Supporting Information for

Composition-defined Nanosized Assemblies that Contain Heterometallic Early 4d/5d-Transition-Metals

Masanori Wakizaka, Takane Imaoka,* and Kimihisa Yamamoto*

Laboratory for Chemistry and Life Science Institute of Innovative Research,

Tokyo Institute of Technology, Yokohama 226-8503, Japan

Correspondence and requests for materials should be addressed to K.Y.

E-mail: yamamoto@res.titech.ac.jp

Figure S1. Full range (240–480 nm) UV-vis spectral change of TPM-DPAG1 in CH₂Cl₂/THF = 2/1(v/v) upon the additions of a) ZrCl₄ (0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, and 90 eq.), b) NbCl₅ (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, and 6.5 eq.), c) MoCl₅ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 eq.), d) HfCl₄ (0, 12, 24, 36, 48, 60, 72, 84, 96, and 108 eq.), and e) WCl₆ (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 eq.) in the presence of HMPA (300 eq.) under an atmosphere of N₂ at 245 K. The inserts are magnifications around the isosbestic point.

Figure S2. a) Full range ($\sim 1 \times 10^{-3}$ M) and b) magnification ($\sim 1 \times 10^{-4}$ M) of the titration and fitting curves of TPM-DPAG1 with TaCl₅ (black circles and line), WCl₆ (green circles and line), NbCl₅ (red circles and line), MoCl₅ (blue circles and line), ZrCl₄ (orange circles and line), and HfCl₄ (purple circles and line) in CH₂Cl₂/THF = 2/1(ν/ν) in the presence of HMPA (300 eq.) under an atmosphere of N₂ at 245 K.

Equation S1. *K* values were estimated by the following equations, wherein $[H]_0$, $[G]_0$, ΔA_{obs} , *b*, and $\Delta \varepsilon$ refer to the initial concentration of the imines in TPM-DPAG1, the initial concentration of the metal chlorides, the observed differential absorbance, the optical path (1.0 cm), and the differential molar extinction coefficient of the complexes and TPM-DPAG1, respectively.^{S1}

$$\Delta A_{\rm obs} = \frac{b\Delta\varepsilon}{2K} (X - \{X^2 - 4K^2 [H]_0 [G]_0\}^{1/2})$$
$$X = 1 + K [H]_0 + K [G]_0$$

Figure S3. UV-vis spectral change of TPM-DPAG4 in $CH_2Cl_2/THF = 2/1(v/v)$ upon the additions of a) ZrCl₄ (0, 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 30, 32, and 34 eq.), b) NbCl₅ (0, 1, 2, 3, 4, 6, 8, 10, and 12 eq.), c) MoCl₅ (0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22 eq.), d) HfCl₄ (0, 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 30, 32, and 34 eq.), e) TaCl₅ (0, 1, 2, 3, 4, 6, 8, 10, 12, 14 eq.), and f) WCl₆ (0, 1, 2, 3, 4, 6, 8, 10, 12, 14 eq.), under an atmosphere of N₂ at 245 K.

Figure S4. Relationship between log *K* and the saturation equivalents of TPM-DPAG4 and metal chlorides (R = 0.98).

Figure S5. Representative structural illustration of a) a monodentate (stoichiometric coordination) mode, and b) a multidentate mode between imine moieties in a DPA dendrimer and a metal ion in solution.

Figure S6. a) Full range (280–600 nm) and b) magnifications around the isosbestic points (340–400 nm) of the UV-vis spectral change of TPM-DPAG4 in CH₂Cl₂/THF = 2/1(v/v) upon the addition of ZrCl₄ (0, 1, 2, 3, and 4 eq.; blue lines), (6, 8, 10, and 12 eq.; green lines), (16, 20, 24, and 28 eq.; orange lines), and (36, 44, 52, and 60 eq.; red lines) in the presence of py (14 eq.) and 3-Clpy (240 eq.), under an atmosphere of N₂ at 245 K.

Figure S7. a) Full range (280–600 nm) and b) magnifications around the isosbestic points (340–400 nm) of the UV-vis spectral change of TPM-DPAG4 in CH₂Cl₂/THF = 2/1(v/v) upon the addition of NbCl₅ (0, 1, 2, 3, and 4 eq.; blue lines), (6, 8, 10, and 12 eq.; green lines), (16, 20, 24, and 28 eq.; orange lines), and (36, 44, 52, and 60 eq.; red lines) in the presence of py (20 eq.) and 3-Clpy (600 eq.), under an atmosphere of N₂ at 245 K.

Figure S8. a) Full range (280–600 nm) and b) magnifications around the isosbestic points (340–400 nm) of the UV-vis spectral change of TPM-DPAG4 in CH₂Cl₂/THF = 2/1(v/v) upon the addition of MoCl₅ (0, 1, 2, 3, and 4 eq.; blue lines), (6, 8, 10, and 12 eq.; green lines), (16, 20, 24, and 28 eq.; orange lines), and (36, 44, 52, and 60 eq.; red lines) in the presence of py (4 eq.) and 3-Clpy (40 eq.), under an atmosphere of N₂ at 245 K.

Figure S9. a) Full range (280–600 nm) and b) magnifications around the isosbestic points (340–400 nm) of the UV-vis spectral change of TPM-DPAG4 in CH₂Cl₂/THF = 2/1(v/v) upon the addition of HfCl₄ (0, 1, 2, 3, and 4 eq.; blue lines), (6, 8, 10, and 12 eq.; green lines), (16, 20, 24, and 28 eq.; orange lines), and (36, 44, 52, and 60 eq.; red lines) in the presence of py (12 eq.) and 3-Clpy (210 eq.), under an atmosphere of N₂ at 245 K.

Figure S10. a) Full range (280–600 nm) and b) magnifications around the isosbestic points (340–400 nm) of the UV-vis spectral change of TPM-DPAG4 in CH₂Cl₂/THF = 2/1(v/v) upon the addition of WCl₆ (0, 1, 2, 3, and 4 eq.; blue lines), (6, 8, 10, and 12 eq.; green lines), (16, 20, 24, and 28 eq.; orange lines), and (36, 44, 52, and 60 eq.; red lines) in the presence of py (40 eq.) and 3-Clpy (900 eq.), under an atmosphere of N₂ at 245 K.

Figure S11. Relationship between the ionic potential of Zr^{IV} , Nb^V, Hf^{IV}, Ta^V, W^{VI} (black circles), and Mo^V (red circle) and the optimal amount of a) py (R = 0.96) and b) 3-Clpy (R = 0.99) with the approximate line estimated except for the point of MoCl₅.

Figure S12. ¹H NMR spectra of a) TPM-DPAG1 with py (1 eq.) and 3-Clpy (1 eq.), as well as b) in the presence of TaCl₅ (2 eq.) in CD₂Cl₂/THF- $d_8 = 2/1(v/v)$, under an atmosphere of N₂ at room temperature.

Figure S13. XPS spectra of the crude mixture composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^{V+}, Zr^{IV}) on the GMC in the range around the binding energies of a) Ta, b) Nb, c) Mo, and d) Zr with fitting curves. The marked peaks (#) of 230.4 and 233.4 eV indicate reductive species of Mo, which was generated during the mixing.

Region	Binding energy	Sum of areas (A)	Mole ratio
	/ eV		$A_{\rm M}^{a}/A_{\rm Ta}^{a} \times A_{\rm Ta}^{b}/A_{\rm M}^{b} \times n^{d}$
Ta $4f_{7/2}^a$	26.5	1126.6±54.2	1
Ta $4f_{5/2}aa$	28.3		
Nb $3d_{5/2}^a$	207.8	3178.2±119.1	2.6±0.2
Nb $3d_{3/2}aa$	210.6		
Mo $3d_{5/2}^a$	232.2	6862.1±114.3	4.1±0.2
Mo $3d_{3/2}^{a}$	235.5		
$\operatorname{Zr} 3d_{5/2}a$	183.4	7442.1±74.0	8.9±0.4
$\operatorname{Zr} 3d_{3/2}aa$	185.7		
Ta $4\mathbf{f}_{7/2}^{b}$	26.7	11687.2±103.4	1^d
Ta $4f_{5/2}^{b}$	28.5		
Nb $3d_{5/2}^{b}$	207.8	13969.0±88.6	1 1 2 d
Nb $3d_{3/2}^b$	210.5		1.12"
Mo $3d_{5/2}^b$	232.3	17944.8±236.5 ^c	1.03 ^d
Mo $3d_{3/2}^b$	235.7		
$\operatorname{Zr} 3d_{5/2}{}^{b}$	183.3	9775.6±32.7	1 12 <i>d</i>
$\operatorname{Zr} 3d_{3/2}^{b}$	185.6		1.13"

Table S1. Summary of XPS data

^{*a*} in the assembly composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) and TPM-DPAG4 on the GMC. ^{*b*} in the crude mixture composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) on the GMC. ^{*c*} including the areas of reductive species. ^{*d*} *n* refers mole ratio in the crude mixture.

Figure S14. HAADF-STEM image in the heterometallic assemblies composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) and TPM-DPAG4 on the GMC. The inset is a high-resolution image.

Figure S15. Wide range HAADF-STEM and EDS mapping images of Ta (light blue), Nb (green), Mo (yellow), Zr (red), and C (grey) on the assemblies composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) and TPM-DPAG4 on the GMC.

Figure S16. a) HAADF-STEM and EDS mapping images of Ta (light blue), Nb (green), Mo (yellow), Zr (red), and C (grey); b) EDS spectrum of the crude mixture composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) on the GMC with fitting curves.

Metal	E/keV	Area (A)	Mole ratio
			$A_{\rm M}a/A_{\rm Ta}a \times A_{\rm Ta}b/A_{\rm M}b \times n^c$
Ta ^a	1.74	8.41±0.29	1
Nb ^a	2.15	4.47±0.37	1.7±0.2
Mo ^a	2.30, 2.40	7.85±0.34, 1.95±0.34	4.4±0.3
Zr ^a	2.05	8.18±0.34	8.3±0.5
Ta ^b	1.74	476.46±3.37	1°
Nb ^b	2.15	304.25±4.38	2.0^{c}
Mo ^b	2.30, 2.40	388.41±3.66, 113.70±3.66	4.0^{c}
Zr^b	2.05	444.50±3.99	8.0 ^c

Table S2. Summary of EDS data

^{*a*} in the assembly composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) and TPM-DPAG4 on the GMC. ^{*b*} in the crude mixture composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) on the GMC. ^{*c*} *n* refers mole ratio in the crude mixture.

Figure S17. XPS spectra of MoO₃, MoCl₅, MoCl₃, MoO₂, MoS₂, Mo₂C, and Mo on GMC. Binding energies were calibrated for C1s of GMC (284.5 eV).

Sampla	Binding energy / eV ^a		
Sample —	Mo 3d _{5/2}	Mo 3d _{3/2}	
MoO ₃	232.9	236.0	
MoCl ₅	232.1	235.3	
MoCl ₃	230.2	233.4	
MoO_2	229.5	232.7	
MoS_2	229.4	232.6	
Mo ₂ C	228.9	232.1	
Мо	228.2	231.3	

Table S3. Summary of XPS data for Mo samples

^a Calibrated for C1s of GMC (284.5 eV)

Figure S18. XPS spectra of i) the heterometallic assembly composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) and TPM-DPAG4 on GMC and ii) the product after the reaction under an atmosphere of H₂ at 773 K. The spectra cover the range of binding energies of a) Ta, b) Nb, and c) Zr with fitting curves.

TIDO

. .

Table S4. Summary of XPS data for the product ^a			
Region	Binding energy / eV		
Ta 4f _{7/2}	26.7		
Ta 4f _{5/2}	28.7		
Nb 3d _{5/2}	207.7		
Nb 3d _{3/2}	210.4		
Mo 3d _{5/2}	229.5, 232.9		
Mo 3d _{3/2}	232.9, 236.1		
Zr 3d _{5/2}	182.9		
Zr 3d _{3/2}	185.3		

^{*a*} the product of the assembly composed of $M^{n+}Cl_n$ (M = Ta^V, Nb^V, Mo^V, Zr^{IV}) and TPM-DPAG4 on the GMC after the reaction under an atmosphere of H₂ at 773 K.

References

S1. K. A. Connors, *Binding constants: the measurements of molecular complex stability*, John Wiley + Sons, 1987.