Electronic Supplementary Information

Versatile Functionalization of 3,5-Diamino-4-nitropyrazole for Promising Insensitive Energetic Compounds

Yongxing Tang,^{a,b} Jinchao Ma,^{a,b} Gregory H. Imler,^c Damon A. Parrish^c and Jean'ne M. Shreeve*a

- [a] Dr. Y. Tang, J. Ma, Prof. Dr. J. M. Shreeve Department of Chemistry University of Idaho Moscow, Idaho, 83844-2343 USA.
 Fax: (+1) 208-885-9146
 E-mail: jshreeve@uidaho.edu
- [b] Dr. Y. Tang, J. MaNanjing University of Science and TechnologyNanjing, 210094 (China)
- [c] Dr. G. H. Imler, D. A. Parrish
 Naval Research Laboratory
 4555 Overlook Avenue
 Washington, D.C. 20375 USA

Table of contents

Computational Methods	S3
Crystal Structure Analysis	S5
References	S14

Computational Methods: The gas phase enthalpies of formation were calculated based on isodesmic reactions (Scheme S1). The enthalpy of reaction is obtained by combining the MP2/6–311++G** energy difference for the reactions, the scaled zero point energies (ZPE), values of thermal correction (HT), and other thermal factors. The solid-state heats of formation were calculated based on Trouton's rule according to equation (1) (*T* represents either the melting point or the decomposition temperature when no melting occurs prior to decomposition).¹

$$\Delta H_{sub} = 188 / Jmol^{-1}K^{-1} \times T \tag{1}$$

For energetic salts, the solid-phase enthalpy of formation is obtained using a Born–Haber energy cycle (Scheme S2).² The solid phase heat of formation of energetic salts can be simplified by Equation (2).

$$\Delta H_{\rm f}^{o}(salt, 298K) = \Delta H_{\rm f}^{o}(cation, 298K) + \Delta H_{\rm f}^{o}(cation, 298K) - \Delta H_{\rm L}$$
(2)

Scheme S1. Isodesmic reactions

Scheme S2 Born–Haber cycle for the formation of energetic salts. *a*, *b*, *c*, *d* are the number of moles of the respective products.

In Equation (2), the lattice energy (ΔH_L) could be predicted by using the formula suggested by reported methods³ [Equation (3)].

 $\Delta H_{\rm L} = U_{POT} + [p(nM/2-2) + q(n_x/2-2)]RT$ (3)

in which *nM* and n_x depend on the nature of the ions M^{p+} and X^{q-}, respectively, and are equal to three for monoatomic ions, five for linear polyatomic ions, and six for nonlinear polyatomic ions. The equation for lattice potential energy U_{POT} has the form [Equation (4)]: $U_{POT}[kJmol^{-1}] = \gamma (\rho / M)_{1/3} + \delta$ (4)

For the compound which is a hydrate $(7 \cdot H_2O \text{ and } 11 \cdot 2H_2O)$, the solid-phase enthalpy of formation is obtained by adding the gas phase heat of formation of the anhydrous compound to that of water (-241.8 kJ mol⁻¹).⁴

Species	ZPE	<i>H</i> _r	E ₀	corrected E ₀	<i>HOF</i> (kJ mol ⁻¹)
2	0.134367	0.147753	-796.6755811	-796.53320	484.0076958
2anion	0.121462	0.134377	-796.1694654	-796.03995	268.3671766
10	0.146322	0.15925	-688.6467021	-688.49330	216.1391833
10cation	0.159492	0.172676	-689.0269266	-688.86063	775.1387349
14	0.146269	0.160562	-780.7199983	-780.56529	254.7325443
1	0.107276	0.117201	-540.1924739	-540.07956	137.09
14s1	0.144539	0.155758	-576.6165504	-576.46657	270.67 ^[a]
CH ₃ NH ₂	0.06403	0.06840	-95.59384	-95.52800	-23 ^[b]
tz	0.046867	0.051296	-257.653854	-257.60443	335.14 ^[b]
tzanion	0.033829	0.038053	-257.1242314	-257.08753	181.58 ^[a]
G	0.075947	0.081442	-204.8735052	-204.79510	26 ^[a]
G+	0.088414	0.094658	-205.2570327	-205.16591	575.85 ^[a]
CH₃NO₂	0.04984	0.055138	-244.4784821	-244.42534	-74.3 ^[b]
NH ₃	0.034384	0.038203	-56.4154647	-56.37864	- 45.9 ^[b]
CH₄	0.044793	0.048605	-40.3796224	-40.33281	- 74.6 ^[b]

[a] Data obtained from G2.

[b] Data are from Ref. [D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), CRC Press/Taylor and Francis, Boca Raton, FL.].

Crystal Structure Analysis

Tuble 52 . Crystal data and Structure ferme		
Identification code	2	
Empirical formula	$C_4H_7N_9O_3$	
CCDC number	1861409	
Formula weight	229.19	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 9.1165(4) Å	$\alpha = 90^{\circ}$.
	b = 14.3444(6) Å	$\beta = 108.033(2)^{\circ}$.
	c = 7.2327(3) Å	$\gamma = 90^{\circ}$.
Volume	899.36(7) Å ³	
Ζ	4	
Density (20°C)	1.693 Mg/m ³	
Absorption coefficient	0.144 mm ⁻¹	
F(000)	472	
Crystal size	$0.362 \times 0.212 \times 0.085$ mm	n ³
Theta range for data collection	2.349 to 30.034°.	
Index ranges	-12<=h<=12, -19<=k<=19	9, -9<=1<=10
Reflections collected	10599	
Independent reflections	2541 [R _{int} =0.0357]	
Completeness to theta = 25.242°	99.2 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7460 and 0.6711	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	2541 / 3 / 151	
Goodness-of-fit on F ²	1.018	
Final R indices [I>2sigma(I)]	$R_1 = 0.0465, WR_2 = 0.106$	0
R indices (all data)	$R_1 = 0.0827, wR_2 = 0.122$	2
Largest diff. peak and hole	0.309 and -0.231 e.Å ⁻³	

Table S2. Crystal data and structure refinement for 2.

N(1)-C(2)	1.323(2)	N(1)-H(1A)	0.8600
N(1)-H(1B)	0.8600	C(2)-N(10)	1.3538(19)
C(2)-C(3)	1.398(2)	C(3)-N(4)	1.378(2)
C(3)-C(7)	1.433(2)	N(4)-O(5)	1.240(2)
N(4)-O(6)	1.239(2)	C(7)-N(9)	1.321(2)
C(7)-N(8)	1.336(2)	N(8)-H(8A)	0.8600
N(8)-H(8B)	0.8600	N(9)-N(10)	1.4098(17)
N(10)-C(11)	1.371(2)	C(11)-N(12)	1.319(2)
C(11)-N(15)	1.322(2)	N(12)-N(13)	1.356(2)
N(13)-N(14)	1.292(2)	N(14)-N(15)	1.348(2)
N(15)-H(15)	0.8600	O(16)-H(16B)	0.814(9)
O(16)-H(16A)	0.814(9)		
C(2)-N(1)-H(1A)	120.0	C(2)-N(1)-H(1B)	120.0
H(1A)-N(1)-H(1B)	120.0	N(1)-C(2)-N(10)	123.54(16)
N(1)-C(2)-C(3)	131.99(15)	N(10)-C(2)-C(3)	104.47(13)
N(4)-C(3)-C(2)	125.33(15)	N(4)-C(3)-C(7)	127.81(16)
C(2)-C(3)-C(7)	106.86(13)	O(5)-N(4)-O(6)	122.84(15)
O(5)-N(4)-C(3)	118.43(17)	O(6)-N(4)-C(3)	118.73(15)
N(9)-C(7)-N(8)	121.37(15)	N(9)-C(7)-C(3)	110.98(14)
N(8)-C(7)-C(3)	127.65(15)	C(7)-N(8)-H(8A)	120.0
C(7)-N(8)-H(8B)	120.0	H(8A)-N(8)-H(8B)	120.0
C(7)-N(9)-N(10)	104.01(12)	C(2)-N(10)-C(11)	128.20(14)
C(2)-N(10)-N(9)	113.66(13)	C(11)-N(10)-N(9)	118.13(12)
N(12)-C(11)-N(15)	110.53(14)	N(12)-C(11)-N(10)	125.34(14)
N(15)-C(11)-N(10)	124.12(14)	C(11)-N(12)-N(13)	104.11(14)
N(14)-N(13)-N(12)	111.52(14)	N(13)-N(14)-N(15)	106.37(13)
C(11)-N(15)-N(14)	107.45(13)	C(11)-N(15)-H(15)	126.3
N(14)-N(15)-H(15)	126.3	H(16B)-O(16)-H(16A	A) 109.0(19)

 Table S3. Bond lengths [Å] and angles [°] for 2.

1.7(3)	
-178.94(16)	
-178.65(17)	
0.73(18)	
-2.7(3)	
177.70(17)	
177.34(16)	
-2.3(3)	
179.26(15)	
-0.40(19)	
-0.3(3)	
-179.95(16)	
179.48(15)	
-0.11(17)	
-2.2(3)	
178.39(15)	
178.59(15)	
-0.86(18)	
0.62(17)	
-178.70(14)	
11.4(3)	
-169.36(15)	
-169.77(16)	
9.5(2)	
0.14(18)	
179.09(15)	
-0.6(2)	
0.8(2)	
0.35(19)	
-178.62(15)	
-0.72(19)	
	$\begin{array}{c} 1.7(3) \\ -178.94(16) \\ -178.65(17) \\ 0.73(18) \\ -2.7(3) \\ 177.70(17) \\ 177.34(16) \\ -2.3(3) \\ 179.26(15) \\ -0.40(19) \\ -0.3(3) \\ -179.95(16) \\ 179.48(15) \\ -0.11(17) \\ -2.2(3) \\ 178.39(15) \\ 178.39(15) \\ 178.59(15) \\ -0.86(18) \\ 0.62(17) \\ -178.70(14) \\ 11.4(3) \\ -169.36(15) \\ -169.77(16) \\ 9.5(2) \\ 0.14(18) \\ 179.09(15) \\ -0.6(2) \\ 0.8(2) \\ 0.35(19) \\ -178.62(15) \\ -0.72(19) \end{array}$

Table S4. Torsion angles [°] for **2**.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1A)N(12)	0.86	2.24	2.858(2)	128.3	
N(1)-H(1B)O(5)	0.86	2.31	2.826(2)	118.9	
N(8)-H(8A)O(5)#2	0.86	2.20	3.056(2)	177.5	
N(8)-H(8B)O(6)	0.86	2.30	2.851(2)	121.6	
N(8)-H(8B)N(13)#3	0.86	2.30	2.984(2)	136.5	
N(15)-H(15)O(16)	0.86	1.81	2.6399(18)	161.8	
O(16)-H(16B)O(6)#2	0.814(9)	2.072(13)	2.8552(19)	161(2)	
O(16)-H(16A)N(9)#4	0.814(9)	2.162(12)	2.9615(19)	167(3)	

Table S5. Hydrogen bonds for 2 [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z+3/2 #2 -x,y+1/2,-z+1/2 #3 x-1,y,z-1 #4 x,-y+3/2,z+1/2

Table S6. Crystal data and structure refinement for 9.

Identification code	9	
CCDC number	1936195	
Empirical formula	$C_4H_{12}ClN_7O_4$	
Formula weight	257.66	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 8.5265(6) Å	$\alpha = 90^{\circ}$.
	b = 6.9696(5) Å	$\beta = 96.241(2)^{\circ}$.
	c = 18.0794(13) Å	$\gamma = 90^{\circ}$.
Volume	1068.02(13) Å ³	
Ζ	4	
Density (20°C)	1.602 Mg/m ³	
Absorption coefficient	0.374 mm ⁻¹	
F(000)	536	
Crystal size	$0.226 \times 0.036 \times 0.036$ mm	n ³
Theta range for data collection	2.266 to 30.073°.	
Index ranges	-9<=h<=11, -9<=k<=9, -2	4<=1<=24
Reflections collected	11746	
Independent reflections	$3034 [R_{int} = 0.0531]$	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7460 and 0.6917	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	3034 / 6 / 161	
Goodness-of-fit on F ²	0.993	
Final R indices [I>2sigma(I)]	$R_1 = 0.0438, wR_2 = 0.095$	8
R indices (all data)	$R_1 = 0.0986, wR_2 = 0.113$	6
Largest diff. peak and hole	0.309 and -0.407 e.Å ⁻³	

Table 57. Dolla lenguis	[A] and angles [] 101 9.		
O(1)-N(3)	1.245(2)	O(2)-N(3)	1.245(2)
N(3)-C(4)	1.384(2)	C(4)-C(5)	1.399(3)
C(4)-C(12)	1.429(3)	C(5)-N(6)	1.318(2)
C(5)-N(7)	1.384(2)	N(6)-H(6A)	0.8600
N(6)-H(6B)	0.8600	N(7)-C(8)	1.383(2)
N(7)-N(11)	1.414(2)	C(8)-N(10)	1.298(3)
C(8)-N(9)	1.314(3)	N(9)-H(9A)	0.8600
N(9)-H(9B)	0.8600	N(10)-H(10A)	0.8600
N(10)-H(10B)	0.8600	N(11)-C(12)	1.316(2)
C(12)-N(13)	1.338(3)	N(13)-H(13A)	0.8600
N(13)-H(13B)	0.8600	O(15)-H(15A)	0.824(9)
O(15)-H(15B)	0.830(10)	O(16)-H(16A)	0.822(10)
O(16)-H(16B)	0.823(10)		
O(2)-N(3)-O(1)	121.94(16)	O(2)-N(3)-C(4)	118.68(17)
O(1)-N(3)-C(4)	119.38(16)	N(3)-C(4)-C(5)	124.94(17)
N(3)-C(4)-C(12)	126.89(17)	C(5)-C(4)-C(12)	108.16(16)
N(6)-C(5)-N(7)	126.91(17)	N(6)-C(5)-C(4)	129.81(17)
N(7)-C(5)-C(4)	103.25(16)	C(5)-N(6)-H(6A)	120.0
C(5)-N(6)-H(6B)	120.0	H(6A)-N(6)-H(6B)	120.0
C(8)-N(7)-C(5)	129.78(17)	C(8)-N(7)-N(11)	116.84(16)
C(5)-N(7)-N(11)	113.11(15)	N(10)-C(8)-N(9)	123.77(18)
N(10)-C(8)-N(7)	117.43(19)	N(9)-C(8)-N(7)	118.80(18)
C(8)-N(9)-H(9A)	120.0	C(8)-N(9)-H(9B)	120.0
H(9A)-N(9)-H(9B)	120.0	C(8)-N(10)-H(10A)	120.0
C(8)-N(10)-H(10B)	120.0	H(10A)-N(10)-H(10B)	120.0
C(12)-N(11)-N(7)	104.69(15)	N(11)-C(12)-N(13)	122.19(18)
N(11)-C(12)-C(4)	110.76(17)	N(13)-C(12)-C(4)	127.05(17)
C(12)-N(13)-H(13A)	120.0	C(12)-N(13)-H(13B)	120.0
H(13A)-N(13)-H(13B)	120.0	H(15A)-O(15)-H(15B)	102.1(19)
H(16A)-O(16)-H(16B)	103(2)		

Table S7. Bond lengths [Å] and angles [°] for 9.

O(2)-N(3)-C(4)-C(5)	178.26(19)	
O(1)-N(3)-C(4)-C(5)	-2.3(3)	
O(2)-N(3)-C(4)-C(12)	-0.7(3)	
O(1)-N(3)-C(4)-C(12)	178.79(19)	
N(3)-C(4)-C(5)-N(6)	-2.3(3)	
C(12)-C(4)-C(5)-N(6)	176.85(19)	
N(3)-C(4)-C(5)-N(7)	179.76(18)	
C(12)-C(4)-C(5)-N(7)	-1.1(2)	
N(6)-C(5)-N(7)-C(8)	-2.7(3)	
C(4)-C(5)-N(7)-C(8)	175.38(19)	
N(6)-C(5)-N(7)-N(11)	-176.53(18)	
C(4)-C(5)-N(7)-N(11)	1.5(2)	
C(5)-N(7)-C(8)-N(10)	-152.5(2)	
N(11)-N(7)-C(8)-N(10)	21.1(3)	
C(5)-N(7)-C(8)-N(9)	27.8(3)	
N(11)-N(7)-C(8)-N(9)	-158.58(19)	
C(8)-N(7)-N(11)-C(12)	-176.03(17)	
C(5)-N(7)-N(11)-C(12)	-1.3(2)	
N(7)-N(11)-C(12)-N(13)	-179.14(18)	
N(7)-N(11)-C(12)-C(4)	0.5(2)	
N(3)-C(4)-C(12)-N(11)	179.49(19)	
C(5)-C(4)-C(12)-N(11)	0.4(2)	
N(3)-C(4)-C(12)-N(13)	-0.9(3)	
C(5)-C(4)-C(12)-N(13)	-180.0(2)	

 Table S8. Torsion angles [°] for 9.

D-H A	d(D-H)	d(H A)	d(D A)	<(DHA)	
2	•(2 11)	••(111)	• (2 1)	(2111)	
N(6)-H(6A)O(15)#1	0.86	2.10	2.846(2)	144.6	
N(6)-H(6B)O(1)	0.86	2.25	2.791(2)	121.4	
N(6)-H(6B)O(15)#2	0.86	2.26	3.055(2)	154.2	
N(10)-H(10B)O(16)	0.86	2.03	2.876(3)	167.3	
N(13)-H(13B)O(2)	0.86	2.25	2.808(2)	122.7	
O(15)-H(15A)O(16)	0.824(9)	2.027(10)	2.850(3)	175(3)	
O(15)-H(15B)Cl(14)#6	0.830(10)	2.388(10)	3.217(2)	177(3)	

Table S9. Hydrogen bonds for 9 [Å and $^{\circ}$].

Symmetry transformations used to generate equivalent atoms: #1 x-1 y z #2 -x+1 -y+1 -z+1 #3 -x+1 y-1/2 -z+1/2

#1 x-1,y,z #2 -x+1,-y+1,-z+1 #3 -x+1,y-1/2,-z+1/2 #4 x,-y+3/2,z-1/2 #5 -x+2,-y+2,-z+1 #6 x,y-1,z

#7 -x+2,y-1/2,-z+1/2

 Table S10. Crystal data and structure refinement for 13.

Identification code	13	
CCDC number	1936194	
Empirical formula	C ₅ H ₉ ClN ₈ O ₃	
Formula weight	264.65	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.8649(6) Å	$\alpha = 87.756(2)^{\circ}$.
	b = 7.8722(6) Å	$\beta = 74.218(2)^{\circ}$.
	c = 8.8770(6) Å	$\gamma = 73.265(2)^{\circ}$.
Volume	506.04(6) Å ³	
Ζ	2	
Density (20°C)	1.737 Mg/m ³	
Absorption coefficient	0.393 mm ⁻¹	
F(000)	272	
Crystal size	$0.408 \times 0.223 \times 0.060$ mm	n ³
Theta range for data collection	2.386 to 30.019°.	
Index ranges	-11<=h<=11, -11<=k<=10), - 12<=l<=11
Reflections collected	6095	
Independent reflections	$2773 [R_{int} = 0.0200]$	
Completeness to theta = 25.242°	99.1 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7460 and 0.6981	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	2773 / 3 / 160	
Goodness-of-fit on F ²	1.029	
Final R indices [I>2sigma(I)]	$R_1 = 0.0395, wR_2 = 0.098$	1
R indices (all data)	$R_1 = 0.0552, wR_2 = 0.106$	3
Largest diff. peak and hole	0.336 and -0.285 e.Å ⁻³	

Table S11.	Bond	lengths	[Å]	and	angles	[°]	for	13.

O(1)-N(3)	1.2377(19)	O(2)-N(3)	1.2339(18)
N(3)-C(4)	1.398(2)	C(4)-C(15)	1.378(2)
C(4)-C(5)	1.438(2)	C(5)-N(7)	1.332(2)
C(5)-N(6)	1.338(2)	N(6)-H(6A)	0.8600
N(6)-H(6B)	0.8600	N(7)-N(8)	1.3947(19)
N(8)-C(15)	1.352(2)	N(8)-C(9)	1.376(2)
C(9)-N(10)	1.305(2)	C(9)-N(11)	1.330(2)
N(10)-H(10B)	0.8600	N(11)-C(12)	1.338(2)
C(12)-N(13)	1.308(2)	C(12)-N(14)	1.370(2)
N(13)-H(13A)	0.8600	N(13)-H(13B)	0.8600
N(14)-C(15)	1.343(2)	N(14)-H(14)	0.8600
O(17)-H(17A)	0.822(10)	O(17)-H(17B)	0.817(10)
O(2)-N(3)-O(1)	123.11(14)	O(2)-N(3)-C(4)	118.61(14)
O(1)-N(3)-C(4)	118.28(14)	C(15)-C(4)-N(3)	124.98(15)
C(15)-C(4)-C(5)	105.95(14)	N(3)-C(4)-C(5)	128.74(15)
N(7)-C(5)-N(6)	122.20(16)	N(7)-C(5)-C(4)	110.99(14)
N(6)-C(5)-C(4)	126.77(15)	C(5)-N(6)-H(6A)	120.0
C(5)-N(6)-H(6B)	120.0	H(6A)-N(6)-H(6B)	120.0
C(5)-N(7)-N(8)	103.76(13)	C(15)-N(8)-C(9)	121.67(14)
C(15)-N(8)-N(7)	113.36(13)	C(9)-N(8)-N(7)	124.78(13)
N(10)-C(9)-N(11)	123.16(15)	N(10)-C(9)-N(8)	117.72(15)
N(11)-C(9)-N(8)	119.12(14)	C(9)-N(10)-H(10A)	120.0
C(9)-N(10)-H(10B)	120.0	H(10A)-N(10)-H(10B)	120.0
C(9)-N(11)-C(12)	119.36(14)	N(13)-C(12)-N(11)	120.46(15)
N(13)-C(12)-N(14)	117.47(15)	N(11)-C(12)-N(14)	122.06(15)
C(12)-N(13)-H(13A)	120.0	C(12)-N(13)-H(13B)	120.0
H(13A)-N(13)-H(13B	3) 120.0	C(15)-N(14)-C(12)	119.07(14)
C(15)-N(14)-H(14)	120.5	C(12)-N(14)-H(14)	120.5
N(14)-C(15)-N(8)	118.52(14)	N(14)-C(15)-C(4)	135.54(15)
N(8)-C(15)-C(4)	105.92(14)	H(17A)-O(17)-H(17B)	105(2)

O(2)-N(3)-C(4)-C(15)	-172.53(16)
O(1)-N(3)-C(4)-C(15)	7.2(2)
O(2)-N(3)-C(4)-C(5)	-0.1(3)
O(1)-N(3)-C(4)-C(5)	179.63(16)
C(15)-C(4)-C(5)-N(7)	0.39(19)
N(3)-C(4)-C(5)-N(7)	-173.15(16)
C(15)-C(4)-C(5)-N(6)	178.21(17)
N(3)-C(4)-C(5)-N(6)	4.7(3)
N(6)-C(5)-N(7)-N(8)	-177.83(16)
C(4)-C(5)-N(7)-N(8)	0.10(18)
C(5)-N(7)-N(8)-C(15)	-0.60(18)
C(5)-N(7)-N(8)-C(9)	174.44(15)
C(15)-N(8)-C(9)-N(10)	178.83(15)
N(7)-N(8)-C(9)-N(10)	4.2(2)
C(15)-N(8)-C(9)-N(11)	-1.5(2)
N(7)-N(8)-C(9)-N(11)	-176.16(14)
N(10)-C(9)-N(11)-C(12)	177.79(16)
N(8)-C(9)-N(11)-C(12)	-1.8(2)
C(9)-N(11)-C(12)-N(13)	-178.29(17)
C(9)-N(11)-C(12)-N(14)	1.9(3)
N(13)-C(12)-N(14)-C(15)	-178.41(17)
N(11)-C(12)-N(14)-C(15)	1.4(3)
C(12)-N(14)-C(15)-N(8)	-4.6(2)
C(12)-N(14)-C(15)-C(4)	174.20(18)
C(9)-N(8)-C(15)-N(14)	4.8(2)
N(7)-N(8)-C(15)-N(14)	179.98(14)
C(9)-N(8)-C(15)-C(4)	-174.36(15)
N(7)-N(8)-C(15)-C(4)	0.85(18)
N(3)-C(4)-C(15)-N(14)	-5.8(3)
C(5)-C(4)-C(15)-N(14)	-179.62(18)
N(3)-C(4)-C(15)-N(8)	173.13(15)
C(5)-C(4)-C(15)-N(8)	-0.72(18)

 Table S12. Torsion angles [°] for 13.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(6)-H(6A)Cl(16)#1	0.86	2.44	3.2856(17)	166.0	
N(6)-H(6B)O(2)	0.86	2.34	2.884(2)	121.7	
N(10)-H(10B)O(17)	0.86	2.03	2.865(2)	164.0	
N(13)-H(13A)N(11)#5	0.86	2.13	2.987(2)	179.3	
O(17)-H(17A)Cl(16)#4	0.822(10)	2.386(10)	3.2072(15)	178(3)	

Table S13. Hydrogen bonds for 13 [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x,y,z+1 #2 -x+1,-y+1,-z+1 #3 x-1,y+1,z #4 -x,-y+2,-z+1 #5 -x+1,-y+2,-z #6 -x+2,-y+1,-z #7 x+1,y,z #8 -x+1,-y+1,-z

References:

 [1] M. S. Westwell, M. S. Searle, D. J. Wales, D. H. Williams, J. Am. Chem. Soc. 1995, 117, 5013-5015.

[2] H. Gao, C. Ye, C. M. Piekarski, J. M. Shreeve, *J. Phys. Chem. C* 2007, **111**, 10718-10731.

[3] H. D. B. Jenkins, D. Tudela and L. Glasser, *Inorg. Chem.* 2002, **41**, 2364-2367.

[4] P. J. Linstrom, W. G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (<u>http://webbook.nist.gov</u>).