## Support information

# Mn-doped CoSe<sub>2</sub> nanosheets as high-efficiency catalysts for oxygen evolution reaction

Binbin Wei,<sup>a</sup> Pengcheng Yao,<sup>a</sup> Guisheng Tang,<sup>a</sup> Zhengbing Qi, \*<sup>b</sup> Wenshen Hu,<sup>a</sup> Jinqing Hong,<sup>a</sup> Cuixue Chen <sup>a</sup> and Zhoucheng Wang\*<sup>a</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

<sup>b</sup> Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China

\*Email: <u>zbqi@xmut.edu.cn;</u> <u>zcwang@xmu.edu.cn</u>

#### **Experimental Details**

#### **Preparation of Co-MOF/NF**

In a typical synthesis, 2.01 g of 2-methylimidazole ( $C_4H_6N_2$ ) was dissolved in 60 mL deionized water to form a homogenous solution, which subsequently was mixed with an aqueous solution containing 0.886 g of cobalt nitrate hexahydrate ( $Co(NO_3)_2 \cdot 6H_2O$ ) and 60 ml deionized water. And then, a piece of pretreated Ni foam (NF) was immersed into the above mixture solution. After reaction for 4 h at room temperature, the Co-MOF/NF was taken out and washed with deionized water carefully, then dried at 60 °C for 8 h.

#### Preparation of Mn-CoSe<sub>2</sub>/NF

The as-prepared Co-MOF/NF was placed into a 100 mL ethanol solution containing 2 mL manganese nitrate ( $Mn(NO_3)_2$ •4H<sub>2</sub>O, 50 wt.%). After stirring slowly for 15 min, the MnCo LDH/NF was washed with ethanol for three times and dried at 60 °C, followed by selenylation with 0.5 g of Se powder in a Ar atmosphere at 400 °C for 2 h under a heating ramp of 2 °C min<sup>-1</sup> to get the Mn-CoSe<sub>2</sub>/NF product. Pure CoSe<sub>2</sub>/NF was also obtained under the same conditions for comparison. Each electrode has the same mass-loading of 1.1 mg cm<sup>-2</sup>.

#### Material Characterization

Scanning electron microscopy (SEM, ZEISS Sigma), transmission electron microscopy (TEM, Tecnai F30), X-ray diffraction (XRD, Rigaku Ultima IV) and X-ray photoelectron spectroscopy (XPS, PHI Quantum-2000) were employed to investigate the morphologies, phase structure and chemical valence state of the samples. For inductively coupled plasma-mass spectrometry (ICP-MS) analysis, the Mn-CoSe<sub>2</sub> powders were scraped from Mn-CoSe<sub>2</sub>/NF with a knife and then acidified in HNO<sub>3</sub>/HCl solution with a desired concentration for injection into the ICP-MS analyzer (Thermo Fisher).

#### **Electrochemical measurements**

The catalytic activities were examined on an electrochemical workstation (CHI 660E, CH Instruments) using a typical three-electrode setup in 1 M KOH with the as-synthesized catalysts as the working electrode, a platinum plate as the counter electrode and a saturated calomel electrode (SCE) as the reference electrode. All the polarization curves were calibrated for iR compensated

no otherwise stated using  $E_{\text{corrected}} = E_{\text{uncorrected}} - iR_s$ , where  $R_s$  (equivalent series resistance) was determined by fitting the EIS spectra with the ZSimpWin software. Additionally, all the potentials vs SCE in this work were transformed into reversible hydrogen electrode (RHE) based on the Nernst equation:  $E_{\text{RHE}} = E_{\text{SCE}} + 0.059 \times \text{pH} + 0.241 \text{ V}.$ 

### **Additional Figures and Data**



Fig. S1 (a) SEM images of pure MOF and (b) XRD patterns of Co-MOF.



**Fig. S2** Nyquist plots of Co-MOF, MnCo LDH, CoSe<sub>2</sub> and Mn-CoSe<sub>2</sub>/NF catalysts (inset: equivalent circuit model).



**Fig. S3** Cyclic voltammetry curves at different scan rates for (a) NF, (b) Co-MOF/NF, (c) MnCo LDH/NF, (d) CoSe<sub>2</sub>/NF and (e) Mn-CoSe<sub>2</sub>/NF catalysts. (f) Corresponding linear relationship between current density differences and scan rate.



**Fig. S4** High resolution XPS spectra of (a) Mn  $2p_{3/2}$ , (b) Co  $2p_{3/2}$  and (c) Se 3d of as-prepared and post-OER Mn-CoSe<sub>2</sub>/NF catalysts.



Fig. S5 SEM images of post-OER Mn-CoSe<sub>2</sub>/NF catalysts.



Fig. S6 XRD patterns of as-prepared and post-OER Mn-CoSe<sub>2</sub>/NF catalysts.



Fig. S7  $O_2$  production amount of the theoretically calculated and experimentally measured versus time for Mn-CoSe<sub>2</sub> catalysts at 60 mA cm<sup>-2</sup>.

The amount of  $O_2$  gas detected by a water-gas displacing method is consistent with the theoretically calculated value, corresponding to almost 100% Faradic efficiency.

| Catalysts                              | J                      | η           | Tafel slope             | Reference                                          |
|----------------------------------------|------------------------|-------------|-------------------------|----------------------------------------------------|
|                                        | (mA cm <sup>-2</sup> ) | (mV vs RHE) | (mV dec <sup>-1</sup> ) |                                                    |
| Mn-CoSe <sub>2</sub> /NF               | 60                     | 274         | 82                      | This work                                          |
|                                        | 100                    | 296         |                         |                                                    |
| CoSe <sub>2</sub>                      | 10                     | 430         | 50                      | ACS Appl. Mater. Interfaces 8<br>(2016) 5327-5334. |
| CoSe <sub>2</sub>                      | 10                     | 468         | 66                      | Small 11 (2015) 182-188.                           |
| Ni-CoS <sub>2</sub> NN                 | 50                     | 286         | 55                      | Catalysts 7 (2017) 366.                            |
| Ni-CoS                                 | 10                     | 156         | 52                      | Electrochim. Acta 228 (2017)                       |
| 11-0052                                | 10                     | 150         | 52                      | 428-435.                                           |
| Mn-CoN                                 | 10                     | 285         | 64                      | Chem. Commun. 53 (2017)                            |
|                                        |                        |             |                         | 13237-13240.                                       |
| Mn-CoP                                 | 10                     | 290         | 76                      | Dalton Trans. 47 (2018)                            |
|                                        |                        |             |                         | 146/9-14685                                        |
| MnCo <sub>2</sub> O <sub>4</sub>       | 10                     | 400         | 80                      | Dalton Irans. 46 (2017)                            |
|                                        |                        |             |                         | 14302 - 14392.<br>Energy Environ Sci 11 (2018)     |
| Ni-Co-P HNBs                           | 10                     | 270         | 76                      | 872-880.                                           |
|                                        |                        |             |                         | J. Mater. Chem. A 5 (2017)                         |
| $MnCo_2S_4 NA/TM$                      | 50                     | 325         | 115                     | 17211-17215                                        |
| Mn-Co-                                 | 10 260                 | 102         | Chem. Commun. 54 (2018) |                                                    |
| P@MnCo <sub>2</sub> O <sub>4</sub> /Ti | 10                     | 209         | 102                     | 1077-1080.                                         |
| MnCo.O4/NCNT                           | 10                     | 479         | 75                      | Int. J. Hydrogen Energy 43                         |
|                                        | 10                     | .,,         | 10                      | (2018) 19451-19459.                                |
| CoO/CoSe <sub>2</sub>                  | 10                     | 510         | 137                     | Adv. Sci. 3 (2016) 1500426                         |

Table S1 Comparison of OER activities of Mn-CoSe<sub>2</sub>/NF with other Co-based catalysts in alkaline electrolyte