Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

Transforming PPh₃ into Bidentate Phosphine Ligands at Ru-Zn Heterobimetallic Complexes

Niall O'Leary, Fedor M. Miloserdov, Mary F. Mahon and Michael K. Whittlesey

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

NMR spectra of 1	S2-S4
NMR/IR spectra of 2	S5-S9
NMR spectra of [Ru(PPh ₃) ₃ Cl ₂]·PPh ₃ and ZnMe ₂ reaction progression	S10
NMR spectra involving [Ru(BIPHEP)(PPh ₃)HCl]	S11-S13
NMR spectra of intermediates I-VI	S14-S22
NMR spectra of 3	S23-S25
NMR spectra of 4	S26-S27
NMR/IR spectra of 5	S28-S30
Crystal data and structure refinement details for 1, 3 and 5	S31

Fig. S1. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of [Ru(dppbz)(PPh₂(biphenyl)')ZnMe] (1).

Fig. S2. ${}^{31}P{}^{1}H$ NMR spectrum (202 MHz, C₆D₆, 298 K) of [Ru(dppbz)(PPh₂(biphenyl)')ZnMe] (1).

. 30

S4

Fig. S4. ¹H NMR spectrum (400 MHz, C₆D₅CD₃, 223 K) of [Ru(dppbz)(PPh₂(biphenyl)')(CO)ZnMe] (2), generated from 1 and CO.

Fig. S5. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, C₆D₅CD₃, 223 K) of [Ru(dppbz)(PPh₂(biphenyl)')(CO)ZnMe] (2), generated from 1 and CO.

Fig. S6. IR spectrum (in $C_6D_5CD_3$) showing carbonyl bands for the two diastereomers of $Ru(dppbz)(PPh_2(biphenyl)')(CO)ZnMe]$ (2).

Fig. S7. ¹H NMR spectrum (400 MHz, C₆D₅CD₃, 223 K) of [Ru(dppbz)(PPh₂(biphenyl)')(¹³CO)ZnMe] (2), generated from 1 and ¹³CO.

Fig. S8. ¹³C{¹H} NMR spectrum (101 MHz, C₆D₅CD₃, 223 K) of [Ru(dppbz)(PPh₂(biphenyl)')(¹³CO)ZnMe] (2), generated from 1 and ¹³CO.

Fig. S9. ³¹P{¹H} NMR spectrum (162 MHz, C₆D₅CD₃, 223 K) of [Ru(dppbz)(PPh₂(biphenyl)')(¹³CO)ZnMe] (2), generated from 1 and ¹³CO.

Fig. S10. ³¹P{¹H} NMR spectra (202 MHz, THF-*d*₈, 298 K) demonstrating the progress of the reaction between [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ at 298 K.

Fig. S11. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of [Ru(BIPHEP)(PPh₃)HCl] formed *in-situ* from reaction of [Ru(PPh₃)₃HCl] and BIPHEP.

Fig. S12. ³¹P{¹H} NMR spectrum (202 MHz, CD₂Cl₂) of [Ru(BIPHEP)(PPh₃)HCl] formed *in-situ* in the reaction of [Ru(PPh₃)₃HCl] and BIPHEP.

Fig. S13. Overlaid ³¹P{¹H} NMR spectra (202 MHz, THF- d_8 , 298 K) showing the reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ after 5 h (top), and reaction of [Ru(BIPHEP)(PPh₃)HCl] and ZnMe₂ (bottom). The spectra highlight the formation of late intermediates **IV-VI** and final product **1** in both reactions.

Fig. S14. VT ³¹P{¹H} NMR spectra (162 MHz, THF- d_8) of the reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂, demonstrating the formation of early intermediates (I-III).

Fig. S15. ³¹P{¹H} NMR spectrum (162 MHz, THF-*d*₈, 210 K) of reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ at 246 K showing early intermediates I-III.

Fig. S16. ³¹P{¹H} COSY (162 MHz, THF- d_8 , 210 K) of reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ at 246 K showing early intermediates I-III.

Fig. S17. ³¹P{¹H} EXSY (162 MHz, THF-*d*₈, 210 K) of the reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ at 246 K showing early intermediates I-III

Fig. S18. ¹H NMR spectrum (400 MHz, THF-*d*₈, 210 K) of the reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ at 246 K showing early intermediates I-III.

Fig. S19. ¹H NMR spectrum (500 MHz, THF-*d*₈, 298 K) of the reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ (3.5 h, 298 K) showing late intermediates IV-VI.

VI.

Fig. S21. ³¹P{¹H} HMQC (202 MHz, THF-*d*₈, 298 K) of the reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ after 5.5 h at 298 K showing late intermediates IV-VI.

Fig. S22. ³¹P{¹H} COSY (202 MHz, THF- d_8 , 298 K) of reaction of [Ru(PPh₃)₃Cl₂]·PPh₃ and ZnMe₂ after 7 h at 298 K showing late intermediates IV-VI.

Fig. S23. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of [Ru(dppbz)(PPh₂(binaphthyl)')ZnMe] (3).

Fig. S24. ³¹P{¹H} NMR spectrum (202 MHz, C_6D_6 , 298 K) of [Ru(dppbz)(PPh₂(binaphthyl)')ZnMe] (3).

Fig. S25. ³¹P{¹H} EXSY (202 MHz, C₆D₆, 298 K) of [Ru(dppbz)(PPh₂(binaphthyl)')ZnMe] (**3**), showing the lack of exchange of diastereomers.

Fig. S26. ¹H NMR spectrum (400 MHz, $C_6D_5CD_3$, 246 K) of the reaction of 1 and H_2 to give [Ru(dppbz)(Ph₂P(biphenyl))(H)₂(H)(ZnMe)] (4).

Fig. S27. ³¹P{¹H} NMR spectrum (162 MHz, C₆D₅CD₃, 246 K) of reaction of 1 and H₂ to form [Ru(dppbz)(Ph₂P(biphenyl))(H)₂(H)(ZnMe)] (4).

Fig. S28. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of [Ru(dppbz)(Ph₂P(biphenyl))(C=CPh)₂(H)(ZnMe)] (**5**).

S28

Fig. S29. ³¹P{¹H} spectrum (202 MHz, C₆D₆, 298 K) of [Ru(dppbz)(Ph₂P(biphenyl))(C=CPh)₂(H)(ZnMe)] (**5**).

Fig. S30. IR spectrum (in KBr) showing ν (C=C) of [Ru(dppbz)(Ph₂P(biphenyl))(C=CPh)₂(H)(ZnMe)] (5).

Identification code	1	3	5
Empirical formula	C56H59P3RuZn	$C_{65}H_{53}P_3RuZnO_{0.5}$	C ₈₉ H ₇₅ P ₃ RuZn
Formula weight	991.38	1101.42	1403.84
Crystal system	monoclinic	triclinic	orthorhombic
Space group	$P2_1/c$	<i>P</i> -1	Pbca
<i>a</i> / Å	11.0520(2)	10.8687(2)	17.33241(12)
b/ Å	12.8732(2)	12.1871(3)	23.86672(17)
<i>c</i> / Å	36.3933(6)	20.5157(5)	33.9755(3)
α / °	90	79.451(2)	90
β/°	98.665(2)	81.396(2)	90
γ/ °	90	80.252(2)	90
U/ Å ³	5118.74(15)	2613.17(11)	14054.58(18)
Ζ	4	2	8
$ ho_{\rm calc}$ g cm ⁻³	1.286	1.400	1.327
$\mu/\text{ mm}^{-1}$	0.892	4.092	3.158
F(000)	2056.0	1132.0	5824.0
Crystal size/ mm ³	$0.577 \times 0.42 \times 0.383$	$0.169 \times 0.136 \times 0.064$	$0.124 \times 0.108 \times 0.069$
2θ range for data collection/°	6.724 to 52.792	8.03 to 146.214	6.818 to 146.212
Index ranges	$-9 \le h \le 13$,	$-13 \le h \le 8$,	$-19 \le h \le 21$,
C	$-16 \le k \le 15$,	$-15 \le k \le 15$,	$-27 \le k \le 29,$
	$-45 \le 1 \le 45$	$-25 \le 1 \le 25$	$-39 \le 1 \le 42$
Reflections collected	43780	30751	102521
Independent reflections, <i>R</i> _{int}	10443, 0.0184	10334, 0.0333	14001, 0.0619
Data/restraints/parameters	10443/0/542	10334/265/858	14001/0/852
Goodness-of-fit on F ²	1.119	1.028	1.014
Final R1, wR2 [$I \ge 2\sigma(I)$]	0.0297, 0.0662	0.0306, 0.0734	0.0293, 0.0715
Final R1, wR2 [all data]	0.0321, 0.0671	0.0338, 0.0755	0.0346, 0.0749
Largest diff. peak/hole/ e Å ⁻³	0.44/-0.44	0.67/-0.60	0.59/-0.71

Table S1. Crystal data and structure refinement details for 1, 3 and 5.