Supporting Information

Synthesis, characterisation and electronic properties of naphthalene bridged disilanes

Kristel M. Rabanzo-Castillo,^{a,b} Muhammad Hanif,^a Tilo Söhnel^{a,b} and Erin M. Leitao*^{a,b}

^a School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand ^b The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand

Contents:

- (i) Spectra of synthesised compounds
- (ii) Crystallographic Information
- (iii) Computational Information

(i) Spectra of synthesised compounds

Figure S1- ¹H NMR spectrum of the product obtained after reacting stoichiometric amounts of 1,8-dilthionaphthalene and Cl₃SiSiCl₃ in CDCl₃

Figure S2- ²⁹Si{¹H} NMR (2D-HMBC) spectrum of the product obtained after reacting stoichiometric amounts of 1,8-dilthionaphthalene and $Cl_3SiSiCl_3$ in $CDCl_3$

Figure S3- MS-ESI spectrum of the product obtained after reacting stoichiometric amounts of 1,8-dilthionaphthalene and Cl₃SiSiCl₃ in CDCl₃

Figure S4- ¹H NMR spectrum of $\mathbf{1}_{Ph}$ in CDCl₃ (residual grease at 0.07 ppm, TMS at 0.0 ppm)

Figure S5-¹³C{¹H} NMR spectrum of 1_{Ph} in CDCl₃

Figure S7- MS-ESI spectrum of $\mathbf{1}_{Ph}$

Figure S8- Infrared spectrum of $\mathbf{1}_{Ph}$

Figure S10- $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of $\textbf{1}_{\text{Me}}$ in CDCl_3

Figure S12- $^{29}\text{Si}\{^{1}\text{H}\}$ NMR (2D-HSQC) spectrum of $\textbf{1}_{\text{Me}}$ in CDCl_3

Figure S13- Infrared spectrum of $\mathbf{1}_{\mathsf{Me}}$

Figure S14- ¹H NMR spectrum of 2_{Ph} in CDCl₃ (toluene at 2.4 ppm, H₂O at 1.5 ppm, residual grease at 0.07 ppm, TMS at 0.0 ppm)

Figure S15- ¹³C{¹H} NMR spectrum of **2**_{Ph} in CDCl₃

Figure S16- 29 Si{ 1 H} NMR spectrum of 2_{Ph} in CDCl₃

Figure S17- MS-ESI spectrum of 2_{Ph}

Figure S18- Infrared spectrum of 2_{Ph}

Figure S19-¹H NMR spectrum of 2_{Me} in CDCl₃ (residual grease at 0.07 ppm, TMS at 0.0 ppm)

Figure S21- $^{29}Si\{^{1}H\}$ NMR spectrum of $\mathbf{2}_{Me}$ in CDCl_3

Figure S22- Infrared spectrum of 2_{Me}

Figure S23- ¹H NMR spectrum of 3_{Ph} in CDCl₃ (H₂O at 1.5 ppm, residual grease at 0.07 ppm, TMS at 0.0 ppm)

Figure S24- ¹³C{¹H} NMR spectrum of 3_{Ph} in CDCl₃

Figure S25- $^{29}\text{Si}\{^{1}\text{H}\}$ NMR spectrum of $\textbf{3}_{Ph}$ in CDCl_3

Figure S26- MS-ESI spectrum of 3_{Ph}

Figure S27- Infrared spectrum of 3_{Ph}

Figure S28- ¹H NMR spectrum of 3_{Me} in CDCl₃

Figure S29- $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of $\textbf{3}_{\text{Me}}$ in CDCl_3

Figure S30- 29 Si{¹H} NMR spectrum of $\mathbf{3}_{Me}$ in CDCl₃

Figure S31- Infrared spectrum of 3_{Me}

Figure S32- ^1H NMR spectra of $\textbf{1}_{Ph}\textbf{,}\textbf{2}_{Ph}\textbf{ and }\textbf{3}_{Ph}$ in CDCl $_3$

Figure S33- ^1H NMR spectra of $\textbf{1}_{\text{Me}}, \textbf{2}_{\text{Me}} \text{ and } \textbf{3}_{\text{Me}} \text{ in CDCl}_3$

Figure S34- UV-Vis spectra of $\mathbf{1}_{Ph}$, $\mathbf{2}_{Ph}$ and $\mathbf{3}_{Ph}$ in THF (0.33 mM)

Figure S35- UV-Vis spectra of $\mathbf{1}_{Me}, \mathbf{2}_{Me} \text{ and } \mathbf{3}_{Me} \text{ in THF (0.50 mM)}$

Figure S37- ¹³C{¹H} NMR spectrum of 4 in CDCl₃

Figure S39- ²⁹Si{¹H} NMR (2D-HSQC) spectrum of 4 in CDCl₃

much

Figure S41- Infrared spectrum of 4

(ii) Crystallographic Information

Compound	1 _{Ph}	2 _{Ph}	2 _{Me}	3 _{Ph}	3 _{Me}	4
CCDC	1886586	1886587	1937006	1886595	1937007	1886596
Chemical	C ₃₄ H ₂₈ Si ₂	C _{34 1} H ₂₆ O _{0 1} Si ₂	C14H18O0 1Si2	C34H26OSi2	C14H18OSi2	C ₃₂ H ₂₄ Si ₂
Formula	J7 20 ⁻ 2	54.1 20 - 0.1 ⁵ 2	14 10 - 0.1 - 2	5+ 202	14 10 2	52 24- 2
<i>M</i> (g mol ⁻¹)	492.74	493.60	243.98	506.73	258.46	464.69
Temperature (K)	100(1)	110(1)	99.97(13)	100(1)	101(2)	100(1)
Crystal size	0.32 × 0.2 × 0.2	0.14 × 0.05 ×	0.2 × 0.15 ×	0.34 × 0.14 ×	0.15 × 0.12 ×	0.14 × 0.12 ×
(mm)		0.05	0.1	0.12	0.1	0.1
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	triclinic
Space group	P21/c	P21/c	P21/n	12/a	P-1	P-1
a (Å)	11.9187(1)	15.6489(3)	8.35819(19)	20.0464(2)	12.20007(13)	7.9022(1)
b (Å)	12.6618(1)	8.81950(10)	8.27537(16)	8.7971(1)	12.30177(13)	9.3800(1)
c (Å)	17.4771(2)	19.3548(3)	19.9683(4)	44.8873(6)	12.38995(13)	16.7481(1)
α (º)	90	90	90	90	116.7870(10)	105.275(1)
<i>β</i> (º)	93.383(1)	106.959(2)	94.0488(19)	95.644(1)	96.6352(9)	90.621(1)
γ (º)	90	90	90	90	112.9004(10)	96.144(1)
V (A ³)	2632.91(4)	2555.10(7)	1377.70(5)	7877.51(16)	1430.24(3)	1189.69(2)
Ζ	4	4	4	12	4	2
$ ho_{calc}~({ m mg~m^{-3}})$	1.243	1.283	1.176	1.282	1.200	1.297
μ (mm⁻¹)	1.370	1.417	2.102	1.419	2.102	1.485
F (000)	1040	1038	523	3192	552	488
Dediction	CuKα (λ =	CuKα (λ =	CuKα (λ =	CuKα (λ =	CuKα (λ =	CuKα (λ =
Naulation	1.54184)	1.54184)	1.54184)	1.54184)	1.54184)	1.54184)
Θ range (deg)	11.198 to	11.112 to	8.88 to	11.298 to	13.088 to	11.272 to
	135.47	135.47	148.392	136.49	136.456	136.49
h range	-11≤ h ≤ 14	-17 ≤ h ≤ 18	-10 ≤ h ≤ 10	-12 ≤ h ≤ 12	-14 ≤ h ≤ 14	-9 ≤ h ≤ 9
k range	-15 ≤ k ≤ 15	-9 ≤ k ≤ 10	-10 ≤ k ≤ 9	-13 ≤ k ≤ 11	$-14 \le k \le 14$	$11 \le k \le 11$
l range	-20 ≤ l ≤ 19	-23 ≤ l ≤ 23	-24 ≤ l ≤ 24	-25 ≤ l ≤ 25	-13 ≤ ≤ 14	-20 ≤ l ≤ 20
Reflections	28300	19186	14649	26277	43511	32410
collected						
Data/restraints/	4763/0/333	4633/6/360	2767/6/205	7144/0/502	5232/0/315	4358/0/315
parameters						
Independent	4763 (0.0315)	4633 (0.0356)	2767	7144 (0.0242)	5232 (0.0392)	4358
reflections (R _{int})			(0.0326)			(0.0391)
<i>R</i> 1, <i>wR</i> 2 (obs.,	0.0297, 0.0773	0.0326, 0.0892	0.0296,	0.0298,	0.0265,	0.0299,
l>=2σ (I))			0.0734	0.0761	0.0722	0.0788
$P_{\rm W}P_{\rm c}$ (all data)	0.0311, 0.0784	0.0354, 0.0914	0.0334,	0.0306,	0.0287,	0.0322,
n _D , wn ₂ (an udta)			0.0756	0.0766	0.0735	0.0803
S on F ²	1.042	1.044	1.055	1.038	1.076	1.067

Table S1. Structural factors from datablock shelx for compounds 1_{Ph} , 2_{Ph} , 2_{Me} , 3_{Ph} , 3_{Me} and 4

	<u></u>						
Si-naph /Å	SI1-C13 or	1.8864(13)	1.8717(17)	1.8817(16)	1.8747(13)	1.8800(14)ª	1.8798(14)
	Si1-C5 ^a or			а	1.8730(13)	1.8738(13) ^b	
	Si3-C27 ^b						
	Si2-C22 or	1.8916(13)	1.8793(16)	1.8745(15)	1.8732(13)	1.8716(13) ^c	1.8796(14)
	Si2-C13 ^c or			с	1.8730(13)		
	Si4-C19 ^d					1.8747(13) ^d	
	Si2-C23	-	-	-	-	-	1.8940(14)
	Si2-C32	-	-	-	-	-	1.9096(14)
Si-E /Å	Si1-Si2	3.419(6)	2.3512(13)	2.329(2)	2.9721(7) /		3.4809(6)
		.,		.,	2.9515(14)		.,
	C13-C22 or	2.5698(17)	2.505(2)	2.501(2) ^e	2.5352(17) /	2.524(3) ^e	2.561(3)
	C13-C5 ^e	· · ·	()	()	2.527(3)		
	C23 – C32	-	-	-	-	-	2.315(3)
	Si1-H	1.365(16)	-	-	-	-	1.379(15)
	Si2-H or Si1-	1.371(16)		-	-	-	1.371(19) ^f
	H1B ^f	()					ζ, γ
	Si1-O1 / Si2-	-	-	-	1.6353(9) /	1.6384(10) /	-
	01				1.6355(9)	1.6336(10)	
					1.6413(6) /	1.6367(9) /	
					1.6413(6)	1.6394(9)	
Si-E-E /°	Si1-C13-C18	123.36(12)	117.30(10)	116.76(10)	124.57(10) /	125.34(9) /	128.85(10)
,					123.70(11)	124.75(9)	()
	Si2-C22-C18	129,35(9)	116,50(10)	117.06(10)	125.49(10) /	125.24(9) /	132.08(10)
		()			123.70(11)	125.07(10)	()
	C13-Si1-Si2	-	92,15(5)	92.58(6)	83.59(5) / 82.70(5)		76.32(5)
	C22-Si2-Si1	-	92.44(5)	92.69(6)	82.99(5) / 82.70(5)	-	74.48(5)
	Si1-O1-Si2	-	-	-	130.65(6) /	130.31(6) /	-
					128.05(8)	129.75(6)	
	C13-Si1-O1	-	-	-	107.82(5) /	107.57(5) /	-
					108.44(6)	108.15(5)	
	C22-Si2-O1	-	-	-	107.38(5) /	108.27(5) /	-
	012 012 01				108.44(6)	107.86(5)	
	C28-C32-Si2	-	-	-	-	-	87,39(9)
	C28-C23-Si2	-	-	-	-	-	88.21(9)
Torsion /°	Si1-C13-C18-	12 7(2)	0 54(17)	2 9(4)	3 0(2) / 10 95(6)	4 87(17) / -	15 7(2)
	(22	12.7(2)	0.5 ((17)	2.5(1)	5.0(2)/ 10.55(0)	8 14(18)	13.7(2)
	Si2-C22-C18-	170(2)	3 80(17)	-1.03(16)	0 2(2) / 10 95(6)	-1 49(17) / -	4 7(2)
	C12	17.0(2)	5.00(17)	1.05(10)	0.2(2)/ 10.00(0)	4 65/18)	7.7(2)
	C13-Si1-Si2-	17 50(6)	_	_	2 21(6) / 15 68(9)	-	11 86(6)
	(77	17.50(0)	_	_	2.21(0)/ 13.00(3)	-	11.00(0)
	C22-C28.	_	_	_	_	_	1 2(1)
	C37_Si7	-	_	_		-	4.2(1)

Table S2. Selected metrical parameters for $\mathbf{1}_{Ph}, \mathbf{2}_{Ph}, \mathbf{2}_{Me}, \mathbf{3}_{Ph}, \mathbf{3}_{Me}$ and 4.

*two crystallographically independent molecules; $\mathbf{3}_{Ph}$: molecule 1 has C_1 symmetry, molecule 2 has C_2 symmetry; $\mathbf{3}_{Me}$ both molecules have C_1 symmetry

Figure S42- Refined structure of 2_{Ph} containing co-crystallisation from 3_{Ph} (10.3(2)%) demonstrating the source of the extra electron density above the Si-Si bond

Figure S43- Refined structure of $\mathbf{2}_{Me}$ containing co-crystallisation from $\mathbf{3}_{Me}$ (9.4(4)%) demonstrating the source of the extra electron density above the Si-Si bond

(iii) Computational Information

Images of Optimized Geometries and HOMOs:

Figure S44- naphthalene

Figure S45- 1_{Ph}

Figure S46- 1_{Me}

Figure S47- 2_{Ph'}

Figure S48- 2_H

Figure S49- 2_{Ph}

Figure S50- 2_{Me}

Figure S51- 3_{Ph}

Figure S52- 3_{Me}

Figure S53- 2_H-dimer

Figure S54- 2_H-trimer

Figure S55- 2_H-tetramer

Figure S56- 2_H-pentamer

Figure S57- 2_{Ph'}-dimer

Figure S58- Calculated UV-Vis spectra (gas phase) of 1_{Ph}, 2_{Ph} and 3_{Ph} using TD-SCF, B3LYP/6-31(++)G**

Figure S59- Calculated UV-Vis spectra (gas phase) of 1_{Me}, 2_{Me} and 3_{Me} using TD-SCF, B3LYP/6-31(++)G**

Figure S60- Calculated UV-Vis spectra (gas phase) of 2_{Ph'} and 2_{Ph'}-dimer using TD-SCF, B3LYP/6-31(++)G**

Figure S61- Calculated UV-Vis spectra (gas phase) of **2**_H, **2**_H-**dimer**, **2**_H-**trimer**, **2H**-**tetramer** and **2**_H-**pentamer** using TD-SCF, B3LYP/6-31(++)G**

Figure S62- Calculated UV-Vis spectra (in THF) of 1_{Ph}, 2_{Ph} and 3_{Ph} using TD-SCF, B3LYP/6-31(++)G**

Figure S63- Calculated UV-Vis spectra (in THF) of $\mathbf{1}_{Me}$, $\mathbf{2}_{Me}$ and $\mathbf{3}_{Me}$ using TD-SCF, B3LYP/6-31(++)G**

Figure S64- Calculated UV-Vis spectra (in THF) of 2_{Ph'} and 2_{Ph'}-dimer using TD-SCF, B3LYP/6-31(++)G**

Figure S65- Calculated UV-Vis spectra (in THF) of **2**_H, **2**_H-**dimer**, **2**_H-**trimer**, **2H**-**tetramer** and **2**_H-**pentamer** using TD-SCF, B3LYP/6-31(++)G**