Electronic Supplementary Information

Synthesis of 3D free standing Crystalline NiSe_x matrix for Electrochemical Energy Storage Application

Syed Mukulika Dinara^a, Aneeya K. Samantara^{b,c}, Jiban K. Das^{b,c}, J.N. Behera^{b,c,*}, Saroj K. Nayak^a, Dattatray Late^d, Chandra Sekhar Rout^{e,*}

^aSchool of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 751013, India
^bNational Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India
^cHomi Bhabha National Institute (HBNI), Mumbai, India
^dPhysical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
^eCentre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagaram, Bangalore 562112, India
*Email: jnbehera@niser.ac.in
r.chandrasekhar@jainuniversity.ac.in

Calculation of the mass of working electrode material:

To calculate the mass of the working electrode, we have subtracted the initial weight of Ni foam from its final weight after growth. The increase in weight is due to the growth of nickel selenide and the Se precursor is only responsible for the extra weight after deposition. So from this extra weight, we have calculated the equivalent mole fraction of nickel selenide. And then the corresponding weight has been calculated which is the actual weight of nickel selenide to act in electrochemical performance. By following this method, the amount of deposited working nickel selenide material is 1.5 mg.

Fig. S1: The Raman spectrum of CVD grown polycrystalline NiSe_x showing three characteristic peaks around 217, 511 and 1056 cm⁻¹ corresponding to T_g mode of NiSe₂, longitudinal optical (LO) one-phonon mode and transverse optical (TO) two-phonon mod of NiSe respectively.

Fig. S2: (a-b) FESEM images of rGO at different magnifications and (c) The Raman spectra of GO and rGO.

Fig. S3 Cyclic voltammogram of self-supported $NiSe_x$ nanocrystal and bare Ni foam electrode in three-electrode configuration at 100 mV/s sweep rate in 6.0 M KOH electrolyte (All potentials are recorded against Ag/AgCl reference electrode).

Fig. S4: (a) EIS spectra of self-supported $NiSe_x$ nanocrystal electrode: Nyquist impedance plot with the inset showing the magnified half circle regime and (b) the corresponding equivalent circuit fitted to the impedance characteristic.

Fig. S5: Cyclic voltammogram at 10 mV/s sweep rate recorded with variable potential window and presented for (a) NiSe_x, (b) rGO and (c) both NiSe_x and rGO in single frame (All potentials are recorded against Ag/AgCl reference electrode).

Electrode	Specific capacitance	Energy density	Power density	Capacitance retention	Measure- ment	References
Ni _{0.85} Se	1354 F g ⁻¹	40.7 W h kg ⁻¹	16 kW kg ⁻¹	92.4% after 20000 cycles	Three electrodes	1
NiSe ₂	92 F g ⁻¹	32.7 Wh kg ⁻¹	800 W kg ⁻¹	86% after 2000 cycles	Two electrodes	2
NiSe nano- rod arrays	466 mF cm ⁻²	38.8 Wh kg ⁻¹	13.5 kW kg ⁻¹	90.09% after 3000 cycles	Two electrodes	3
Truncated cube-like NiSe ₂ single crystals	$104 { m F g}^{-1}$	$44.8 \text{ Wh } \text{kg}^{-1}$	17.2 kW kg ⁻¹	87.4.% after 20000 cycles	Two electrodes	4
Honey comb like Ni _{0.85} Se	196.65 F g ⁻¹	65 Wh kg ⁻¹	3200 W kg ⁻¹	93.7 % after 10000 cycles	Two electrodes	5
Hexagonal NiSe/NiO nanostructure	83.5 F g ⁻¹	721 mWh kg ⁻¹	250 W kg ⁻¹	94 % after 5000 cycles	Three electrodes	6
Ni _{0.85} Se/graph ene microstructur es	103.4 F g ⁻¹	32.3 Wh kg ⁻¹	1.5 KW kg ⁻¹	90.6% after 10000 cycles	Two electrodes	7
Hexapod like NiSe ₂ nanostructure	75 F g ⁻¹	-	-	94% after 5000 cycles	Three electrodes	8
NiSe nano particles	-	22.3 Wh kg^{-1}	6.2 KW kg ⁻¹	76% after 5000 cycles	Two electrodes	9
Layered MoSe ₂ nanosheets	49.7 F g ⁻¹	-	-	75% after 10000 cycles	Two electrodes	10
Bamboo-like CoSe ₂ arrays	50.3 F g ⁻¹	20.2 Wh kg^{-1}	1.4 KW kg ⁻¹	93.3% after 2000 cycles	Two electrodes	11
Hollow NiSe- CoSe nanoparticles	-	41.8 Wh kg ⁻¹	30 KW kg ⁻¹	-	Three electrodes	12
WSe ₂ /rGO nanosheets hybrid	389 F g ⁻¹	34.5 Wh kg ⁻¹	4 KW kg ⁻¹	98.7% after 3000 cycles	Three electrodes	13
3D cuboidal vanadium diselenide	680 F g ⁻¹	212 Wh kg ⁻¹	3.3 KW kg ⁻¹	81% after 10000 cycles	Two electrodes	14

Table:S1 Comparison of electrochemical performance of self-supported 3D NiSex nanocrystalline electrode and other reported Ni_xSe_y based electrode materials

NiSe ₂ -NiSe nano-crystal	1333 F g ⁻¹	105 Wh kg ⁻¹	54 kW kg ⁻¹	-	Three electrodes	• This work
	40 F g^{-1}	$22 \text{ Wh } \text{kg}^{-1}$	5.8 kW kg^{-1}	88 % after 10000 cycles	Two electrodes	

References:

- 1 S. Wang and S. Ma, *Dalt. Trans.*, 2019, **48**, 3906–3913.
- 2 Q. Bao, J. Wu, L. Fan, J. Ge, J. Dong, J. Jia, J. Zeng and J. Lin, *J. Energy Chem.*, 2017, **26**, 1252–1259.
- 3 Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang and C. Wang, *Electrochim. Acta*, 2017, **250**, 327–334.
- 4 S. Wang, W. Li, L. Xin, M. Wu, Y. Long, H. Huang and X. Lou, *Chem. Eng. J.*, 2017, **330**, 1334–1341.
- 5 L. Du, W. Du, H. Ren, N. Wang, Z. Yao, X. Shi, B. Zhang, J. Zai and X. Qian, *J. Mater. Chem.* A, 2017, **5**, 22527–22535
- 6 K. S. Bhat and H. S. Nagaraja, *Mater. Res. Express*, 2018, **5**, 105504.
- 7 S. Ma, S. Zhou, S. Wang and M. Liu, J. Alloys Compd., 2017, 728, 592–599.
- 8 N. S. Arul and J. I. Han, *Mater. Lett.*, 2016, **181**, 345–349.
- 9 B. Yuan, W. Luan and S. T. Tu, Cryst. Eng. Comm., 2012, 14(6), 2145-2151.
- 10 S. K. Balasingam, J. S. Leeb and Y. Jun, *Dalton Trans.*, 2015, 44, 15491–15498.
- 11 T. Chen, S. Li, P. Gui, J. Wen, X. Fu and G. Fang, *Nanotechnology*, 2018, **29**, 205401.
- 12 H. Chen, M. Fan, C. Li, G. Tian, C. Lv, D. Chen, K. Shu and J. Jiang, *J. Power Sources*, 2016, **329**, 314-322.
- 13 C.V.M. Gopi, A.E. Reddy, J.S. Bak, I.H. Cho and H.J. Kim, *Mater. Lett.*, 2018, 223, 57–60.
- 14 S. R. Marri, S. Ratha, C. S. Rout and J. N. Behera, *Chem. Commun.*, 2017, **53**, 228-231.