,^a Can Guo,^a Qingpeng Wang,^b Zhifang Liu,^b Shun Yang,^{a,*} Qinghong Wang^{a,*}

^aSchool of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China ^bInstitute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China *Corresponding author.

E-mail address: <u>wangqh@jsnu.edu.cn</u> (Q.H. Wang); <u>yangshun@jsnu.edu.cn</u> (S. Yang)

Fig. S1 XRD patterns of the as-prepared Ni/NiO/PCN precursors.

Fig. S2 SEM images of the (a, b) Ni/NiO/PCN-0.1 precursor, (c, d) Ni/NiO/PCN-0.2 precursor, (e, f) Ni/NiO/PCN-0.4 precursor and (g, h) Ni/NiO/PCN-0.6 precursor.

Fig. S3 XPS spectrum of the as-prepared Ni/Ni₂P/PCN composites.

Fig. S4 SEM images of the (a, b) Ni/Ni₂P/PCN-0.1, (c, d) Ni/Ni₂P/PCN-0.4 and (e, f) Ni/Ni₂P/PCN-0.6 composites.

Fig. S5 (a) Nitrogen adsorption-desorption isotherms and (b) Pore size distribution of Ni/Ni₂P/PCN composites.

Fig. S6 (a) CV curves of Ni/Ni₂P/PCN-0.2 electrode for Li-ion storage with increasing sweep rates from 0.2 to 1.0 mV s^{-1} , (b) Calculation of the *b* values.

Fig. S7 Nyquist plots of the Ni/Ni₂P/PCN-0.2 electrode after 300 cycles and the relevant equivalent circuit.

Fig. S8 XRD patterns of the Ni/Ni₂P/PCN-0.2 electrodes after 300cycles.

Table S1 The contents of each component in the Ni/Ni₂P/PCN composites according to the XPS results.

Material	Ni2P (wt%)	Ni (wt%)	C (wt%)
Ni/Ni ₂ P/PCN-0.1	24.9	0.8	74.3
Ni/Ni ₂ P/PCN-0.2	32.3	2.5	65.2
Ni/Ni ₂ P/PCN-0.4	35.9	2.6	61.5
Ni/Ni ₂ P/PCN-0.6	42.7	2.8	54.5

Table S2 Simulated impendence parameters (R_s , R_{ct}) of the Ni/Ni₂P/PCN samples before cycling.

Material	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
Ni/Ni ₂ P/PCN-0.1	9.6	169.3
Ni/Ni ₂ P/PCN-0.2	6.3	127.6
Ni/Ni ₂ P/PCN-0.4	5.0	98.6
Ni/Ni ₂ P/PCN-0.6	5.7	83.3