Electronic Supplementary Information

Synthesis of titanium-oxo macrocyles and catalytic property for

oxidative desulfurization

Hai-Ting Lv, Ying Cui, Guo-Dong Zou,* Na Li, Pei Yang and Yang Fan*

College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China

Contents

Table S1. Crystal data and structure refinements summary for Ti₃₂-BTA and Ti₃₂-DMBTA.

Fig. S1 XRD patterns of (a) Ti₃₂-BTA and (b) Ti₃₂-DMBTA.

Fig. S2 FT-IR spectra of Ti_{32} -BTA and Ti_{32} -DMBTA.

Fig. S3 SEM image of (a) Ti₃₂-BTA and (b) Ti₃₂-DMBTA.

Fig. S4 Desulfurization efficiencies for BT and 4,6-DMDBT with Ti₃₂-BTA as catalyst.

Fig. S5 Recycle tests in the oxidation of DBT with Ti_{32} -BTA as catalyst.

Fig. S6 XRD patterns of Ti_{32} -BTA before and after ODS reaction.

Fig. S7 Ti 2p XPS spectra of Ti_{32} -BTA before and after treated with H_2O_2 .

Fig. S8 Diffuse reflectance spectra of Ti_{32} -DMBTA before and after treated with H_2O_2 .

	Ti ₃₂ -BTA	Ti ₃₂ -DMBTA
Empirical formula	$C_{160}H_{408}O_{188}Ti_{32}$	$C_{204}H_{456}O_{172}Ti_{32}$
Formula weight	6873.64	7194.46
Crystal system	tetragonal	monoclinic
Space group	P4/n	C2/c
<i>a</i> (Å)	33.635(3)	51.758(4)
<i>b</i> (Å)	33.635(3)	14.9948(11)
<i>c</i> (Å)	13.0634(12)	47.346(3)
α (°)	90	90
β (°)	90	119.823(2)
γ (°)	90	90
$V(\text{\AA}^3)$	14779(3)	31879(4)
Ζ	2	4
$ ho_{ m calcd} ({ m g} { m cm}^{-3})$	1.545	1.499
μ (mm ⁻¹)	0.916	0.850
<i>F</i> (000)	7152	15040
<i>T</i> (K)	100(2)	100(2)
Measured refls.	84405	150653
Independent refls.	12977	31311
R _{int}	0.0717	0.0851
GOF	1.156	1.036
$R_1 \left[I > 2\sigma(I)\right]^{[a]}$	0.1297	0.1064
$wR_2 [I > 2\sigma(I)]^{[b]}$	0.3005	0.2837

Table S1. Crystal data and structure refinements summary for Ti_{32} -BTA and Ti_{32} -DMBTA.

 ${}^{a}R_{1} = \sum \|F_{o}| - |F_{c}|| / \sum |F_{o}| . {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$

Fig. S1 XRD patterns of (a) Ti₃₂-BTA and (b) Ti₃₂-DMBTA.

Fig. S2 FT-IR spectra of Ti_{32} -BTA and Ti_{32} -DMBTA.

Fig. S3 SEM image of (a) Ti_{32} -BTA and (b) Ti_{32} -DMBTA.

Fig. S4 Desulfurization efficiencies for BT and 4,6-DMDBT with Ti_{32} -BTA as catalyst.

Fig. S5 Recycle tests in the oxidation of DBT with $Ti_{32}\mbox{-}BTA$ as catalyst.

Fig. S6 XRD patterns of $\textsc{Ti}_{32}\mbox{-}BTA$ before and after ODS reaction.

Fig. S7 Ti 2p XPS spectra of Ti_{32} -BTA before and after treated with H_2O_2 .

Fig. S8 Diffuse reflectance spectra of Ti_{32} -DMBTA before and after treated with H_2O_2 .