Supporting Information

Heterometallic Ln-Cu complexes derived from phenyl pyrimidyl substituted nitronyl nitroxide biradical

Kang Wang, Juan Sun, Lu Xi, Jiao Lu, Pei Jing, Licun Li*

Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Nankai University, Tianjin 300071, China

* Corresponding author. E-mail address: llicun@nankai.edu.cn

1 Gd							
Gd(1)-O(2)	2.425(4)	Gd(1)-O(3)	2.386(4)				
Gd(1)-O(9)	2.400(4)	Gd(1)-O(10)	2.403(4)				
Gd(1)-O(11)	2.379(5)	Gd(1)-O(12)	2.347(5)				
Gd(1)-O(13)	2.364(5)	Gd(1)-O(14)	2.404(4)				
O(1)-N(3)	1.261(7)	O(2)-N(4)	1.304(6)				
O(3)-N(5)	1.306(7)	O(4)-N(6)	1.253(8)				
Cu(1)-N(1)	2.414(5)	Cu(2)-N(2)	2.411(5)				
Cu(1)-O(5)	1.951(4)	Cu(1)-O(6)	1.990(4)				
Cu(2)-O(7)	1.962(5)	Cu(2)-O(8)	1.954(4)				
N(4)-O(2)-Gd(1)	137.5(3)	N(5)-O(3)-Gd(1)	138.8(3)				
O(3)-Gd(1)-O(2)	79.45(15)	O(9)-Gd(1)-O(10)	72.04(15)				
O(12)-Gd(1)-O(11)	71.19(16)	O(13)-Gd(1)-O(14)	71.06(15)				
O(5)-Cu(1)-O(6)	91.91(17)	O(8)-Cu(2)-O(7)	92.10(18)				
	2 Tb						
Tb(1)-O(2)	2.390(5)	Tb(1)-O(3)	2.396(6)				
Tb(1)-O(9)	2.378(5)	Tb(1)-O(10)	2.390(5)				
Tb(1)-O(11)	2.318(6)	Tb(1)-O(12)	2.351(6)				
Tb(1)-O(13)	2.360(6)	Tb(1)-O(14)	2.353(5)				
N(3)-O(1)	1.248(9)	O(2)-N(4)	1.307(8)				
O(3)-N(5)	1.301(8)	N(6)-O(4)	1.262(9)				
Cu(1)-N(1)	2.365(6)	Cu(2)-N(2)	2.394(5)				
Cu(1)-O(5)	1.961(5)	Cu(1)-O(6)	1.970(5)				
Cu(2)-O(7)	1.938(5)	Cu(2)-O(8)	1.968(5)				
N(4)-O(2)-Tb(1)	137.9(5)	N(5)-O(3)-Tb(1)	139.1(4)				
O(2)-Tb(1)-O(3)	79.8(2)	O(9)-Tb(1)-O(10)	72.15(17)				
O(11)-Tb(1)-O(12)	73.0(2)	O(14)-Tb(1)-O(13)	71.72(18)				
O(5)-Cu(1)-O(6)	92.3(2)	O(7)-Cu(2)-O(8)	92.4(2)				
	3 Dy						
Dy(1)-O(2)	2.404(9)	Dy(1)-O(3)	2.381(10)				
Dy(1)-O(9)	2.367(8)	Dy(1)-O(10)	2.355(9)				
Dy(1)-O(11)	2.289(12)	Dy(1)-O(12)	2.350(11)				
Dy(1)-O(13)	2.354(9)	Dy(1)-O(14)	2.326(8)				
O(1)-N(3)	1.231(15)	O(2)-N(4)	1.257(14)				
O(3)-N(5)	1.285(14)	O(4)-N(6)	1.275(15)				
Cu(1)-N(1)	2.350(9)	Cu(2)-N(2)	2.412(8)				
Cu(1)-O(5)	1.954(9)	Cu(1)-O(6)	1.956(7)				
Cu(2)-O(7)	1.939(8)	Cu(2)-O(8)	1.980(9)				
N(4)-O(2)-Dy(1)	139.7(11)	N(5)-O(3)-Dy(1)	138.3(7)				
O(3)-Dy(1)-O(2)	78.2(4)	O(10)-Dy(1)-O(9)	71.9(3)				
O(11)-Dy(1)-O(12)	74.0(4)	O(14)-Dy(1)-O(13)	72.1(3)				
O(5)-Cu(1)-O(6)	92.5(3)	O(7)-Cu(2)-O(8)	92.4(4)				

Table S1 Important bond lengths [Å] and angles $[\circ]$ for **1-3**.

Compound	SAPR-8	TDD-8	JBTPR-8	BTPR-8	JSD-8
1 Gd	1.441	0.998	1.864	1.075	3.744
2 Tb	1.328	1.180	1.937	1.115	3.924
3 Dy	1.374	1.203	1.878	1.145	3.979

Table S2 SHAPE analysis for the 8-coordinated Ln^{III} ions of 1-3.

SAPR-8: Square antiprism; TDD-8: Triangular dodecahedron; JBTPR-8: Biaugmented trigonal prism J50; BTPR-8: Biaugmented trigonal prism; JSD-8: Snub diphenoid J84.

Table S3 Magnetic parameters and coordination geometry of Ln ion for complex **3** and the related nitronyl nitroxide biradical-Dy discrete complexes.

Compounds	$\Delta_{\rm eff}/k_{\rm B}({\rm K})$	$\tau_0(s)$	$H_{\rm dc}({\rm Oe})$	Closest ideal geometry	Ref.
[Dy(hfac) ₃ (NIT <i>m</i> bis)] ₂	11.6	2.3 × 10 ⁻⁸	0	C_{2v}	11a
[Dy(hfac) ₃ (NITPymbis) ₂] ₂ ·C ₇ H ₁₆	none	none	0	$C_{2\mathrm{v}}$	11b
[Dy(hfac) ₃ (NITFumbis)] ₂	15	1.25 × 10 ⁻⁶	3000	C_{2v}	11c
[Dy ₂ Co ₂ (hfac) ₁₀ (NITPhPybis) ₂]	6.03	5.2 × 10 ⁻⁵	1000	C_{2v}	13b
[Dy(hfac) ₃ Cu(hfac) ₂ (bisNITPhPyrim)]	8.13	1.07 × 10 ⁻⁶	500	$C_{2v} \sim D_{2d}$	this work

 $\label{eq:NIT} NITmbis=1,3-bis-(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl) benzene; \\ NITPymbis = 1,3-bis-(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl) \\ pyridine; NITFumbis=2,5-bis-(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl) \\ furan; NITPhPybis=5-(4-pyridyl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl) \\ benzene. \\$

Fig.S1 Coordination polyhedrons of Ln^{III} ions for complexes 1-3.

Fig.S2 Packing diagram of complex 1. H atoms and hfac coligands are not shown for clarity.

Fig.S3 Packing diagram of complex 2. H atoms and hfac coligands are not shown for clarity.

Fig.S4 Packing diagram of complex 3. H atoms and hfac coligands are not shown for clarity.

Scheme S1 (left) Spin polarization mechanism for the magnetic coupling mediated by pyrimidyl ring; (right) Spin polarization mechanism for the magnetic coupling mediated by *m*-phenylene ring between two radicals.

Fig.S5 *M* vs. *H* plots of **2** (blue) and **3** (pink) at 2.0 K.

Fig.S6 Temperature dependence of χ' (left) and χ'' (right) ac susceptibility under zero dc field for 2.

Fig.S7 Temperature dependence of χ' (left) and χ'' (right) ac susceptibility under zero dc field for **3**.

Fig.S8 Frequency dependence of χ' (left) and χ'' (right) ac susceptibility at 2 K under different dc fields for **2**.

Fig.S9 Frequency dependence of χ' (left) and χ'' (right) ac susceptibility at 2 K under different dc fields for **3**.

Fig.S10 The τ versus *H* plot for complex **3** at 2 K under applied dc fields.

Fig.S11 Temperature dependence of χ' (left) and χ'' (right) ac susceptibility under 500 Oe dc field for **3**.