Supporting Information

## A general benzylic C-H activation and C-C coupling reaction at zirconocenes mediated by C-N bond cleavage in *tert*butylisocyanide – unusual formation of iminoacyl complexes

Perdita Arndt<sup>a</sup>, Melanie Reiß<sup>a</sup>, Anke Spannenberg<sup>a</sup>, Claas Schünemann<sup>a</sup>, Fabian Reiß<sup>\*a</sup> and Torsten Beweries<sup>\*a</sup>

<sup>[a]</sup> Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.



## Content

| 1. | Experimental Details                | 2  |
|----|-------------------------------------|----|
| 2. | Crystallographic details            | 24 |
| 3. | Details of NMR spectroscopy         | 31 |
| 4. | Details of vibrational spectroscopy | 36 |
| 5. | Computational details               | 42 |
| 6. | References                          | 56 |

## 1. Experimental Details

## 1.1. General

All manipulations were carried out in an oxygen- and moisture-free argon atmosphere using standard Schlenk and drybox techniques. The solvents were purified with the Grubbs-type column system "Pure Solv MD-5" and dispensed into thick-walled glass Schlenk bombs equipped with Young-type Teflon valve stopcocks. *rac*-[1,2-bis-(4,5,6,7-tetra-hydro-inden-1-yl)ethan]zirconium(IV) dichloride ([*rac*-(ebthi)ZrCl<sub>2</sub>]) was obtained from MCAT and transferred in Schlenk Tubes stored under argon and used as received. *rac*-(ebthi)Zr( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (1) was synthesised as previously described in literature.<sup>1</sup> Commercially available *t*-BuNC (Sigma Aldrich) was dried over molecular sieves and degassed prior to use.

NMR spectra were determined on Bruker AV300 and AV400 spectrometers. <sup>1</sup>H and <sup>13</sup>C chemical shifts were referenced to the solvent signal: [D<sub>6</sub>]benzene ( $\delta_{\rm H}$  7.16,  $\delta_{\rm C}$  128.06<sup>2</sup>). Raman spectra were recorded on a LabRAM HR 800 Raman Horiba spectrometer equipped with an Olympus BX41 microscope with variable lenses. The samples were excited by different laser sources: 633 nm (17 mW, air cooled), 784 nm Laser diode (100 mW, air-cooled) or 473 nm Ar+ Laser (20 mW, air-cooled). All measurements were carried out at ambient temperature. IR spectra were recorded on a Bruker Alpha FT-IR, ATR Spectrometer, spectra are not corrected. MS analysis was done using a Finnigan MAT 95-XP instrument (Thermo-Electron) in Cl<sup>+</sup>/Cl<sup>-</sup> mode (isobutene) and for the air stable compounds in EI mode. CHN analysis was done using a Leco Tru Spec elemental analyser. Melting points are uncorrected and were determined in sealed capillaries under Ar atmosphere using a Mettler-Toledo MP 70. X-Ray diffraction data were collected on a Bruker Kappa APEX II Duo diffractometer. The structures were solved by direct methods (SHELXS-97)<sup>3</sup> and refined by full-matrix least-squares procedures on  $F^2$  (SHELXL-2014).<sup>4</sup> For the compound **2** contributions of co-crystallised solvent molecules were removed from the diffraction data with PLATON/SQUEEZE.<sup>5</sup> XP (Bruker AXS) and Diamond<sup>6</sup> were used for graphical representations. All DFT calculations were carried out with the Gaussian 09 package of molecular orbital programs.<sup>7</sup>

## 1. 2. Synthesis of complex 2



To a solution of *rac*-(ebthi)Zr( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (**1**) (0.284 g, 0.50 mmol) in benzene (10 mL) *t*-BuNC (0.058 mL, 0.51 mmol) was added. Immediately a colour change from green to orange was observed. After stirring the reaction mixture for 20 min at ambient temperature all volatiles were removed in vacuum resulting in an orange solid of complex **2.** Yield: 0.238 g (73 %).

**M.p.:** 116 °C (decomp. under Ar). <sup>1</sup>**H NMR** (300 MHz, [D<sub>6</sub>]benzene, 297 K):  $\delta$  = 0.41, 0.58 (s, each 9H, SiMe<sub>3</sub>), 1.14 (s, 9H, t-Bu), 4.71 (d, <sup>3</sup>J = 2.8 Hz, 1H, CH=CH ebthi), 5.20 (d, <sup>3</sup>J = 2.8 Hz, 1H, CH=CH ebthi), 5.36 (d, <sup>3</sup>J = 3.1 Hz, 1H, CH=CH ebthi), 5.74 (d, <sup>3</sup>J = 3.1 Hz, 1H, CH=CH, ebthi) ppm (CH<sub>2</sub> resonances of the ebthi ligand appear as broad multiplet between 1.32 and 2.48 ppm, 20 H). (1.40 and 3.58 (m, each 1H, CH<sub>2</sub> THF). <sup>13</sup>C NMR (75 MHz, [D<sub>6</sub>]benzene, 297 K):  $\delta$  = 2.2, 3.7 (SiMe<sub>3</sub>), 23.27, 23.36, 23.39, 23.6, 23.8, 24.0, 24.01, 24.2, 26.8, 27.9 (CH<sub>2</sub> *ebthi*), 30.2 (CH<sub>3</sub> *t*-Bu), 56.4 (*Cq t*-Bu), 96.2, 96.6, 97.9, 106.6, (CH=CH ebthi), 112.1, 113.6, 113.7, 118.1, 118.9, 120.8, (Cq ebthi), 180.2, 182.5, 191.9 (*C*=C resp. *C*=N) ppm (25.8 and 67.8 CH<sub>2</sub> THF). **IR** (ATR, cm<sup>-1</sup>):  $\nu$  = 2111 (m, *C*=N-*t*Bu), 1612(s, Me<sub>3</sub>Si-*C*=*C*-SiMe<sub>3</sub>). MS: *m*/*z* (CI): 528 [M<sup>+-</sup> *t*-Bu], 171 [Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>]<sup>+</sup>, 84 [(CH<sub>3</sub>)<sub>3</sub>C)NC. **Elemental analysis** calcd (%) for C<sub>33</sub>H<sub>51</sub>NSi<sub>2</sub>Zr · 0.25 THF (C<sub>34</sub>H<sub>53</sub>NSi<sub>2</sub>Zr 621.28 g·mol<sup>-1</sup>): C 65.53, H 8.57, N 2.25; found: C 64,89 H 8.48, N 2.03.

#### 1. 3. Synthesis of complex 3a



To a solution of rac-(ebthi)Zr( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (1) (0.263 g, 0.50 mmol) in toluene (15 mL) *t*-BuNC (0.054 ml, 0.5 mmol) was added. Immediately a colour change from green to orange was observed. After stirring the reaction mixture for 2 h at room temperature further *t*-BuNC (0.1 mL, 1.0 mmol) was added. After heating the reaction mixture 12 days at 80 °C, all volatiles were removed in vacuum and the remaining oil was washed twice with 2 mL of *n*-hexane. The formed pale yellow powder was dissolved in diethyl ether, filtered and the solution was kept at -78 °C, which resulted in the formation of small pale yellow crystals of **3a**. These were isolated by decanting of the mother liquor and drying in vacuum. Yield: 0.115 g (41 %).

**Mp**.: 162-164 °C (decomp. under Ar). <sup>1</sup>**H NMR** (300 MHz, [D<sub>6</sub>]benzene, 297 K):  $\delta$  = 1.41 (s, 9H, t-Bu), 3.88 (d, <sup>2</sup>J = 15.2 Hz, 1H, *CH*<sub>2</sub>-Ph), 4.22 (d, <sup>2</sup>J = 15.2 Hz, 1H, *CH*<sub>2</sub>-Ph), 4.41 (d, <sup>3</sup>J = 2.8 Hz, 1H, CH=CH), 4.91 (d, <sup>3</sup>J = 2.8 Hz, 1H, CH=CH), 5.71 (d, <sup>3</sup>J = 2.9 Hz, 1H, CH=CH), 5.94 (d, <sup>3</sup>J = 2.9 Hz, 1H, CH=CH), 7.13 (m, 4H, Ph), 7.17 (m, 1H, Ph) ppm (CH<sub>2</sub> resonances of the ebthi ligand appear as broad multiplet between 1.94 and 3.14 ppm, 20 H). <sup>13</sup>**C NMR** (75 MHz, [D<sub>6</sub>]benzene, 297 K):  $\delta$  = 22.7, 23.0, 23.2, 23.3, 23.60, 23.69, 23.72, 24.7, 27.3, 27.6 (*C*H<sub>2</sub> ebthi), 30.3 (*C*H<sub>3</sub> *t*-Bu), 42.5 (*C*H<sub>2</sub> Ph), 62.0 (*Cq t*-Bu), 98.1, 104.8 105.8, 106.5 (*C*H=*C*H, ebthi), 117.2, 120.7, 122.6, 123.8, 123.9, 126.7 (*Cq* ebthi), 127.3, 128.4, 129.0, 130.4 (*C*H-Ph), 138.0 (*Cq*-Ph), 157.4 (*C*≡N), 231.1 (*C*=N) ppm. **IR** (ATR, cm<sup>-1</sup>): *ν* = 2119 (w, *C*=*N*-*t*Bu), 1620 (w, RCH<sub>2</sub>-*C*=*N*-*t*Bu). **MS**: *m*/*z* (CI): 555 [M], 528 [M<sup>+</sup> - C≡N]<sup>+</sup>, 174 [Me<sub>3</sub>C-NC-CH<sub>2</sub>-Ph]<sup>+</sup>. **Elemental analysis** calcd (%) for C<sub>33</sub>H<sub>40</sub>N<sub>2</sub>Zr (555 g·mol<sup>-1</sup>): C 71.30, H 7.25, N 5.04; found: C 71.32, H 7.37, N 4.86.

## 1.4. Synthesis of complex 3b



To a solution of rac-(ebthi)Zr( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (**1**) (0.263 g, 0.50 mmol) in benzene (10 mL) *t*-BuNC (0.057 mL, 0.5 mmol) was added. Immediately a colour change from green to orange was observed. After stirring the reaction mixture for 2 h at room temperature further *t*-BuNC (0.114 mL, 1.0. mmol) and an excess (1 mL, 8.5 mmol) of *p*-xylene were added. After heating the reaction mixture 12 days at 80 °C, all volatiles were removed in vacuum and the remaining deep brown oil was washed with three 1 mL portions of cold *n*-hexane. The obtained yellow-brown sticky solid was dissolved in diethyl ether, which was subsequently removed in vacuum. After addition of 1 mL of benzene light brown yellow crystals were obtained after one week at room temperature. These were isolated by filtration, washed twice with cold pentane and dried in vacuum. Yield: 0.125 g of a mixture of **3b** + **4** (1:0.25). Several crystallisation steps from benzene or diethyl ether yielded only a small amount of crystals of **3b** free of **4**. Single crystals of **3b** suitable for X-ray analysis were not obtained.

<sup>1</sup>**H NMR** (300 MHz, [D<sub>6</sub>]benzene, 297 K):  $\delta$  = 1.45 (s, 9H, *t*-Bu), 2.15 (s, 3H, *Me*-xylene), 3.93 (d, <sup>2</sup>*J* = 15.2 Hz, 1H, *CH*<sub>2</sub>-xylene), 4.50 (d, <sup>3</sup>*J* = 2.8 Hz, 1H, CH=CH ebthi), 5.01 (d, <sup>3</sup>*J* = 2.8 Hz, 1H, CH=CH ebthi), 5.75 (d, <sup>3</sup>*J* = 2.9 Hz, 1H, CH=CH ebthi), 5.98 (d, <sup>3</sup>*J* = 2.9 Hz, 1H, CH=CH ebthi), 7.05, 7.07, 7.13, 7.15 (br., 4H, CH xylene) ppm (CH<sub>2</sub> resonances of the ebthi ligand appear as broad multiplet between 1.90 and 2.98 ppm, 20 H). <sup>13</sup>**C NMR** (100 MHz, [D<sub>6</sub>]benzene, 297 K):  $\delta$  = 21.1 (*Me*-Ph) 22.8, 23.06, 23.22, 23.4, 23.6, 23.70, 23.73, 24.7, 27.3, 27.6 (*CH*<sub>2</sub> ebthi), 30.3 (*Me*-t-Bu), 42.0 (*CH*<sub>2</sub>-Ph), 62.0 (*Cq*-t-Bu), 98.2, 104.7 105.8, 106.5 (*CH*=*CH*, ebthi), 117.2, 120.6, 122.5, 123.82, 123.86, 126.7 (*Cq*-ebthi), 127.3, p 129.3, (*CH*-Ph), 134.9, 136.8 (*Cq*-Ph), 157.4 (*C*=N), 231.3 (*C*=N) ppm. **IR** (ATR, cm<sup>-1</sup>):  $\nu$  = 2110 (w, *C*=*N*-tBu), 1623 (w, RCH<sub>2</sub>-*C*=*N*-tBu). **MS**: *m*/*z* (CI): 569 [M]<sup>+</sup>, 542 [M<sup>+</sup>- C=N]<sup>+</sup>, 188 [Me<sub>3</sub>C-NC-CH<sub>2</sub>-xylene]<sup>+</sup>.

#### 1. 5. Synthesis of complex 3d



To a solution of *rac*-(ebthi)Zr( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (1) (0.263 g, 0.50 mmol) in benzene (10 mL) *t*-BuNC (0.057 mL, 0.5 mmol) was added. Immediately a colour change from green to orange was observed. After stirring the reaction mixture for 2 h at room temperature further *t*-BuNC (0.115 mL, 1.0. mmol) and an excess (1 mL, 8.30 mmol) of *o*-xylene were added. After heating the reaction 12 days at 80 °C, all volatiles were removed in vacuum and the remaining dark oil was washed twice with 1 mL of *n*-hexane. The obtained orange-red sticky solid was dissolved in diethyl ether, which was subsequently removed in vacuum. After adding a mixture of ether/*n*-hexane (1:1), filtration from the insoluble oily precipitate and standing for three weeks at -78 °C, orange-red crystals had formed, which were isolated and identified as a 1:1 mixture of **3d** and **4** by NMR spectroscopy. When pure diethyl ether is used for crystallisation a 1:4 (**3d**:**4**) mixture was obtained.

<sup>1</sup>**H NMR** (400 MHz, [D<sub>6</sub>]benzene, 297 K): δ = 1.49 (s, 9H, *t*-Bu, **3d**), 2.08 (s, 3H, *Me*-Ph, **3d**), 3.14 – 0.9 (m, 40H, CH<sub>2</sub>-ebthi, **3d** + **4**), 3.89 (d, <sup>2</sup>*J* = 15.5 Hz, 1H, CH<sub>2</sub>-Ph, **3d**), 4.44 (d, <sup>2</sup>*J* = 15.5 Hz, 1H, CH<sub>2</sub>-Ph, **3d**), 4.56 (m, 2H, ebthi, **3d** + **4**), 4.75 (d, *J* = 2.9 Hz, 1H, **4**), 4.90 (d, <sup>3</sup>*J* = 2.9 Hz, 1H, ebthi, **3d**), 5.31 (d, <sup>3</sup>*J* = 2.9 Hz, 1H, **4**), 5.56 (d, <sup>3</sup>*J* = 2.9 Hz, 1H, **4**), 5.79 (d, <sup>3</sup>*J* = 2.9 Hz, 1H, ebthi, **3d**), 5.90 (d, <sup>3</sup>*J* = 2.9 Hz, 1H, CH-ebthi, **3d**), 7.01 – 7.13 (m, 3H, Ph, **3d**), 7.35 (dd, *J* = 7.5, 1.5 Hz, 1H Ph, **3d**) ppm. <sup>13</sup>**C NMR** (75 MHz, [D<sub>6</sub>]benzene, 297 K): δ = 21.4 (*Me*-Ph, **3d**), 22.7, 22.8, 23.2, 23.5, 23.6, 23.72, 23.73, 23.8, 23.9, 24.5, 24.6, 25.5, 24.8, 25.5, 26.0, 29.4, 30.3, 32.0 (*CH*<sub>2</sub>-ebthi, **3d** + **4**), 30.0 (*Me*-t-Bu, **3d**), 39.5 (*CH*<sub>2</sub>-Ph, **3d**), 62.8 (*Cq*-t-Bu, **3d**), 96.6, 98.4, 100.3, 100.6 (*CH*-ebthi, **4**), 98.5, 105.0, 105.6, 106.1 (*CH*-ebthi, **3d**), 113.3, 116.0, 126.0, 127.5, 129.6 (*Cq*-ebthi, **4**), 117.0, 121.3, 122.7, 122.8, 123.7, 126.1 (*Cq*-ebthi, **3d**), 131.1, 130.4, 127.48, 126.7 (*CH*-Ph, **3d**), 136.71, 136.72 (*Cq*-Ph, **3d**), 157.5 (*C*=N, **3d**), 213.6 (*C*=N, **4**), 230.0 (*C*=N, **3d**) ppm. **IR** (ATR, cm<sup>-1</sup>): *ν* = 2118 (w, *C*=*N*-tBu), 1618 (w, RCH<sub>2</sub>-*C*=*N*-tBu) **MS**: *m/z* (CI): 760 [M]<sup>+</sup> (**4**) 569 [M]<sup>+</sup> (**3d**), 542 [M<sup>+</sup>- C=N]<sup>+</sup>, 188 [Me<sub>3d</sub>-NC-CH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>Me]<sup>+</sup>

#### 1. 6. Synthesis of complex 3e



**Synthesis of complex 3e:** To a solution of *rac*-(ebthi)Zr( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (**1**) (0.263 g, 0.50 mmol) in benzene (10 mL) *t*-BuNC (0.057 mL, 0.5 mmol) was added. Immediately a colour change from green to orange was observed. After stirring the reaction mixture for 2 h at room temperature further *t*-BuNC (0.115 mL, 1.0. mmol) and an excess (1 mL, 7.25 mmol) of mesitylene were added. After heating the reaction mixture 12 days at 80 °C, all volatiles were removed in vacuum and the remaining dark oil was washed several times with 1 mL of *n*-hexane. The formed orange sticky solid was dissolved in diethyl ether, which was subsequently removed in vacuum. After adding a mixture of ether/*n*-hexane (1:1), filtration and standing one week at -78 °C, light orange crystals had formed which were isolated and identified as a 2:1 mixture of **3e** and **4** by NMR spectroscopy.

<sup>1</sup>**H NMR** (300 MHz, [D<sub>6</sub>]benzene, 297 K): δ = 1.47 (s, 9H, *t*-Bu, **3e**), 2.22 (m, 6H, *Me*-Ph, **3e**), 3.14 – 0.9 (m, 30H, CH<sub>2</sub>-ebthi, **3e + 4**), 3.96 (d, <sup>2</sup>J = 15.5 Hz, 1H, CH<sub>2</sub>-Ph, **3e**), 4.20 (d, <sup>2</sup>J = 15.5 Hz, 1H, CH<sub>2</sub>-Ph, **3e**), 4.56 (d, J = 2.9 Hz, 0.5H, ebthi, **4**), 4.61 (d, <sup>3</sup>J = 2.8 Hz, 1H, ebthi, **3e**), 4.75 (d, J = 2.9 Hz, 0.5H, ebthi, 4), 4.99 (d, <sup>3</sup>J = 2.8 Hz, 1H, ebthi, 3e), 5.31 (d, J = 2.9 Hz, 0.5H, 4), 5.56 (d, J = 2.9 Hz, 0.5H, 4), 5.75 (d, <sup>3</sup>J = 2.9 Hz, 1H, ebthi, **3e**), 5.99 (d, <sup>3</sup>J = 2.9 Hz, 1H, CH-ebthi, **3e**), ), 6.80 (s, 1H, Ph, **3e**), 6.92 (s, 2H, H-Ph, **3e**); (6.72 and 2.17 (m, traces free mesitylene)) ppm.<sup>13d</sup> <sup>13</sup>C NMR (100 MHz, [D<sub>6</sub>]benzene, 297 K): δ = 21.4 (*Me*-Ph, **3e**), 22.8, 22.91, 22.95, 23.21, 23.62, 23.72, 23.73, 24.7, 27.4, 27.5 (*CH*<sub>2</sub>ebthi, 3e), 22.7, 23.20, 23.6, 23.7, 24.5, 24.8, 25.5, 26.0, 29.4, 30.3 (CH2-ebthi, 4), 30.2 (Me-t-Bu, 3e), 42.4 (CH2-Ph, 3e), 62.0 (Cq-t-Bu, 3e), 96.6, 98.4, 100.3, 100.6 (CH-ebthi, 4), 98.2, 104.8 105.7, 106.4 (CH-ebthi, **3e**), 113.3, 116.0, 126.0, 127.5, 129.6 (Cq-ebthi, **4**), 117.2, 120.8, 122.6, 123.8, 123.9, 126.7 (Cq-ebthi, 3e), 128.4, 128.8 (CH-Ph, 3e), 137.9, 138.3 (Cq-Ph, 3e), 157.5 (C=N, 3e), 213.6 (C=N, **4**), 231.7 (*C*=N, **3e**) ppm. **MS**: *m/z* (CI): 760 [M]<sup>+</sup> (**4**), 583 [M]<sup>+</sup> (**3e**), 556 [M<sup>+</sup>- C≡N]<sup>+</sup>, 201 [Me<sub>3d</sub>-NC-CH<sub>2</sub>- $C_6H_4Me_2$ <sup>+</sup>. The *n*-hexane fractions were combined and the volume reduced in vacuum – after 1 week at -78 °C a grey perticipate could be isolated, which gave after crystallisation from benzene less crystals of pure **3e** which were suitable for X-ray crystallography, NMR and Raman spectroscopy. **3e**: <sup>1</sup>**H NMR** (300 MHz, [D<sub>6</sub>] benzene, 297 K): δ = 1.47 (s, 9H, *t*-Bu), 2.22 (m, 6H, *Me*-Ph), 3.14 – 0.9 (m, 20H, CH<sub>2</sub>-ebthi), 3.96 (d,  ${}^{2}J$  = 15.5 Hz, 1H, CH<sub>2</sub>-Ph), 4.20 (d,  ${}^{2}J$  = 15.5 Hz, 1H, CH<sub>2</sub>-Ph), 4.61 (d,  ${}^{3}J$  = 2.8 Hz, 1H, ebthi), 4.99 (d, <sup>3</sup>J = 2.8 Hz, 1H, ebthi), 5.75 (d, <sup>3</sup>J = 2.9 Hz, 1H, ebthi), 5.99 (d, <sup>3</sup>J = 2.9 Hz, 1H, CH-ebthi), ), 6.80 (s, 1H, Ph), 6.92 (s, 2H, Ph), (6.72 and 2.17 (m, traces free mesitylene) ppm. <sup>13</sup>C **NMR** (75 MHz, [D<sub>6</sub>]benzene, 297 K): δ = 21.4 (*Me*-Ph), 22.8, 22.91, 22.95, 23.2, 23.6, 23.72, 23.73, 24.7, 27.4, 27.5 (CH2-ebthi), 30.2 (Me-t-Bu), 42.4 (CH2-Ph), 62.0 (Cq-t-Bu), 98.2, 104.8 105.7, 106.4 (CH-ebthi), 117.2, 120.8, 122.6, 123.8, 123.9, 126.7 (Cq-ebthi), 128.4, 128.8 (CH-Ph), 137.9, 138.3 (CqPh), 157.5 (*C*≡N), 231.7 (*C*=N), (21.3, 127.4, 137.6 free mesitylene) ppm. **Raman** (633 nm, 10 sec, 20 acc, cm<sup>-1</sup>): *ν* = 2121 (w, *C*=*N*-*t*Bu), 1625 (w, RCH<sub>2</sub>-*C*=*N*-*t*Bu)

#### **1.7.** Reaction Monitoring by <sup>1</sup>H-NMR spectroscopy

The following chapter summarizes a series of <sup>1</sup>H NMR *in situ* experiments performed to gain a better understanding of the reaction processes. We combined 2 (20 mg, 0.03 mmol), excess of Ar-CH<sub>3</sub> species (0.5 mmol) and stoichiometric amount of tert-butylisocyanide (0.03 mmol, 3,5 µL), dissolved them in  $C_6D_6$  (0.6 mL), sealed the NMR young tubes in an Ar atmosphere and heated them to 80 °C.To monitor the reactions we measured a series of <sup>1</sup>H NMR at 25°C, the reported time correspond to the time of heating the samples (see Figure S6 - Figure S15). For a simple kinetic consideration, we have classified the solvent C<sub>6</sub>D<sub>6</sub> as inert and have related all integrals to this signal to obtain a rough statement about the concentrations of all present compounds. On the basis of this evaluation, it was initially shown that in all reactions a supposedly paramagnetic species first develops, since the total intensities of all Me<sub>3</sub>Si, t-Bu and EBTHI signals of complex 2 decreases dramatically. In addition, no products can be identified whose integrals are growing at the same rate as those of component 2 diminish. These observations are collected for 3d derivative exemplary in Figure S1 - Figure S3. During this study we were able to identify in all reactions a parallel isocyanide -nitrile conversion that appears to be catalytic (see below) in the presence of the hitherto unknown paramagnetic species. Furthermore, the studies show that the complex 4 develops only after consumption of the tertbutylisocyanide; this is accompanied by a color change of the reaction solutions from orange to black-greenish. In addition, it could be shown that during the course of the reaction both t-BuH and isobutene are formed, which additionally indicates a radical mechanism. These species were identified via 1D <sup>1</sup>H-TOCSY experiments of enriched samples (Figure S4 and Figure S5).



**Figure S1.** Plot of the exemplary integral analysis of the *insitu* measurement for the reaction to complex **3d**. Plot of all relative integrates of the main reaction partners in the high field range.



**Figure S2.** Plot of the exemplary integral analysis of the *insitu* measurement for the reaction to complex **3d**. Plot of all relative integrates of the main reaction partners in the low field range as well as their sum (blue).



Figure S3. Plot of the percentage integral "loss" in relation to the start value (t = 0 h).



Figure S4. The representation of the 1D 1H-TOCSY experiment shows the identified correlation signals for isobutene.



Figure S5. The representation of the 1D 1H-TOCSY experiment shows the identified correlation signals for t-butane.



**Figure S6.** Representation of the high field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3a** and **4**. Assignment: Red star = **3a**, blue square = **2**, blue triangle = *t*-BuNC, yellow triangle = *t*-BuH, red triangle = *t*-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>.



**Figure S7.** Representation of the low field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3a** and **4**. Assignment: Red star = **3a**, blue square = **2**, green square = **4**, green triangle = isobutene.



**Figure S8.** Representation of the high field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3b** and **4**. Assignment: Red star = **3b**, blue square = **2**, blue triangle = *t*-BuNC, yellow triangle = *t*-BuH, red triangle = *t*-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>.



**Figure S9.** Representation of the low field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3b** and **4**. Assignment: Red star = **3b**, blue square = **2**, green square = **4**, green triangle = isobutene.



**Figure S10.** Representation of the high field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3c** and **4**. Assignment: Red star = **3c**, blue square = **2**, blue triangle = *t*-BuNC, yellow triangle = *t*-BuH, red triangle = *t*-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>.



**Figure S11.** Representation of the low field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3c** and **4**. Assignment: Red star = **3c**, blue square = **2**, green square = **4**, green triangle = isobutene.



**Figure S12.** Representation of the high field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3d** and **4**. Assignment: Red star = **3d**, blue square = **2**, blue triangle = *t*-BuNC, yellow triangle = *t*-BuH, red triangle = *t*-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>.



**Figure S13.** Representation of the low field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3d** and **4**. Assignment: Red star = **3d**, blue square = **2**, green square = **4**, green triangle = isobutene.



**Figure S14.** Representation of the high field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3e** and **4**. Assignment: Red star = **3e**, blue square = **2**, blue triangle = *t*-BuNC, yellow triangle = *t*-BuH, red triangle = *t*-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>.



**Figure S15.** Representation of the low field region of the <sup>1</sup>H NMR reaction monitoring during for the formation of **3e** and **4**. Assignment: Red star = **3e**, blue square = **2**, green square = **4**, green triangle = isobutene.

#### **1.8.** Addition of further *t*-BuNC to reaction solutions

After the described <sup>1</sup>H-NMR monitoring experiments we added to each of the reaction solutions an exess of further *t*-BuNC and heated the mixtures to 80 °C to test the option of obtaining better yields of complexes 3. All experiments reveal the same reaction behaviour as is shown in Figure S16 exemplarly for the complex 3b. After adding the *t*-BuNC we observed again the isomerization to *t*-BuCN as the major reaction besides a small conversion to further complex **3b** but the long heating period leads to decomposition of the before formed complex **4**.



**Figure S16.** Representation of the <sup>1</sup>H NMR reaction monitoring before (lower 4 spectra) and after addition of further t-BuNC (upper 3 spectra) to the reaction solution of the synthesis of **3b**. Assignment: Red star = **3b**, green square = **4**, green triangle = isobutene, blue triangle = t-BuNC, blue triangle = t-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>. For the representation a part of the x-axis was cut out and a different zoom level was used in the low-field region to be able to recognise the signals better.

# 1.9. Synthesis of 3a in Toluene-[D8] at 110 °C reaction monitoring by <sup>1</sup>H-

NMR spectroscopy



**Figure S17.** Representation of the <sup>1</sup>H NMR monitoring of the reaction to **3a** carried out in toluene-[D8] at 110 °C. The reaction was about 35 times faster than at 80 °C, but also shows the formation of a larger amount of **4**. Assignment: Red star = **3a**, yellow triangle = *t*-BuH, red triangle = *t*-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>, green square = **4**, green triangle =

isobutene. For the representation a part of the x-axis was cut out and a different zoom level was used in the low-field region to be able to recognise the signals better.



**Figure S18.** The direct comparison of the NMR reactions carried out in toluene-[D8] at 110 °C (top) as well as in benzene-[D6] in the presence of toluene at 80 °C (bottom) clearly shows the origin of the CH<sub>2</sub>-Ar group in **3b** due to the absence of their signals in the upper case. Furthermore, it shows the formation of a larger amount of **4** at 110 °C. Assignment: Red star = **3a**, yellow triangle = *t*-BuH, red triangle = *t*-BuCN, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>, green square = **4**, green triangle = isobutene. For the representation a part of the x-axis was cut out and a different zoom level was used in the low-field region to be able to recognise the signals better.

# 1. 10. Catalytic isomerisation of t-BuNC into tBuCN via complex 2 as precatalyst



To a solution of *rac*-(ebthi)Zr(CN*t*Bu)( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (**2**) (0.02 g, 0.03 mmol, 1,7 mol%) in benzene-[D6] (0.6 mL) the *t*-BuNC (0.147 g, 1.77 mmol) was added. The NMR young tube was sealed and the resulting mixture was heated to 110 °C for 15 hours. The catalytic isomerisation of *t*-BuNC into *t*-BuCN using complex **2** as precatalyst was investigated with the help of <sup>1</sup>H and <sup>13</sup>C-NMR spectroscopy (see below) and show 98 % conversion.



**Figure S19.** Representation of the <sup>1</sup>H-NMR spectrum (400.13 MHz, 25 °C,  $C_6D_6$ ) after catalytic isomerisation of *t*-BuNC into *t*-BuCN. Assignment: blue triangle = *t*-BuNC, red triangle = *t*-BuCN.



**Figure S20.** The shown <sup>13</sup>-C NMR spectrum (106.3 MHz, 25 °C,  $C_6D_6$ ) unambiguously identified the product of the isomerization as the *t*-BuCN. Assignment: red triangle = *t*-BuCN.

## 1. 11. Proof of thermal stability of complex 2 in solution at 80 °C



A solution of *rac*-(ebthi)Zr(CN*t*Bu)( $\eta^2$ -Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>) (**2**) (0.02 g, 0.03 mmol) in benzene-[D6] (0.6 mL) was sealed in a NMR young tube and heated to 80 °C for 9.5 days. The thermal stability was proofed by monitoring the reaction via <sup>1</sup>H-NMR spectroscopy (see below). During the thermal treatment the formation of complex **4** can be seen but after the given time only 8 % of the initial *rac*-(ebthi)Zr signal intensity and 28 % of the original Me<sub>3</sub>Si intensity are present. This suggests the formation of previously unidentified paramagnetic species.



**Figure S21.** Representation of the <sup>1</sup>H NMR reaction monitoring during for thermal treatment of complex **2** without further *t*-BuNC and Ar-CH<sub>3</sub> species. Assignment: Blue square = **2**, green square = **4**, green triangle = isobutene, yellow triangle = *t*-BuH, red square = free Me<sub>3</sub>SiC<sub>2</sub>SiMe<sub>3</sub>. For the representation a part of the x-axis was cut out and a different zoom level was used in the low-field region to be able to recognise the signals better.

## 1. 12. Proof of thermal stability of mixture of 3/4 in solution at 80 °C

A solution of isolated compound mixtures of **3b/4** as well as **3e/4** in benzene-[D6] (0.6 mL) was sealed in a NMR young tube and heated to 80 °C for 22 days. The thermal stability was proofed by monitoring the reaction via <sup>1</sup>H-NMR spectroscopy (see below). During the thermal treatment the slow decomposition of complex **4** can be seen.



**Figure S22.** Representation of the low field region of the <sup>1</sup>H NMR reaction monitoring during for the thermal treatment of a mixture of **3b** and **4**. Assignment: Red star = **3b**, green square = **4**.



**Figure S23.** Representation of the low field region of the <sup>1</sup>H NMR reaction monitoring during for the thermal treatment of a mixture of **3e** and **4**. Assignment: Red star = **3e**, green square = **4**.

## 2. Crystallographic details

Table S1. Crystallographic details of 2, 3a and 3d/4.

|                                          | 2                     | 3a                  | 3d/4                  |  |
|------------------------------------------|-----------------------|---------------------|-----------------------|--|
| Chem. Formula                            | $C_{33}H_{51}NSi_2Zr$ | $C_{33}H_{40}N_2Zr$ | $C_{82}H_{96}N_4Zr_3$ |  |
| Form. Wght [g mol <sup>-1</sup> ]        | 609.15                | 555.89              | 1411.28               |  |
| Colour                                   | red                   | yellow              | red                   |  |
| Cryst. system                            | monoclinic            | monoclinic          | triclinic             |  |
| Space group                              | C2/c                  | P2 <sub>1</sub> /n  | PĪ                    |  |
| a [Å]                                    | 30.5599(5)            | 11.5367(6)          | 10.7718(6)            |  |
| b [Å]                                    | 11.0773(2)            | 15.1627(7)          | 15.6210(9)            |  |
| c [Å]                                    | 21.3300(4)            | 15.5805(7)          | 20.8511(12)           |  |
| α [°]                                    | 90                    | 90                  | 103.768(2)            |  |
| β[°]                                     | 105.4728(6)           | 96.2381(8)          | 101.7318(19)          |  |
| γ [°]                                    | 90                    | 90                  | 91.398(2)             |  |
| V [ų]                                    | 6959.0(2)             | 2709.3(2)           | 3326.8(3)             |  |
| Z                                        | 8                     | 4                   | 2                     |  |
| ρ <sub>calc.</sub> [g cm <sup>-3</sup> ] | 1.163                 | 1.363               | 1.409                 |  |
| μ [mm <sup>-1</sup> ]                    | 0.405                 | 0.430               | 0.510                 |  |
| Т [К]                                    | 150(2)                | 150(2)              | 150(2)                |  |
| radiation type                           | ΜοΚα                  | ΜοΚα                | ΜοΚα                  |  |
| reflections measured                     | 43491                 | 28486               | 123844                |  |
| independent                              | 7587                  | 6547                | 16077                 |  |
| reflections                              |                       |                     |                       |  |
| observed reflections                     | 6811                  | 5785                | 14674                 |  |
| with $1 > 2\sigma(1)$                    | 0.0225                | 0.0270              | 0.0262                |  |
|                                          | 0.0235                | 0.0276              | 0.0263                |  |
| F(000)                                   | 2592                  | 1168                | 1472                  |  |
| $R_1 (l > 2\sigma(l))$                   | 0.0245                | 0.0264              | 0.0369                |  |
| wR <sub>2</sub> (all data)               | 0.0670                | 0.0662              | 0.0869                |  |
| GOF on F <sup>2</sup>                    | 1.069                 | 1.030               | 1.024                 |  |
| Parameters                               | 343                   | 328                 | 900                   |  |
| CCDC number                              | CCDC 1940866          | CCDC 1940867        | CCDC 1940868          |  |

#### Table S2. Crystallographic details of 3e.

|                                          | Зе                  |
|------------------------------------------|---------------------|
| Chem. Formula                            | $C_{35}H_{44}N_2Zr$ |
| Form. Wght [g mol <sup>-1</sup> ]        | 583.94              |
| Colour                                   | colourless          |
| Cryst. system                            | triclinic           |
| Space group                              | PĪ                  |
| a [Å]                                    | 9.3286(10)          |
| b [Å]                                    | 10.6590(11)         |
| c [Å]                                    | 14.8127(16)         |
| α [°]                                    | 87.887(3)           |
| β[°]                                     | 83.265(3)           |
| γ [°]                                    | 85.072(3)           |
| V [ų]                                    | 1456.8(3)           |
| Z                                        | 2                   |
| ρ <sub>calc.</sub> [g cm <sup>-3</sup> ] | 1.331               |
| μ [mm <sup>-1</sup> ]                    | 0.404               |
| Т [К]                                    | 150(2)              |
| radiation type                           | ΜοΚα                |
| reflections measured                     | 55886               |
| independent                              | 7036                |
| reflections                              | /030                |
| observed reflections                     | 6666                |
| with $l > 2\sigma(l)$                    |                     |
| R <sub>int.</sub>                        | 0.0245              |
| F(000)                                   | 616                 |
| $R_1 (l > 2\sigma(l))$                   | 0.0243              |
| wR <sub>2</sub> (all data)               | 0.0629              |
| GOF on F <sup>2</sup>                    | 1.045               |
| Parameters                               | 386                 |
| CCDC number                              | CCDC 1940869        |

## 2.1. Compound 2



Figure S24. Numbering scheme of 2. H atoms are omitted for clarity.

| C1–Zr1 | 2.2937(13) | C2–Zr1–C1     | 33.29(5)   |
|--------|------------|---------------|------------|
| C2–Zr1 | 2.2583(14) | C2–C1–Si1     | 144.38(11) |
| C9–Zr1 | 2.2799(13) | C1–C2–Si2     | 135.18(11) |
| C1–C2  | 1.3044(19) | N1–C9–Zr1     | 175.45(11) |
| C9–N1  | 1.1572(18) | Si1–C1–C2–Si2 | 17.8(3)    |
| C1–Si1 | 1.8323(14) | C9-N1-C10     | 175.75(14) |
| C2–Si2 | 1.8497(14) |               |            |
| C10-N1 | 1.4598(17) |               |            |

 Table S3. Selected bond lengths (Å), angles and torsion angles (°) of 2.

## 2.2. Compound 3a



Figure S25. Numbering scheme of 3a. H atoms are omitted for clarity.

| C1–Zr1  | 2.2396(15) | N1–Zr1–C1   | 32.91(5)   |
|---------|------------|-------------|------------|
| N1–Zr1  | 2.2275(12) | N1–Zr1–C13  | 82.80(5)   |
| C13–Zr1 | 2.3241(15) | N2–C13–Zr1  | 178.07(14) |
| C1-N1   | 1.2655(19) | C2-C1-N1-C9 | 0.8(3)     |
| C1–C2   | 1.514(2)   |             |            |
| C2–C3   | 1.507(2)   |             |            |
| C9–N1   | 1.4934(19) |             |            |
| C13–N2  | 1.143(2)   |             |            |

Table S4. Selected bond lengths (Å), angles and torsion angles (°) of 3a.

## 2.3. Compound 3d/4



Figure S26. Ball and stick representation of 3d/4. H atoms are omitted for clarity. Lower occupancy sites are depicted with white coloured bonds.

| C1–Zr1  | 2.229(2)   | N1–Zr1–C1   | 33.15(7) |
|---------|------------|-------------|----------|
| N1–Zr1  | 2.2254(17) | N1–Zr1–C14  | 84.42(7) |
| C14–Zr1 | 2.331(2)   | N2-C14-Zr1  | 174.0(2) |
| C1-N1   | 1.271(3)   | C2-C1-N1-C9 | 1.4(4)   |
| C1–C2   | 1.512(3)   |             |          |
| C2–C3   | 1.520(3)   |             |          |
| C9-N1   | 1.494(3)   |             |          |
| C14–N2  | 1.143(3)   |             |          |

Table S5. Selected bond lengths (Å), angles and torsion angles (°) of 3d in 3d/4.

Table S6. Selected bond lengths (Å), angles and torsion angles (°) of 4 in 3d/4.

| Zr2 C35A | 2.473(5)  | Zr2 N3A  | 2.384(3)  |
|----------|-----------|----------|-----------|
| Zr2 C35B | 2.044(11) | Zr2 N4B  | 2.527(8)  |
| Zr2 C36A | 2.174(4)  | Zr3 N3B  | 2.521(7)  |
| Zr2 C36B | 2.548(13) | Zr3 N4A  | 2.394(3)  |
| Zr3 C35A | 2.166(4)  | C35A N3A | 1.182(5)  |
| Zr3 C35B | 2.552(13) | C36A N4A | 1.176(5)  |
| Zr3 C36A | 2.496(5)  | C35B N3B | 1.198(13) |
| Zr3 C36B | 2.045(11) | C36B N4B | 1.192(13) |

Comparison of structural features with DFT BP86/TZVP/Lanl2DZ optimised structure.

| Zr2 C35A | 2.473(5) | Zr2 N3A  | 2.384(3) |
|----------|----------|----------|----------|
| DFT      | 2.482    | DFT      | 2.356    |
| Zr2 C36A | 2.174(4) | Zr3 N4A  | 2.394(3) |
| DFT      | 2.230    | DFT      | 2.358    |
| Zr3 C35A | 2.166(4) | C35A N3A | 1.182(5) |
| DFT      | 2.227    | DFT      | 1.208    |
| Zr3 C36A | 2.496(5) | C36A N4A | 1.176(5) |
| DFT      | 2.488    | DFT      | 1.208    |
| Zr2-Zr3  | 3.550    |          |          |
| DFT      | 3.647    |          |          |

## 2.4. Compound 3e



Figure S27. Numbering scheme of 3e. H atoms are omitted for clarity. Lower occupancy sites are depicted with white coloured bonds.

| Table S7. Selected bond | lengths (Å), angles ar | nd torsion angles (°) of <b>3e</b> . |
|-------------------------|------------------------|--------------------------------------|
|-------------------------|------------------------|--------------------------------------|

| C1–Zr1  | 2.2318(13) | N1–Zr1–C1    | 32.97(4)   |
|---------|------------|--------------|------------|
| N1–Zr1  | 2.2351(11) | N1–Zr1–C15   | 83.51(4)   |
| C15–Zr1 | 2.3198(13) | N2–C15–Zr1   | 178.91(12) |
| C1-N1   | 1.2676(17) | C2-C1-N1-C11 | -2.2(3)    |
| C1–C2   | 1.5157(18) |              |            |
| C2–C3   | 1.5149(19) |              |            |
| C11-N1  | 1.4886(17) |              |            |
| C15–N2  | 1.1452(18) |              |            |

## 3. Details of NMR spectroscopy

## 3.1. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 2



S31

## 3.2. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 3a

![](_page_31_Figure_1.jpeg)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 δ (ppm)

Figure S31.  $^{13}\text{C}\{^{1}\text{H}\}$  NMR spectrum of 3a (25 °C, [D<sub>6</sub>]benzene, 75.47 MHz).

## 3.3. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 3b

![](_page_32_Figure_1.jpeg)

o (ppm) **Figure S33.**<sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3b** (25 °C, [D<sub>6</sub>]benzene, 100.61 MHz). The signals of compound **4** were not labeled.

## 3.4. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 3d

![](_page_33_Figure_1.jpeg)

Figure S35. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 3d (25 °C, [D<sub>6</sub>]benzene, 75.47 MHz) The signals undoubtedly assigned to compound 4 were not labeled.

## 3.5. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 3e

![](_page_34_Figure_1.jpeg)

Figure S37. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3e** (25 °C, [D<sub>6</sub>]benzene, 100.61 MHz).

## 4. Details of vibrational spectroscopy

## 4.1. Assignment of the most important vibrations

In this chapter the experimental IR and Raman spectra (black) with their respective calculated uncorrected vibration spectra (red) are presented. For complex **2** we calculated the vibrational spectrum with two different methods and compared the calculated and experimental spectra. From this comparison the frequency analysis with BP86/LANL2DZ/TZVP level of theory turned out to be more accurate besides a shorter time required for calculation (compared to M062x/def2tzvp). This level of theory was used for all further calculations and interpretation of vibrational spectroscopy.

| Compound                 | C≡N                       | C≡N                   | RCH <sub>2</sub> - <b>C1=N</b> - <i>t</i> Bu | RCH <sub>2</sub> - <b>C1=N</b> - <i>t</i> Bu |  |
|--------------------------|---------------------------|-----------------------|----------------------------------------------|----------------------------------------------|--|
| Compound                 | vib. calc.                | vib. exp.             | vib. calc.                                   | vib. exp.                                    |  |
| За                       | 2131 cm <sup>-1</sup>     | 2119 cm <sup>-1</sup> | 1635 cm <sup>-1</sup>                        | 1620 cm <sup>-1</sup>                        |  |
| 3b                       | 2131 cm <sup>-1</sup>     | [c]                   | 1638 cm <sup>-1</sup>                        | 1623 cm <sup>-1</sup>                        |  |
| Зc                       | 2131 cm <sup>-1</sup>     | -                     | 1632 cm <sup>-1</sup>                        | -                                            |  |
| 3d                       | 2132 cm <sup>-1</sup>     | 2118 cm <sup>-1</sup> | 1631 cm <sup>-1</sup>                        | 1618 cm <sup>-1</sup>                        |  |
| Зе                       | 2131 cm <sup>-1</sup>     | 2121 cm <sup>-1</sup> | 1635 cm <sup>-1</sup>                        | 1625 cm <sup>-1</sup>                        |  |
| 4                        | 1889 cm <sup>-1 [a]</sup> | 1892 cm <sup>-1</sup> | -                                            | -                                            |  |
|                          | 1843 cm <sup>-1 [b]</sup> |                       |                                              |                                              |  |
| <b>4b</b> <sup>[d]</sup> | 1834 cm <sup>-1 [a]</sup> |                       |                                              |                                              |  |
|                          | 1779 cm <sup>-1 [b]</sup> |                       |                                              |                                              |  |

Table S8. Assignment of the most important vibrations of compound 3a, 3b, 3d, 3e and 4.

[a] in-phase vibration mode, [b] out-of phase vibration mode, [c] Unfortunately, no satisfactory Raman spectrum could be recorded from this compound, [d] **4b** shows the same structure as **4**, with N and C atoms of the cyanide units exchanged.

## 4.2. Experimental and calculated vibrational spectra

![](_page_36_Figure_1.jpeg)

Figure S38. Experimental (ATR, red) and calculated IR spectra (BP86, black) of 2.

![](_page_36_Figure_3.jpeg)

Figure S39. Experimental (ATR, red) and calculated IR spectra (M062x, black) of 2.

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_1.jpeg)

Figure S41. Experimental IR-ATR spectrum of **3b** co-crystallised with **4** (red), calculated (BP86) spectrum of **3b** (blue) and calculated (BP86) spectrum of complex **4** (black).

![](_page_38_Figure_0.jpeg)

Wavenumber (cm-1)

Figure S42. Experimental IR-ATR spectrum of 3d co-crystallised with 4 (red), calculated (BP86) spectrum of 3d (blue) and calculated (BP86) spectrum of complex 4 (black).

![](_page_38_Figure_3.jpeg)

Figure S43. Experimental IR-ATR spectrum of 3e co-crystallised with 4 (red), calculated (BP86) spectrum of 3e (blue) and calculated (BP86) spectrum of complex 4 (black).

![](_page_39_Figure_0.jpeg)

Figure S44. Experimental (red) and calculated (BP86, black) Raman spectra of 3a.

![](_page_39_Figure_2.jpeg)

Figure S45. Experimental Raman spectrum of 3d co-crystallised with 4 (red), calculated (BP86) spectrum of 3d (blue) and calculated (BP86) spectrum of complex 4 (black).

![](_page_40_Figure_0.jpeg)

Figure S46. Experimental (red) and calculated (BP86, black) Raman spectra of 3e.

## 5. Computational details

All calculations were carried out with the Gaussian 09 package of molecular orbital programs.<sup>7</sup> For the whole investigations we used real-size molecules and performed our calculations with the pure density functional method BP86<sup>8</sup> in combination with the basis set combination TZVP(C,H,N,Si)<sup>9</sup>/LANL 2DZ(Zr)<sup>10</sup> based on our good experience with this approach. Therefore, if not further mentioned the energies and discussed results were obtained with this procedure. Vibrational frequencies were also computed, to include zero-point vibrational energies in thermodynamic parameters and to characterise all structures as minima on the potential energy surface. In addition, we used these results to assign the experimental IR and RAMAN spectra and to superimpose the experimental and calculated vibration spectra (see above). NBO analyses were performed using NBO 6.0.<sup>11</sup> All optimised structures are provided in xyz format in a separate file.

## 5.1. Thermochemistry

For basic thermochemistry, molecular structures were optimised using the pure density functional (DF) BP86 in combination with the LANL2DZ basis set and corresponding ECP at Zr and the TZVP basis set on all other atoms (notation BP86/LANL2DZ/TZVP). All optimised structures were confirmed as minima by frequency analyses.

![](_page_41_Figure_4.jpeg)

![](_page_42_Figure_0.jpeg)

S43

![](_page_43_Figure_0.jpeg)

## 5.2. Bond dissociation energies (BDE) for isocyanides and their complexes 2

In order to gain a better understanding of the experimentally observed fundamentally different reactivities of the two isocyanides *t*-BuNC and XyNC we calculated the bond dissoziation energies (BDE) on the UBP86/TZVP level of theory as well as the BDEs for the investigated zirconocene complexes (UBP86/LANL2DZ/TZVP).

|                                | BDE                     |                         | BDE                       |                           |
|--------------------------------|-------------------------|-------------------------|---------------------------|---------------------------|
| Products                       | $\Delta_{R}$ H [kJ/mol] | $\Delta_{R}$ G [kJ/mol] | $\Delta_{R}$ H [kcal/mol] | $\Delta_{R}$ G [kcal/mol] |
| t-Bu radical + cyanide radical | 378.5                   | 323.9                   | 90.5                      | 77.4                      |
| Xyl radical + cyanide radical  | 460.0                   | 405.0                   | 109.9                     | 96.8                      |
| EBTHIZrCNbtmsa rad + tBu rad   | 84.7                    | 25.1                    | 20.2                      | 6.0                       |
| EBTHIZrCNbtmsa rad + Xyl rad   | 163.5                   | 98.1                    | 39.1                      | 23.4                      |
| Cp2ZrCNbtmsa rad + tBu rad     | 103.6                   | 44.8                    | 24.8                      | 10.7                      |

Table S 9. Summary of the calculated hemolytic bond splitting (BDE).

| Compound                   | Nimag | HF           | ZPE [kcal/mol] | H <sub>tot</sub> [a.u.] | G <sub>tot</sub> [a.u.] |
|----------------------------|-------|--------------|----------------|-------------------------|-------------------------|
| hydrogen                   | 0     | -1.1775859   | 6.17472        | -1.164441               | -1.179255               |
| CN anion                   | 0     | -92.8866719  | 2.94384        | -92.878675              | -92.901033              |
| isobutene                  | 0     | -157.2718059 | 65.53193       | -157.160979             | -157.194157             |
| t-butyl cation             | 0     | -157.5940012 | 70.81439       | -157.473667             | -157.511479             |
| Xylene cation              | 0     | -310.0034049 | 85.21022       | -309.857646             | -309.901972             |
| CN radical                 | 0     | -92.7480952  | 2.98949        | -92.740026              | -92.763026              |
| t-butyl radical            | 0     | -157.8414821 | 70.84747       | -157.7212               | -157.757013             |
| Xylene radical             | 0     | -310.2856691 | 86.45389       | -310.138611             | -310.182273             |
| Me3SiCCSiMe3               | 0     | -894.8660333 | 141.899520     | -894.620897             | -894.684702             |
| t-butane                   | 0     | -158.5009759 | 79.974950      | -158.366730             | -158.400241             |
| t-butylisocyanide          | 0     | -250.7395886 | 78.850460      | -250.605387             | -250.643397             |
| t-butylnitrile             | 0     | -250.7721707 | 79.166870      | -250.637567             | -250.675432             |
| toluene                    | 0     | -271.6438151 | 77.660310      | -271.512732             | -271.550467             |
| benzyl radical             | 0     | -270.9928333 | 69.63896       | -270.875004             | -270.911681             |
| o-xylene                   | 0     | -310.9708986 | 94.564230      | -310.811409             | -310.851957             |
| m-xylene                   | 0     | -310.9713097 | 94.242310      | -310.811858             | -310.855321             |
| p-xylene                   | 0     | -310.9712048 | 94.284260      | -310.811790             | -310.853425             |
| mesitylene                 | 0     | -350.2987628 | 110.870810     | -350.110938             | -350.159092             |
| xyleneisonitrile           | 0     | -403.2132988 | 93.236590      | -403.053842             | -403.099553             |
| ebthiZr(Me3SiCCSiMe3)      | 0     | -1718.393524 | 379.834590     | -1717.749584            | -1717.855751            |
| ebthiZr(Me3SiCCSiMe3)CNtBu | 0     | -1969.167459 | 459.923480     | -1968.387060            | -1968.512619            |
| ebthiZr(Me3SiCCSiMe3)CNXy  | 0     | -2121.640285 | 474.357300     | -2120.834486            | -2120.965664            |
| ebthiZr(benzyl)CN          | 0     | -1187.459398 | 313.714290     | -1186.929945            | -1187.018225            |
| ebthiZr(XylCNTol)CN        | 0     | -1590.719423 | 410.441110     | -1590.025871            | -1590.134878            |
| ebthiZr(tBuCNTol)CN        | 0     | -1438.247649 | 396.313210     | -1437.579303            | -1437.683571            |
| ebthiZr(tBuCNoXy)CN        | 0     | -1477.573297 | 413.509180     | -1476.876196            | -1476.980127            |
| ebthiZr(tBuCNmXy)CN        | 0     | -1477.575332 | 412.788050     | -1476.878764            | -1476.987701            |
| ebthiZr(tBuCNpXy)CN        | 0     | -1477.575768 | 413.235460     | -1476.878767            | -1476.985083            |
| ebthiZr(tBuCNMes)CN        | 0     | -1516.903159 | 429.545640     | -1516.178078            | -1516.291168            |
| EBTHIZRCNtBu3btmsa         | 0     | -2470.695039 | 622.88381      | -2469.639775            | -2469.796317            |
| EBTHIZRCNXy3btmsa          | 0     | -2928.124449 | 665.54562      | -2926.993502            | -2927.168559            |
| (EBTHIZrCN)2               | 0     | -1832.908684 | 487.05594      | -1832.089082            | -1832.201947            |
| (EBTHIZrNC)2               | 0     | -1832.880935 | 486.48154      | -1832.062016            | -1832.175195            |
| EBTHIZrCNbtmsa anion       | 0     | -1811.362728 | 383.6003       | -1810.710042            | -1810.821558            |
| EBTHIZrCNbtmsa radical     | 0     | -1811.288608 | 384.96606      | -1810.6336              | -1810.746027            |
| Cp2ZrCNbtmsa anion         | 0     | -1421.729132 | 248.14603      | -1421.30097             | -1421.395467            |
| Cp2ZrCNbtmsa radical       | 0     | -1421.651611 | 249.19044      | -1421.22148             | -1421.318705            |
| Cp2ZrCNtBubtmsa            | 0     | -1579.537404 | 323.88877      | -1578.982147            | -1579.092784            |
| Me2SiCp2ZrTMSCCTMSCNtBu    | 0     | -1947.744539 | 356.77025      | -1947.131869            | -1947.252995            |

Table S10. Summary of thermodynamic parameters.

## 5.3. Bond Analysis

#### Analysis of the Natural Localised Molecular Orbitals (NLMO) of iminoacycl complex 3a

GaussView5.0 Software<sup>[12]</sup> was used for NLMO representations. To gain a better understanding of the bonding situation of these complexes we first performed a single point calculation for **3a** with the experimentally determined molecular structure, followed by the same NBO/NLMO analysis based on optimised molecular structure (BP86/TZVP/LANL2DZ). Both values are reported in the table below, their values as well as representations differ only slightly from each other (< 0.5 %) therefore we abstained from a redundant plot.

 Table S11. Representation of the Natural Localized Molecular Orbitals (NLMO) of iminoacycl complex 3a and selected values from the calculations (only values with a contribution larger than 1% are given).

| NLMO 40: LP(1) N3, iso 0.04                          | NLMO 43: LP(1) N25, iso 0.04                         |
|------------------------------------------------------|------------------------------------------------------|
|                                                      |                                                      |
| optimised structure                                  | optimised structure                                  |
| 40. (2.00000) 82.3843% LP (1) N 3                    | 43. (2.00000) 97.7175% LP ( 1) N 25                  |
| 2.241% C 1 s( 3.14%)p30.34( 95.24%)d 0.52( 1.62%)    | 1.026% C 9 s( 27.37%)p 2.65( 72.63%)d 0.00( 0.00%)   |
| 82.454% N 3 s( 20.29%)p 3.93( 79.69%)d 0.00( 0.03%)  | 97.718% N 25 s( 49.59%)p 1.01( 50.32%)d 0.00( 0.08%) |
| 11.185% Zr 4 s( 7.83%)p 0.02( 0.14%)d11.75( 92.03%)  |                                                      |
| single point calculation                             | single point calculation                             |
| 42. (2.00000) 82.7050% LP ( 1) N 74                  | 43. (2.00000) 97.7452% LP ( 1) N 75                  |
| 2.050% C 1 s( 3.79%)p24.96( 94.53%)d 0.45( 1.69%)    | 1.115% C 29 s( 28.30%)p 2.53( 71.70%)d 0.00( 0.00%)  |
| 82.790% N 74 s( 21.48%)p 3.65( 78.49%)d 0.00( 0.03%) | 97.745% N 75 s( 46.75%)p 1.14( 53.15%)d 0.00( 0.10%) |
| 11.604% Zr 76 s( 7.72%)p 0.01( 0.11%)d11.95( 92.17%) |                                                      |
| NLMO 45: C1-C2 B(1), iso 0.04                        | NLMO 46: C1-N3 B(1), iso 0.04                        |

| optimised structure                                                                                        | optimised structure                                                                                        |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 45. (2.00000) 98.2043% BD ( 1) C 1- C 2                                                                    | 46. (2.00000) 98.3352% BD ( 1) C 1- N 3                                                                    |
| 46.037% C 1 s( 38.81%)p 1.58( 61.14%)d 0.00( 0.06%)<br>52.216% C 2 s( 25.96%)p 2.85( 73.97%)d 0.00( 0.07%) | 37.136% C 1 s( 30.53%)p 2.27( 69.37%)d 0.00( 0.09%)<br>61.291% N 3 s( 44.48%)p 1.25( 55.39%)d 0.00( 0.13%) |
|                                                                                                            | single point calculation                                                                                   |
|                                                                                                            | 45. (2.00000) 98.2129% BD ( 1) C 1- N 74                                                                   |
|                                                                                                            | 37.098% C 1 s( 29.98%)p 2.33( 69.92%)d 0.00( 0.10%)                                                        |
|                                                                                                            | 61.216% N 74 s( 44.08%)p 1.27( 55.78%)d 0.00( 0.14%)                                                       |
|                                                                                                            | 1.061% Zr 76 s( 4.97%)p 0.56( 2.81%)d18.55( 92.22%)                                                        |
| NLMO 47: C1-N3 B(2), iso 0.04                                                                              | NLMO 48:C1-Zr4, iso 0.04                                                                                   |
|                                                                                                            |                                                                                                            |
| optimised structure                                                                                        | optimised structure                                                                                        |
| 47. (2.00000) 95.4966% BD ( 2) C 1- N 3                                                                    | 48. (2.00000) 94.3701% BD (1) C 1-Zr 4                                                                     |
| 32.606% C 1 s( 0.02%)p99.99( 99.76%)d 9.15( 0.22%)                                                         | 69.103% C 1 s( 30.07%)p 2.32( 69.91%)d 0.00( 0.01%)                                                        |
| 2.897% N 3 s( 0.02%)p99.99( 99.89%)a 4.18( 0.09%)<br>2.760% Zr 4 s( 0.01%)p17.04( 0.17%)d99.99( 99.82%)    | 1.22U% N 3 st 21.U4%)p 3.65( /6./2%)d U.11( 2.25%)<br>25.378% Zr 4 st 3.54%)p 0.02( 0.06%)d27.24( 96.40%)  |
|                                                                                                            | 1.626% C 8 s( 28.82%)p 2.47( 71.14%)d 0.00( 0.04%)                                                         |

| single point calculation                            | single point calculation                              |
|-----------------------------------------------------|-------------------------------------------------------|
| 46. (2.00000) 95.4387% BD ( 2) C 1- N 74            | 47. (2.00000) 94.5692% BD ( 1) C 1-Zr 76              |
| 32.550% C 1 s( 0.35%)p99.99( 99.43%)d 0.64( 0.22%)  | 69.713% C 1 s( 31.17%)p 2.21( 68.81%)d 0.00( 0.02%)   |
| 62.924% N 74 s( 0.29%)p99.99( 99.62%)d 0.32( 0.09%) | 1.627% C 16 s( 28.20%)p 2.55( 71.77%)d 0.00( 0.04%)   |
| 2.822% Zr 76 s( 0.17%)p 1.52( 0.26%)d99.99( 99.56%) | 1.208% N 74 s( 19.84%)p 3.92( 77.76%)d 0.12( 2.39%)   |
|                                                     | 25.012% Zr 76 s( 3.98%)p 0.02( 0.06%)d24.09( 95.95%)  |
| NLMO 52: N3-C8, iso 0.04                            | NLMO 53: Zr4-C9, iso 0.04                             |
|                                                     |                                                       |
| optimised structure                                 | optimised structure                                   |
| 52. (2.00000) 98.6610% BD ( 1) N 3- C 8             | 53. (2.00000) 98.8061% BD ( 1)Zr 4- C 9               |
| 60.050% N 3 s( 33.00%)p 2.03( 66.95%)d 0.00( 0.05%) | 22.718% Zr 4 s( 13.27%)p 0.01( 0.13%)d 6.53( 86.60%)  |
| 38.637% C 8 s( 22.07%)p 3.53( 77.87%)d 0.00( 0.07%) | 76.177% C 9 s( 59.01%)p 0.69( 40.99%)d 0.00( 0.00%)   |
|                                                     | single point calculation                              |
|                                                     | 81. (2.00000) 98.7066% BD ( 1) C 29-Zr 76             |
|                                                     | 75.772% C 29 s( 57.71%)p 0.73( 42.29%)d 0.00( 0.00%)  |
|                                                     | 23.047% Zr 76 s( 14.54%)p 0.01( 0.12%)d 5.87( 85.33%) |
| NLMO 59: C9-N25 B1, iso 0.04                        | NLMO 60: C9-N25 B2, iso 0.04                          |
|                                                     |                                                       |

| optimised structure                                  | optimised structure                                 |
|------------------------------------------------------|-----------------------------------------------------|
| 59. (2.00000) 99.7251% BD ( 1) C 9- N 25             | 60. (2.00000) 98.8582% BD ( 2) C 9- N 25            |
| 38.295% C 9 s( 40.06%)p 1.49( 59.84%)d 0.00( 0.10%)  | 41.907% C 9 s( 0.00%)p 1.00( 99.85%)d 0.00( 0.15%)  |
| 61.432% N 25 s( 50.50%)p 0.97( 49.16%)d 0.01( 0.35%) | 56.953% N 25 s( 0.00%)p 1.00( 99.77%)d 0.00( 0.23%) |
| single point calculation                             | single point calculation                            |
| 78. (2.00000) 99.7553% BD ( 1) C 29- N 75            | 79. (2.00000) 98.9699% BD ( 2) C 29- N 75           |
| 38.230% C 29 s( 40.37%)p 1.47( 59.53%)d 0.00( 0.10%) | 42.029% C 29 s( 0.00%)p 1.00( 99.84%)d 0.00( 0.16%) |
| 61.529% N 75 s( 53.28%)p 0.87( 46.34%)d 0.01( 0.38%) | 56.943% N 75 s( 0.01%)p 1.00( 99.74%)d 0.00( 0.25%) |
| NLMO 61: C9-N25 B3, iso 0.04                         |                                                     |
| Antimized structure                                  |                                                     |
| optimised structure                                  |                                                     |
| 61. (2.00000) 98.6785% BD ( 3) C 9- N 25             |                                                     |
| 41.774% C 9 s( 0.02%)p99.99( 99.83%)d 9.38( 0.15%)   |                                                     |
| 56.905% N 25 s( 0.05%)p99.99( 99.72%)d 4.31( 0.23%)  |                                                     |
| single point calculation                             |                                                     |
| 80. (2.00000) 98.8367% BD ( 3) C 29- N 75            |                                                     |
| 42.054% C 29 s( 0.01%)p 1.00( 99.83%)d 0.00( 0.16%)  |                                                     |
| 56.784% N 75 s( 0.02%)p99.99( 99.72%)d11.61( 0.25%)  |                                                     |

| Table S12. Representation of the Natural Localized Molecular        | Orbitals (NLMO) of complex 4.                                                                                                                                                                                            |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| NLMO 57: LP(1) Zr77, iso 0.04 side view                             | NLMO 57: LP(1) Zr77, iso 0.04 top view                                                                                                                                                                                   |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                          |  |  |  |  |
| Selection of NBO Analysis                                           | Selection of NLMO Analysis                                                                                                                                                                                               |  |  |  |  |
| 57. (0.72626) LP ( 1)Zr 77 s( 0.66%)p 0.02( 0.01%)d99 99(           | 57. (2.00000) 27.6655% LP ( 1)Zr 77                                                                                                                                                                                      |  |  |  |  |
| 99 33%) List of NAO coefficients                                    | 30.188% Zr 77 s( 0.36%)p 0.05( 0.02%)d99.99( 99.63%)                                                                                                                                                                     |  |  |  |  |
|                                                                     | 30.128% Zr 78 s( 0.37%)p 0.05( 0.02%)d99.99( 99.62%)<br>10.929% C 91 s( 4.23%)p22.62( 95.61%)d 0.04( 0.16%)<br>5.595% N 92 s( 1.94%)p50.52( 98.03%)d 0.01( 0.03%)<br>10.738% C 93 s( 4.31%)p22.17( 95.53%)d 0.04( 0.16%) |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                          |  |  |  |  |
| 0.0038 0.0000 -0.0087 -0.0004 0.0000                                |                                                                                                                                                                                                                          |  |  |  |  |
| 0.0003 0.0012 -0.1230 0.0031 0.0071                                 |                                                                                                                                                                                                                          |  |  |  |  |
| -0.0049 -0.0701 -0.0249 0.9546 (see below) 0.0492<br>-0.2306 0.0758 | 5.463% N 94 s( 1.95%)p50.32( 98.02%)d 0.01( 0.03%)                                                                                                                                                                       |  |  |  |  |
| NLMO 58: LP(1) N92, iso 0.04                                        | NLMO 59: LP(1) N94, iso 0.04                                                                                                                                                                                             |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                          |  |  |  |  |
| NLMO 152: Zr77-C93 BD, iso 0.04                                     | NLMO 153: Zr78-C91 BD, iso 0.04                                                                                                                                                                                          |  |  |  |  |

S51

![](_page_51_Figure_0.jpeg)

![](_page_52_Picture_0.jpeg)

NATURAL POPULATIONS: Natural atomic orbital occupancies

| NAC | ) Atom | No  | lang | Туре   | e(AO) | Occu  | pancy   | Energy |
|-----|--------|-----|------|--------|-------|-------|---------|--------|
| 925 | Zr 77  | S   | Cor( | 4s)    | 1.984 | 169   | -1.8052 | 0      |
| 926 | Zr 77  | S   | Val( | 5s)    | 0.200 | 28    | 0.05792 | 2      |
| 927 | Zr 77  | s   | Ryd( | 6s)    | 0.002 | 210   | 13.6575 | 51     |
| 928 | Zr 77  | рх  | Cor  | ( 4p)  | 1.99  | 342   | -1.088  | 75     |
| 929 | Zr 77  | рх  | Ryd  | (5p)   | 0.00  | )183  | 1.760   | 10     |
| 930 | Zr 77  | рх  | Ryd  | ( 6p)  | 0.00  | 0088  | 0.866   | 46     |
| 931 | Zr 77  | ру  | Cor  | ( 4p)  | 1.99  | 397   | -1.088  | 94     |
| 932 | Zr 77  | ру  | Ryd  | ( 5p)  | 0.00  | )229  | 1.316   | 34     |
| 933 | Zr 77  | ру  | Ryd  | ( 6p)  | 0.00  | 0097  | 0.333   | 54     |
| 934 | Zr 77  | pz  | Cor  | ( 4p)  | 1.99  | 602   | -1.100  | 77     |
| 935 | Zr 77  | pz  | Ryd  | ( 5p)  | 0.00  | )148  | 1.169   | 24     |
| 936 | Zr 77  | pz  | Ryd  | ( 6p)  | 0.00  | 0084  | 0.266   | 88     |
| 937 | Zr 77  | dxy | Val  | (4d)   | 0.50  | 0621  | -0.052  | 14     |
| 938 | Zr 77  | dxy | Ryd  | d( 5d) | 0.0   | 1380  | 0.386   | 53     |
| 939 | Zr 77  | dxz | Val  | ( 4d)  | 0.44  | 108   | -0.082  | 82     |
| 940 | Zr 77  | dxz | Ryc  | d( 5d) | 0.0   | 1452  | 0.472   | 56     |
| 941 | Zr 77  | dyz | Val  | (4d)   | 0.48  | 3026  | -0.043  | 88     |
| 942 | Zr 77  | dyz | Ryc  | d( 5d) | 0.0   | 1083  | 0.422   | .93    |
| 943 | Zr 77  | dx2 | y2 V | al( 4d | ) 0.  | 73203 | -0.03   | 644    |
| 944 | Zr 77  | dx2 | y2 R | yd( 50 | d) 0. | 01768 | 0.43    | 3923   |
| 945 | Zr 77  | dz2 | Val  | (4d)   | 0.52  | L219  | -0.085  | 04     |
| 946 | Zr 77  | dz2 | Ryo  | d( 5d) | 0.0   | 2068  | 0.505   | 511    |
|     |        |     |      |        |       |       |         |        |

S53

## 5.4. Biradical character of complex 4

In case of compound **4**, we carried out CAS(2,2) as well as CAS(4,4) calculations. As the latter gives no better results than the CAS(2,2) calculation, only the results from this calculation (Basis set: def2svp<sup>13</sup>) are discussed here. The calculations show that the contributions to the multi-determinant wave function are the two determinants placing two electrons either in the formal HOMO ( $\phi_1$ ) or LUMO ( $\phi_2$ ,  $\beta = 13$  %).

![](_page_53_Figure_2.jpeg)

**Figure S47.** Schematic depiction of the active orbitals of the CAS(2,2) calculation. The orbital localisation scheme indicates that the radical of each zirconium is partly delocalised over the ZrCN unit.

| $\phi_1$ HOMO side view | $\phi_1$ HOMO top view |
|-------------------------|------------------------|
|                         |                        |
| $\phi_2$ LUMO side view | $\phi_2$ LUMO top view |
|                         |                        |

**Table S13.** Surface Plot of the active orbitals of the CAS(2,2) calculation. H-atoms are omitted for clarity, surfaces were generated with Avogadro and rendered with POV-Ray.<sup>[14]</sup>

## 6. References

- [1] C. Lefeber, W. Baumann, A. Tillack, R. Kempe, H. Görls and U. Rosenthal, *Organometallics*, 1996, **15**, 3486-3490.
- [2] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
- [3] G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- [4] G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8
- [5] A. L. Spek, Acta Cryst., 2015, C71, 9-18.
- [6] Diamond Crystal and Molecular Structure Visualization, Crystal Impact Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/diamond.
- [7] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.
- [8] a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100; b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822–8824.
- [9] A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, **100**, 5829–5835.
- [10] a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270–283; b) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.
- a) E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, 2013 (NBO 6.0); b) J. E. Carpenter and F. J. Weinhold, *Mol. Struct.: THEOCHEM*, 1988, **169**, 41–62; c) F. Weinhold and J. E. Carpenter, *The Structure of Small Molecules and Ions*, Plenum Press, **1988**; d) F. Weinhold and C. R. Landis, *Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective*, Cambridge University Press, **2005**.
- [12] GaussView, Version 5.0.8, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2000-2008.
- [13] F. Weigend, *PhysChemChemPhys*, 2006, **8**, 1057-1065.
- [14] a) M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminformatics, 2012, 4, 17; b) POV-Ray: Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia http://www.povray.org/