Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supplemental Information

Inter-ligand intra-molecular through-space anisotropic shielding in a series of manganese carbonyl phosphorous compounds

Daniel A. Kurtz¹, Badrinath Dhakal², Lauren T. McDonald³, Gary S. Nichol⁴ and Greg A. N. Felton^{3*}

¹Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142

²Department of Chemistry, Oakland University, Rochester, MI 48309

³Department of Chemistry, Eckerd College, St. Petersburg, FL 33711

⁴School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, U. K.

Contents:

2	Figure SI-1: Cyclic Voltammograms (CV) of 1.00 mM of compounds Mn,
	and 1 – 8
	Figure SI-2: CV of 1.00 mM 7
3	Figure SI-3: IR spectra of 1 – 4
4	Figure SI-4: IR spectra of 5 – 8
5	Figure SI-5: IR spectra of MnOTf(bpy)(CO) ₃ , [Mn(bpy)(CO) ₃ (P(<i>p</i> -tol) ₃)]OTf
	and 4
	Materials and microscope pictures of crystals of 3 and 6
6	Scheme SI-1. Proposed mechanism for complexes 1 – 8 during electrocatalysis
7	Figure SI-6: CV comparison of 5 under Ar, CO ₂ and CO ₂ /MeOH
8	Figure SI-7: UV/V is spectra of compounds $1 - 6$ and $7 - 8$
0	Figure SI-8 : 400MHz ¹ H-NMR of aromatic resonances of compounds $4 - 6$

- Figure SI-8: 400MHz ¹H-NMR of aromatic resonances of compounds 4
 Figure SI-9: IR spectra/Bulk electrolysis of compound 5
- Figure SI-9: IR spectra/Bulk electrolysis of compou
 Figure SI-10: HRMS spectra of compounds 1 8.
- 15 X-ray crystallographic details for compounds 1 and 5

Figure SI-1: Overlaid Cyclic Voltammograms (CV) of 1.00 mM of compounds **Mn**, 1 - 8 at 0.100 V/s. All CV collected upon a 3.00 mm glassy carbon electrode, in dry acetonitrile containing 0.100 M Bu₄NPF₆ under an argon atmosphere.

Figure SI-2: CV of 1.00 mM of compound 7 at 0.100 V/s upon a 3.00 mm glassy carbon electrode, in dry acetonitrile containing $0.100 \text{ M Bu}_4\text{NPF}_6$ under an argon atmosphere.

Figure SI-3. Carbonyl region IR spectra (cm⁻¹) of compounds 1 - 4 collected in acetonitrile.

Figure SI-4. Carbonyl region IR spectra (cm⁻¹) of compounds 5 - 8 collected in acetonitrile.

Figure SI-5. Carbonyl region IR spectra (cm⁻¹) of compounds $MnOTf(bpy)(CO)_3$ (red), [Mn(bpy)(CO)₃(P(*p*-tol)₃)]OTf (blue) and compound **4**, [Mn(*t*Bu-bpy)(CO)₃(P(*p*-tol)₃)]OTf (green), collected in acetonitrile

Materials/reagents

All the reagents were used as received from the following: tetrabutylammonium hexafluorophosphate (TBAPF₆, Sigma-Aldrich), rhenium pentacarbonyl chloride (ReCl(CO)₅Br, Acros Organics), manganese pentacarbonyl bromide (MnBr(CO)₅, Alfa Aesar), silver trifluromethanesulfonate (AgOTf, Alfa Aesar), 2,2'-bipyridine (bpy, Fluka), 4,4'-di-*tert*-butyl-2,2'-bipyridine (bpy-tBu, Sigma Aldrich), tricyclohexylphosphine (PCy₃, Alfa Aesar), tributylphosphine (PBu₃, City Chemical), trimethylphosphine (PMe₃, Sigma-Aldrich), tri(*para*-tolyl)phosphine (P(*p*-tol)₃, Alfa Aesar), tributylphosphine (PPh₃, Alfa Aesar), tris(*para*-fluoro-phenyl)phosphine (P(*p*-F-Ph)₃, Alfa Aesar), triethyl phosphite (P(OEt)₃, Alfa Aesar), trimethyl phosphite (P(OMe)₃, Alfa Aesar), tetrahydrofuran (THF, Alfa Aesar), dichloromethane (DCM, Alfa Aesar), diethyl ether (EMD), methanol (MeOH, BDH), acetone (BDH), n-pentane (Alfa Aesar), ammonium hexafluorophosphate (NH₄PF₆, Alfa Aesar).

Elemental Analysis carried by Atlantic Microlab, Inc (Norcross, GA)

Crystals of **6**, $[Mn(bpy-tBu)(CO)_3P(p-F-Ph)_3]OTf$ (left), and **3**, $[Mn(bpy-tBu)(CO)_3(PMe)_3]OTf$ (right) under a microscope. Crystals were grown at room temperature, by vapor diffusion of pentane into a solution of the compound in acetone.

Scheme SI-1. Proposed mechanism for complexes 1 - 8 of the type $[Mn(tBu-bpy)(CO)_3L]^+$ studied. Evidence suggests ligand, L, dissociation after first or second reduction produces tricarbonyl anionic active species, identical to electrochemical reductive product (active catalyst) of bromide analog (Mn). Bottom cycle is desired mechanism. The carbonyl intermediate in the bottom cycle (in red circle), L dissociates, such that we revert to the top cycle. This is supported by similar electrochemistry and catalytic activity under cyclic voltammetric conditions of compounds 1 - 8 to the parent compound Mn.

Figure SI-6. CV of Compound **5** under Ar (green), CO_2 (red) and CO_2 /2.47M MeOH. Collected in 0.100 M Bu₄NPF₆ anhydrous acetonitrile at 0.100 V/s on a 3.00 mm diameter glassy carbon working electrode.

Note: Bottom figure is re-scaled to highlight lower portion of bottom figure.

Figure SI-7a: UV/Vis absorption spectra for aliphatic phosphine compounds 1 (black), 2 (blue) and 3 (purple), and aromatic phosphine compounds 4 (green), 5 (orange) and 6 (red), in 0.12 mM in acetonitrile.

Figure SI-7b: Overlaid UV/Vis absorption spectra for phosphite compounds 7 (grey) and 8 (red), in 0.060 mM in acetonitrile.

Figure SI-9: Overlaid carbonyl region IR spectra of 1.00 mM Compound **5** after bulk electrolysis at -1.60 V vs Fc/Fc⁺ in dry acetonitrile containing 0.050 M Bu₄NPF₆ under an argon atmosphere (grey trace), after solvent removal. Control is compound **5** dry mixed with Bu₄NPF₆ in a 1:50 ratio (black trace). Presence of more peaks, particularly at 1974 cm⁻¹, is evidence of dimer formation (broadly matching Figure 4 of citation 6: *Inorg. Chem.* 52 (2013) 2484-2491). Additionally, the solution turned from yellow to purple-red during bulk electrolysis, with the "dimer" product appearing red upon drying, similar to colors described in citation 5: *Angew. Chem. Int. Ed.* 50 (2011) 9903-9906.

Figure SI-10a: HRMS spectra of compounds 1 and 2. Note: 922.0098 is a calibrant.

Figure SI-10b: HRMS spectra of compounds 3 and 4. Note: 922.0098 is a calibrant.

Figure SI-10b: HRMS spectra of compounds 5 and 6. Note: 922.0098 is a calibrant.

Figure SI-10d: HRMS spectra of compounds 7 and 8. Note: 922.0098 is a calibrant.

ex4010

Submitted by: **Felton, G.** Solved by: **Nichol, G.S.** Sample ID: **sample 4**

Compound sample 4 was provided as a dried residue on the inside of a small glass vial. Some of

this residue was sufficiently large enough to give reasonable single crystal X-ray diffraction, yielding structure ex4010. The final R_I for this structure is rather high. This is possibly an effect of the residue nature of the crystals, all of which had cracks and other defects. The TwinRotMat function of PLATON was used to handle some of this twinning, as described below.

Crystal Data and Experimental

Experimental. Single yellow block-shaped crystals of (**ex4010**) were recrystallised from a mixture of pentane and acetone by vapour diffusion. A suitable crystal ($0.37 \times 0.12 \times 0.07 \text{ mm}^3$) was selected and mounted on a MITIGEN holder in Paratone oil. on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at *T* = 120.00(10) K during data collection. Using **Olex2** (Dolomanov et al., 2009), the structure was solved with the ShelXT (Sheldrick, 2008) structure solution program, using the Direct Methods solution method. The model was refined with version 2014/6 of **ShelXL** (Sheldrick, 2008) using Least Squares minimisation.

Crystal Data. C₄₀H₅₇N₂O₆F₃PSMn, M_r = 836.84, triclinic, P-1 (No. 2), *a* = 10.7958(5) Å, *b* = 19.6144(10) Å, *c* = 20.0400(11) Å, *α* = 85.551(5)°, *β* = 89.809(4)°, *γ* = 76.872(4)°, *V* = 4119.7(4) Å³, *T* = 120.00(10) K, *Z* = 4, *Z'* = 2, μ (MoK_α) = 0.471, 15033 reflections measured, 15033 unique (R_{int} = 0.1038) which were used in all calculations. The final *wR*₂ was 0.2169 (all data) and *R*₁ was 0.0920 (I > 2(I)).

Compound	ex4010
CCDC	1920529
Formula	$C_{40}H_{57}N_2O_6F_3PSMn$
$D_{calc.}$ / g cm ⁻³	1.349
μ/mm^{-1}	0.471
Formula Weight	836.84
Colour	yellow
Shape	block
Max Size/mm	0.37
Mid Size/mm	0.12
Min Size/mm	0.07
<i>T</i> /K	120.00(10)
Crystal System	triclinic
Space Group	P-1
a/Å	10.7958(5)
b/Å	19.6144(10)
<i>c</i> /Å	20.0400(11)
$\alpha/^{\circ}$	85.551(5)
$\beta/^{\circ}$	89.809(4)
γI°	76.872(4)
V/Å ³	4119.7(4)
Z	4
Z'	2
$\Theta_{min}/^{\circ}$	2.792
$\Theta_{max}/^{\circ}$	25.394
Measured Refl.	15033
Independent Refl.	15033
Reflections Used	10823
R _{int}	0.1038
Parameters	1105
Restraints	195
Largest Peak	2.083
Deepest Hole	-0.823
GooF	1.075
<i>wR</i> ₂ (all data)	0.2169
wR_2	0.1981
R_1 (all data)	0.1283
R_1	0.0920

Experimental Extended. A yellow block-shaped crystal with dimensions $0.37 \times 0.12 \times 0.07$ mm³ was mounted on on a MITIGEN holder in Paratone oil. Data were collected using a SuperNova, Dual, Cu at zero, Atlas diffractometer equipped with an Oxford Cryosystems Cryostream 700+ low-temperature apparatus operating at *T* = 120.00(10) K.

Data were measured using ω scans scans of 1.0° per frame for 30.0 s using MoK_{α} radiation (SuperNova (Mo) X-ray Source, kV, mA). The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Agilent, V1.171.37.34k, 2014). The actually achieved resolution was Θ = 25.394.

Cell parameters were retrieved using the CrysAlisPro (Agilent, V1.171.37.34k, 2014) software and refined using CrysAlisPro (Agilent, V1.171.37.34k, 2014) on 7413 reflections, 49 of the observed reflections.

Data reduction was performed using the CrysAlisPro (Agilent, V1.171.37.34k, 2014) software which corrects for Lorentz polarisation. The final completeness is 99.80 out to 25.394 in Θ . The absorption coefficient (MU) of this material is 0.471 and the minimum and maximum transmissions are 0.702 and 0.937.

The structure was solved by Direct Methods using the ShelXT (Sheldrick, 2008) structure solution program and refined by Least Squares using version 2014/6 of **ShelXL** (Sheldrick, 2008).

The structure was solved in the space group P-1 (# 2). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

One of the cyclohexyl rings (containing C78) was modelled as disordered over two sites with occupancy ratio 0.540:0.460(10). One of the triflate anions (containing S51) was modelled as disordered over two sites with occupancy ratio 0.704:0.296(7). Geometric and displacement ellipsoid similarity restraints were used on these disordered components. The TwinRotMat function of PLATON was used to handle a small amount of overlooked twinning, with a refined twin scale factor of 0.116(2).

Citations

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., A short history of ShelX, *Acta Cryst.*, (2008), **A64**, 339-341.

Figure SI-11. X-ray crystallographic structures of **1** (30% probability thermal ellipsoids). CCDC 1920529 formed as a crystal with two conformations of cyclohexyl rings in a 0.540:0.460 ratio.

Atom	Atom	Length/Å	Atom Atom	L
Mn51	P51	2.4669(17)	Mn1 P1	
Mn51	N51	2.047(5)	Mn1 N1	
Mn51	N52	2.045(5)	Mn1 N2	
Mn51	C69	1.810(6)	Mn1 C19	
Mn51	C70	1.800(7)	Mn1 C20	
Mn51	C71	1.832(6)	Mn1 C21	
51	C72	1.863(6)	P1 C22	
51	C78	1.848(12)	P1 C28	
51	C78'	1.852(11)	P1 C34	
251	C84	1.856(5)	01 C19	
)51	C69	1.150(7)	02 C20	
)52	C70	1.151(8)	03 C21	
)53	C71	1 1 39(7)	N1 C1	
J51	C51	1357(7)	N1 C5	
151	651	1.357(7) 1.354(7)	N2 C6	
52	C56	1 378(7)	N2 C10	
52	C60	1.370(7) 1 342(7)	C1 $C2$	
52	C52	1.342(7) 1 374(8)	$C_1 C_2$	
)1 (2	C52	1.374(0) 1 288(8)	$C_2 = C_3$	
52	C53	1.300(0)	$C_2 C_1$	
55 F2	C54	1.594(0)		
,EN 222		1.520(0)		
.54 .FF		1.309(0)		
55	C50	1.4/1(8) 1.271(9)		
50	C57	1.3/1(8)		
5/ F0	C28	1.395(8)		
50	C59	1.379(8)		
58	C65	1.534(8)		
9 1	C60	1.3/1(8)		
)]	C62	1.553(8)		
61 (1	C63	1.532(9)		
) I	C64	1.519(9)		
65 (F	C66	1.545(9)		
)5 (F	67	1.545(10)		
65	C68	1.519(9)		
12	C73	1.526(8)		
72	C77	1.538(8)		
/3	C74	1.518(8)		
/4	C75	1.536(8)	L25 L26	
75	C76	1.506(9)	L26 L27	
/6	L//	1.528(8)	L28 L29	
78	C79 ⁻	1.537(14)	C28 C33	
.78	683	1.538(17)	L29 L30	
78	C79	1.538(13)	C30 C31	
78'	C83	1.536(17)	C31 C32	
279	C80	1.507(14)	C32 C33	
79'	C80'	1.517(15)	C34 C35	
280	C81	1.532(15)	C34 C39	
80'	C81'	1.515(15)	C35 C36	
81	C82	1.491(14)	C36 C37	
:81'	C82'	1.511(15)	C37 C38	
282	C83'	1.512(13)	C38 C39	
282'	C83	1.535(14)	S51 054	
284	C85	1.528(8)	S51 055	
284	C89	1.535(8)	S51 056	
285	C86	1.527(8)	S51 C91	
286	C87	1.524(8)	F51 C91	
287	C88	1.515(9)	F52 C91	
C88	C89	1.529(9)	F53 C91	

Table SI-1. Bond lengths in Å for CCDC 1920529

Length/Å 2.4445(18) 2.055(5) 2.047(5)1.809(6) 1.811(7) 1.834(7) 1.871(6) 1.876(6) 1.867(5)1.148(7) 1.143(7)1.147(8) 1.346(7)1.362(7)1.366(7) 1.350(7)1.379(8) 1.392(9) 1.404(8)1.531(8) 1.373(8) 1.470(8) 1.391(8) 1.399(7) 1.386(8)1.517(8) 1.384(8)1.553(9) 1.514(9) 1.520(9) 1.542(8) 1.517(9) 1.537(9) 1.542(7)1.521(8) 1.547(9) 1.492(9) 1.528(9) 1.531(9) 1.543(8)1.517(9) 1.513(9) 1.520(9) 1.520(9) 1.546(9) 1.545(8) 1.507(9) 1.537(9) 1.485(10) 1.534(9) 1.542(8)1.443(9)1.465(6) 1.401(11) 1.795(10) 1.312(11)1.331(11)1.301(10)

Atom	Atom	Length/Å
S51'	054'	1.418(16)
S51'	055'	1.471(16)
S51'	056'	1.360(8)
S51'	C91'	1.837(16)
F51'	C91'	1.319(17)
F52'	C91'	1.331(19)
F53'	C91'	1.310(17)

Atom	Atom	Length/Å
S1	04	1.394(6)
S1	05	1.383(10)
S1	06	1.441(8)
S1	C40	1.768(9)
F1	C40	1.325(9)
F2	C40	1.327(9)
F3	C40	1.376(11)

Table SI-2: Bond Angles in $^\circ$ for CCDC 1920529

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N51	Mn51	P51	93.35(13)	C63	C61	C62	108.6(5)
N52	Mn51	P51	92.85(13)	C64	C61	C53	112.2(5)
N52	Mn51	N51	78.69(18)	C64	C61	C62	108.8(5)
C69	Mn51	P51	88.15(19)	C64	C61	C63	110.2(6)
C69	Mn51	N51	175.7(2)	C58	C65	C66	109.1(5)
C69	Mn51	N52	97.2(2)	C58	C65	C67	108.0(5)
C69	Mn51	C71	88.5(3)	C66	C65	C67	110.0(6)
C70	Mn51	P51	90.9(2)	C68	C65	C58	112.0(6)
C70	Mn51	N51	94.9(2)	C68	C65	C66	109.7(6)
C70	Mn51	N52	172.8(2)	C68	C65	C67	108.0(6)
C70	Mn51	C69	89.1(3)	051	C69	Mn51	174.2(5)
C70	Mn51	C71	89.8(3)	052	C70	Mn51	175.5(7)
C71	Mn51	P51	176.59(18)	053	C71	Mn51	177.5(5)
C71	Mn51	N51	89.9(2)	C73	C72	P51	114.6(4)
C71	Mn51	N52	86.8(2)	C73	C72	C77	110.8(5)
C72	P51	Mn51	116.73(19)	C77	C72	P51	112.5(4)
C78	P51	Mn51	116.1(6)	C74	C73	C72	110.8(5)
C78	P51	C72	105.2(8)	C73	C74	C75	110.4(5)
C78	P51	C84	100.4(8)	C76	C75	C74	111.5(5)
C78'	P51	Mn51	110.6(5)	C75	C76	C77	111.7(5)
C78'	P51	C72	101.9(6)	C76	C77	C72	111.3(5)
C78'	P51	C84	110.4(7)	C79'	C78	P51	117.4(11)
C84	P51	Mn51	113.56(19)	C79'	C78	C83	108.0(13)
C84	P51	C72	102.7(2)	C83	C78	P51	119.0(13)
C51	N51	Mn51	127.2(4)	C79	C78'	P51	120.2(9)
C55	N51	Mn51	116.5(4)	C83'	C78'	P51	116.9(11)
C55	N51	C51	116.3(5)	C83'	C78'	C79	106.7(11)
C56	N52	Mn51	116.0(4)	C80	C79	C78'	112.7(11)
C60	N52	Mn51	127.3(4)	C80'	C79'	C78	116.6(13)
C60	N52	C56	116.6(5)	C79	C80	C81	112.4(13)
N51	C51	C52	123.4(5)	C81'	C80'	C79'	112.4(14)
C51	C52	C53	120.7(5)	C82	C81	C80	113.0(12)
C52	C53	C54	116.1(5)	C82'	C81'	C80'	111.6(13)
C52	C53	C61	121.6(5)	C81	C82	C83'	113.0(11)
C54	C53	C61	122.3(5)	C81'	C82'	C83	113.1(13)
C55	C54	C53	120.7(5)	C82'	C83	C78	111.3(11)
N51	C55	C54	122.6(5)	C82	C83'	C78'	117.3(11)
N51	C55	C56	114.4(5)	C85	C84	P51	114.8(4)
C54	C55	C56	122.9(5)	C85	C84	C89	107.7(5)
N52	C56	C55	114.1(5)	C89	C84	P51	118.1(4)
C57	C56	N5Z	121.8(5)	C86	C85	C84	110.7(5)
	C56	C55	124.0(5)	C87	C86	C85	110.3(5)
C50	657 650	C28	121.2(5)	U00 C07	L8/	ԵԾԵ	110.6(5)
C57	C58	C65	119.7(6)	C87	C88	C89	112.5(6)
C59	C20	C57	116.0(5)	L88	L89	L84	109.8(5)
C27	620 620		124.2(5) 121.1(5)	IN L N D	Mn1	Р1 D1	95.45(14)
	659 660	C20	121.1(5) 122.2(5)	INZ NO	Mn1	11 N1	92.43(13) 70.20(10)
N52 CE2		C63	123.2(5)	NZ C10	Mn1		/ ð. 3 ð (1 ð) 9 (2 (2)
CE2	C61	UD2 C62	107.1(5) 100.0(5)	C19	Mn1	11 N1	00.3(<i>2</i>) 176.6(2)
633	C01	603	109.9(5)	C13	MUT	IN L	1/0.0(2)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C19	Mn1	N2	98.6(2)	C22	C27	C26	111.6(5)
C19	Mn1	C20	90.2(3)	C29	C28	P1	114.2(4)
C19	Mn1	C21	86.8(3)	C33	C28	P1	117.1(4)
C20	Mn1	P1	92.1(2)	C33	C28	C29	109.1(5)
C20	Mn1	N1	92.7(2)	C30	C29	C28	112.9(5)
C20	Mn1	N2	170.4(2)	C29	C30	C31	111.6(5)
C20	Mn1	C21	91.1(3)	C30	C31	C32	110.1(5)
C21	Mn1	P1	172.3(2)	C31	C32	C33	111.2(5)
C21	Mn1	N1	91.4(2)	C28	C33	C32	112.8(5)
C21	Mn1	N2	85.5(2)	C35	C34	P1	111.8(4)
C22	P1	Mn1	110.84(18)	C39	C34	P1	1148(4)
C22	P1	C28	103 2(3)	C39	C34	C35	1107(5)
C28	P1	Mn1	114.4(2)	C36	C35	C34	109.5(5)
C34	P1	Mn1	118.3(2)	C37	C36	C35	112.5(6)
C34	P1	C22	1037(3)	C36	C37	C38	1116(6)
C34	P1	C28	1050(3)	C37	C38	C39	1094(5)
C1	N1	Mn1	1269(4)	C34	C39	C38	1105(5)
C1	N1	C5	1165(5)	054	\$51	055	1145(7)
C5	N1	Mn1	116.6(3)	054	S51	C91	1029(7)
C6	N2	Mn1	116.0(1)	055	S51	C91	102.9(7) 1049(4)
C10	N2	Mn1	1270(4)	056	S51	054	101.9(1) 1142(9)
C10	N2	С6	1168(5)	056	S51	055	114.2(5)
N1	N2 C1	C2	1235(6)	056	S51	C91	114.2(0) 104.5(7)
N1 C1	C^2	C2	123.5(0) 120.5(5)	650 F51	C91	S51	104.3(7) 1136(7)
C^2	C2	C4	120.3(3) 116.0(5)	F51 F51	C91	551	113.0(7) 105.6(9)
C2	C3	C11	1225(5)	F51 F52	C01	r52 S51	103.0(7) 111 $4(7)$
C2	C3	C11	122.3(3) 1215(5)	F52	C91	SS1 S51	111.4(7) 112.7(7)
C4 C5	C4	C2	121.3(3) 120.7(6)	F53	C91	551	112.7(7) 1080(8)
UJ N1		C3	120.7(0) 122.9(E)	F55 FE2	C91	F51 F52	100.9(0) 104.1(0)
N1		C4 C6	122.0(3) 112.6(5)	Г 3 3 ОЕ 4 '	C91 SE1'	F32 055'	104.1(0) 1152(10)
		C6	113.0(3) 122.6(E)	054	551 SE1'	C01'	113.3(19) 104.2(16)
C4 N2	C6	C5	123.0(3) 114.0(5)	055'	S51 S51'	C91	104.2(10)
N2 N2	C6	C7	114.9(3) 122.2(E)	055	SS1 SE1'	054'	1210(10)
NZ C7			122.3(3) 122E(E)	050	551 SE1'	054	121.9(19) 112.2(11)
C7	C7	C9	122.3(3) 120.6(E)	050	551 SE1'	C01'	112.2(11)
C0			120.0(3) 122.2(5)		551 C01'	C91 SE1'	$\frac{99.2(0)}{115.2(14)}$
C7		C15	122.3(3) 116.2(5)	ГЭ1 ГГ1'	C91	331 EE2'	115.2(14) 107.0(17)
C9		C15	110.3(3) 121.2(E)	гэт ГГЭ!	C91	F32 SE1'	107.0(17) 109E(1E)
C9			121.3(3) 120.9(E)	Г 3 2 Г 5 2 '	C91	551 SE1'	100.3(13) 114.9(14)
	C10		120.0(3) 122.1(5)	гээ ггэ:	C91	551 EE1'	114.0(14) 107.0(10)
NZ C2	C10 C11	C12	125.1(5) 106.4(5)	ГЭЭ ГГЭ'	C91	F51 EF2'	107.0(10) 102 E(10)
C12		C12	100.4(5) 110.9(5)	гээ 04	C91 S1	F52	102.5(19) 112.0(5)
C13		C12	110.0(5) 100.6(5)	04	51	00 C40	112.0(5) 102.4(4)
C13			109.0(3) 100.7(6)	04	51	04	103.4(4) 120.0(7)
C13		C14	109.7(0) 111.2(E)	05	51	04	120.9(7) 114.2(9)
C14		C12	111.3(5)	05	51	06	114.3(8)
			109.0(6)	05	51	C40	100.0(7)
		C16	112.4(5)	06	51	C40	102.2(4)
		C17	108.7(5)		C40	51	114.8(6)
			108.7(5)		C40	FZ F2	109.6(7)
C17			100.2(5)	Г1 Г2	C40	F 3	103.3(7)
C17			110.1(5)	FZ F2	C40	51	116.6(6)
	C10	C16	108.6(5)	FZ F2	C40	F3	102.7(7)
01	C19	Mn1	1/0.7(5)	F3	C40	51	108.4(6)
02	C20	Mn1	175.4(6)				
03	UZ1 C22	Mn1	1/6.0(6)				
LZ3	U22	P1	112.2(4)				
UZ/	U22	F1 600	120.1(4)				
C27	C22	C23	108.2(5)				
C22	C23	C24	110.9(5)				
C25	C24	C23	110.7(5)				
C24	C25	C26	111.1(6)				
C25	C26	C27	111.3(6)				

Submitted by: **Felton, G.** Solved by: **Nichol, G.S.** Sample ID: **sample 5**

Compound sample 5 was provided as fairly large pale yellow blocks from which a small piece was cut off and found to be suitable for single crystal X-ray diffraction, yielding structure ex4012.

Crystal Data and Experimental

Experimental. Single light yellow block-shaped crystals of (**EX4012**) were recrystallised from a mixture of pentane and acetone by vapour diffusion. A suitable crystal ($0.26 \times 0.12 \times 0.08 \text{ mm}^3$) was selected and mounted on a MITIGEN holder in Paratone oil on a Agilent Technologies SuperNova diffractometer. The crystal was kept at *T* = 120.0 K during data collection. Using **Olex2** (Dolomanov et al., 2009), the structure was solved with the ShelXT (Sheldrick, 2008) structure solution program, using the Direct Methods solution method. The model was refined with version 2014/6 of **ShelXL** (Sheldrick, 2008) using Least Squares minimisation.

Crystal Data. $C_{40}H_{39}F_3MnN_2O_6PS$, $M_r = 818.70$, monoclinic, C2/c (No. 15), a = 37.1455(10) Å, b = 10.5546(3) Å, c = 20.3195(5) Å, $\beta = 99.524(3)^\circ$, $\alpha = \gamma = 90^\circ$, V = 7856.6(4)Å³, T = 120.0 K, Z = 8, Z' = 1, μ (MoK_{α}) = 0.492, 69991 reflections measured, 8027 unique ($R_{int} = 0.0666$) which were used in all calculations. The final wR_2 was 0.1069 (all data) and R_1 was 0.0437 (I > 2(I)).

A CONTRACTOR OF THE ACTION OF THE REAL OF THE

Compound	EX4012
CCDC	1920530
Formula	$C_{40}H_{39}F_3MnN_2O_6PS$
D_{calc} / g cm ⁻³	1.384
μ/mm^{-1}	0.492
Formula Weight	818.70
Colour	light yellow
Shape	block
Max Size/mm	0.26
Mid Size/mm	0.12
Min Size/mm	0.08
<i>Т</i> /К	120.0
Crystal System	monoclinic
Space Group	C2/c
<i>a</i> /Å	37.1455(10)
<i>b/</i> Å	10.5546(3)
<i>c</i> /Å	20.3195(5)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	99.524(3)
$\gamma/^{\circ}$	90
V/Å ³	7856.6(4)
Ζ	8
Z'	1
$\Theta_{min}/^{\circ}$	2.846
$\Theta_{max}/^{\circ}$	26.371
Measured Refl.	69991
Independent Refl.	8027
Reflections Used	6611
R _{int}	0.0666
Parameters	597
Restraints	48
Largest Peak	0.426
Deepest Hole	-0.348
GooF	1.052
<i>wR</i> ₂ (all data)	0.1069
wR_2	0.1004
R_1 (all data)	0.0566
R_1	0.0437
	Compound CCDC Formula $D_{calc}/\text{ g cm}^{-3}$ μ/mm^{-1} Formula Weight Colour Shape Max Size/mm Min Size/mm Min Size/mm Min Size/mm T/K Crystal System Space Group a/Å b/Å c/Å a/° $\beta/°$ $\gamma/°$ $V/Å^3$ Z Z' $\mathcal{O}_{min}/°$ $\mathcal{O}_{max}/°$ Measured Refl. Independent Refl. Reflections Used R_{int} Parameters Restraints Largest Peak Deepest Hole GooF wR_2 (all data) wR_2 R_1 (all data) R_1

Experimental Extended. A light yellow block-shaped crystal with dimensions $0.26 \times 0.12 \times 0.08$ mm³ was mounted on on a MITIGEN holder in Paratone oil. Data were collected using a Agilent Technologies SuperNova diffractometer equipped with an Oxford Cryosystems Cryostream 700+ low-temperature apparatus operating at *T* = 120.0 K.

Data were measured using ω scans scans of 1.0° per frame for 15.0 s using MoK_{α} radiation (SuperNova (Mo) X-ray Source, kV, mA). The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Agilent, V1.171.37.33, 2014). The actually achieved resolution was Θ = 26.371.

Cell parameters were retrieved using the **CrysAlisPro** (Agilent, V1.171.37.33, 2014) software and refined using **CrysAlisPro** (Agilent, V1.171.37.33, 2014) on 15745 reflections, 22 of the observed reflections.

Data reduction was performed using the **CrysAlisPro** (Agilent, V1.171.37.33, 2014) software which corrects for Lorentz polarisation. The final completeness is 99.80 out to 26.371 in Θ . The absorption coefficient (MU) of this material is 0.492 and the minimum and maximum transmissions are 0.589 and 0.829.

The structure was solved by Direct Methods using the ShelXT (Sheldrick, 2008) structure solution program and refined by Least Squares using version 2014/6 of **ShelXL** (Sheldrick, 2008).

The structure was solved in the space group C2/c (# 15). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

The t-butyl groun containing C11 was modelled over two sites, as indicated by electron density peaks, with occupancy ratio 0.607:0.393(6). The geometry of both disorder componenets was restrained to be similar to that of the ordered t-butyl ground (containing C15). The triflate anion was refined as disordered over two sites, pivoting about the carbon atom, with occupancy ratio 0.518:0.482(2). No geometric restraints were used on the disordered triflate.

Figure SI-12. Xray crystallographic structures of **5** (30% probability thermal ellipsoids). CCDC 1920530.

Atom	Atom	Length/Å
Mn1	P1	2.3807(6)
Mn1	N1	2.0386(19)
Mn1	N2	2.0475(18)
Mn1	C19	1.836(2)
Mn1	C20	1.805(3)
Mn1	C21	1.807(2)
P1	C22	1.833(2)
P1	C28	1.835(2)
P1	C34	1.835(2)
01	C19	1.139(3)
02	C20	1.152(3)
03	C21	1.148(3)
N1	C1	1.344(3)
N1	C5	1.361(3)
N2	C6	1.352(3)
N2	C10	1.346(3)
C1	C2	1.373(4)
C2	C3	1.391(3)
C3	C4	1.393(3)
C3	C11	1.625(6)
C3	C11'	1.438(8)
C4	C5	1.381(3)
C5	C6	1.470(3)
C6	C7	1.393(3)
C7	C8	1.391(3)
C8	C9	1.395(4)
C8	C15	1.528(3)
C9	C10	1.377(3)
C11	C12	1.546(9)
C11	C13	1.520(7)
C11	C14	1.537(8)
C11'	C13'	1.541(11)
C11'	C14'	1.531(9)
C11'	C15'	1.521(9)
C15	C16	1.522(4)

Atom	Atom	Length/Å
C15	C17	1.509(4)
C15	C18	1.548(5)
C22	C23	1.399(3)
C22	C27	1.401(3)
C23	C24	1.384(4)
C24	C25	1.380(4)
C25	C26	1.388(3)
C26	C27	1.387(3)
C28	C29	1.387(3)
C28	C33	1.402(4)
C29	C30	1.398(3)
C30	C31	1.381(4)
C31	C32	1.385(4)
C32	C33	1.386(3)
C34	C35	1.390(3)
C34	C39	1.402(3)
C35	C36	1.396(3)
C36	C37	1.381(4)
C37	C38	1.388(4)
C38	C39	1.383(3)
S1	04	1.438(5)
S1	05	1.443(4)
S1	06	1.433(4)
S1	C40	1.824(3)
S004	04'	1.439(4)
S004	05'	1.426(5)
S004	06'	1.445(5)
S004	C40	1.798(3)
F1	C40	1.357(4)
F1'	C40	1.341(4)
F2	C40	1.334(15)
F2'	C40	1.350(13)
F3	C40	1.274(4)
F3'	C40	1.399(5)

 $\textbf{Table SI-1}: \text{Bond Lengths in } \texttt{\AA for } \textbf{CCDC 1920530.}$

Table SI-2: Bond Angles in $^\circ$ for CCDC 1920530.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle
N1	Mn1	P1	93.08(5)	C22	P1	C28	108.79(
N1	Mn1	N2	78.71(7)	C22	P1	C34	103.57(
N2	Mn1	P1	90.75(5)	C28	P1	Mn1	110.09(
C19	Mn1	P1	179.20(7)	C34	P1	Mn1	117.16(
C19	Mn1	N1	87.54(8)	C34	P1	C28	101.49(
C19	Mn1	N2	89.87(8)	C1	N1	Mn1	126.26(
C20	Mn1	P1	88.63(8)	C1	N1	C5	117.2(2
C20	Mn1	N1	174.95(9)	C5	N1	Mn1	116.24(
C20	Mn1	N2	96.53(9)	C6	N2	Mn1	116.06(
C20	Mn1	C19	90.80(10)	C10	N2	Mn1	126.72(
C20	Mn1	C21	91.18(10)	C10	N2	C6	117.20(
C21	Mn1	P1	91.25(7)	N1	C1	C2	123.0(2
C21	Mn1	N1	93.53(9)	C1	C2	C3	120.8(2
C21	Mn1	N2	172.08(9)	C2	C3	C4	116.0(2
C21	Mn1	C19	88.20(9)	C2	C3	C11	119.9(3
C22	P1	Mn1	114.67(7)	C2	C3	C11'	124.2(4

Atom	Atom	Atom	Angle/°
C4	C3	C11	122.7(3)
C4	C3	C11'	117.8(4)
C5	C4	C3	120.9(2)
N1	C5	C4	122.0(2)
N1	C5	C6	114.08(19)
C4	C5	C6	123.88(19)
N2	C6	C5	114.65(18)
N2	C6	C7	122.4(2)
C7	C6	C5	1230(2)
C8	C7	C6	120.4(2)
C7	68	69	1164(2)
C7	C8	C15	1227(2)
C9	C8	C15	120.9(2)
C10	C9	C8	120.9(2) 120.6(2)
N2	C10	C9	1231(2)
C12	C11	(3	123.1(2) 104.1(7)
C12	C11	C3	101.1(7) 1104(4)
C13	C11	C12	10.7(7)
C12	C11	C12	109.7(7) 109.1(5)
C14	C11	C14	100.1(3) 112.7(4)
C14	C11	C12	112.7(4) 111.9(6)
	C11'	C12'	111.0(0) 112.4(0)
	C11'	C13	113.4(9)
	C11'	C14 C15'	119.1(0)
C14'	C11'	C12'	90.3(3)
		C13	109.1(9)
C15			104.9(8)
		C14	110.6(7)
	C15	C18	108.4(2)
C16	C15	C8	107.8(2)
C16	C15	C18	108.3(3)
C17	C15	C8	112.7(2)
C17	C15	C16	111.8(3)
C17	C15	C18	107.7(2)
01	C19	Mn1	177.73(19)
02	C20	Mn1	178.3(2)
03	C21	Mn1	175.83(19)
C23	C22	P1	120.33(19)
C23	C22	C27	118.0(2)
C27	C22	P1	121.37(17)
C24	C23	C22	120.6(2)
C25	C24	C23	120.9(2)
C24	C25	C26	119.4(2)
C27	C26	C25	120.3(2)
C26	C27	C22	120.9(2)
C29	C28	P1	123.41(19)
C29	C28	C33	118.9(2)
C33	C28	P1	117.16(18)
C28	C29	C30	120.0(2)
C31	C30	C29	120.4(3)
C30	C31	C32	120.0(2)
C31	C32	C33	119.7(3)
C32	C33	C28	120.9(2)
C35	C34	P1	122.65(17)
C35	C34	C39	118.6(2)
C39	C34	P1	118.75(18)
C34	C35	C36	120.6(2)
C37	C36	C35	120.2(2)
C36	C37	C38	119.7(2)
C39	C38	C37	120.4(2)
C38	C39	C34	120.6(2)
04	S1	05	114.6(3)
04	S1	C40	105.4(3)

Atom	Atom	Atom	Angle/°
05	S1	C40	101.81(17)
06	S1	04	115.3(3)
06	S1	05	115.5(2)
06	S1	C40	101.7(2)
04'	S004	06'	115.4(3)
04'	S004	C40	100.67(19)
05'	S004	04'	115.3(3)
05'	S004	06'	114.9(3)
05'	S004	C40	103.1(3)
06'	S004	C40	104.7(2)
F1	C40	S1	110.6(2)
F1'	C40	S004	113.0(2)
F1'	C40	F2'	111.9(9)
F1'	C40	F3'	102.5(3)
F2	C40	S1	113.6(9)
F2	C40	F1	106.7(8)
F2'	C40	S004	108.6(10)
F2'	C40	F3'	111.5(9)
F3	C40	S1	115.9(2)
F3	C40	F1	108.7(3)
F3	C40	F2	100.6(10)
F3'	C40	S004	109.2(3)