Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

> Electronic Supplementary Information for the Paper PbMnTeO₆: a chiral quasi 2D magnet with all cations in octahedral coordination and the space group problem of trigonal layered A²⁺M⁴⁺TeO₆

Mariia D. Kuchugura^{a,b}, Alexander I. Kurbakov^{a,b}, Elena A. Zvereva^c, Tatyana M. Vasilchikova^c, Grigory V. Raganyan^c, Alexander N. Vasiliev^{c,d,e} Victor A. Barchuk^f and Vladimir B.

Nalbandyan^{f*}

^aNRC «Kurchatov Institute» - PNPI, 188300 Gatchina, Russia ^bFaculty of Physics, St. Petersburg University, 199034, St. Petersburg, Russia ^cFaculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia ^dNational Research South Ural State University, Chelyabinsk 454080, Russia ^eNational University of Science and Technology "MISiS", Moscow 119049, Russia. ^fFaculty of Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia

Contents EDX analysis of PbMnTeO₆ Neutron diffraction data Preparation and properties of PbGeTeO₆

EDX analysis of PbMnTeO₆

For elemental analysis of PbMnTeO₆, an electron microprobe (INCA ENERGY 450/XT) was used with an X-Act ADD detector based on an electron microscope VEGA II LMU (Tescan) operated at the accelerating voltage of 20 kV. The data were averaged on five measurements at various points of the sample (Table S1) and yielded the following gross formula: $Pb_{0.96(1)}Mn_{0.97(7)}Te_{1.00(3)}O_{4.9(5)}$. Within experimental uncertainties, the cationic composition is stoichiometric and agrees with the previously reported $Pb_{0.99(8)}Mn_{1.04(7)}Te_{0.98(1)}O_x$.¹

Element	Pb	Mn	Те	0
Weight %	43.61	11.28	27.71	17.4
	44.01	12.9	29.39	13.71
	43.56	11.39	27.54	17.52
	43.47	10.8	27.09	18.64
	43.2	11.61	27.56	17.63
Average	43.57	11.59	27.86	16.98
Esd	0.29	0.79	0.89	1.9
Recalculated to atomic fractions and normalized to 1 Te	0.963(6)	0.966(66)	1.000(32)	4.86(54)

Neutron diffraction data

Table S2. Details of the neutron diffraction experiment and structure refinement of PbMnTeO6,space group P312

Wavelength, Å	1.494	Ζ	1
Step size, °	0.050	Molar weight	485.74
Angular range, °	3.55-164.50	Density (calc.), g/cm ³	6.634
Number of <i>h k l</i>	124	<i>R</i> _p , %	4.17
Temperature, K	300	R _{wp} , %	5.47
Space group	<i>P312</i> (149)	<i>R</i> _e , %	4.38
<i>a</i> , Å	5.10112(2)	χ^2	1.455
<i>c</i> , Å	5.39564(4)		
<i>V</i> , Å ³	121.59		

Atom	x/a	y/b	z/c	U _{iso}	SOF
Pb	0	0	0	0.0110(4)	1
Mn1	2/3	1/3	1/2	0.0090(19)	0.906(6)
Te1	1/3	2/3	1/2	0.0082(11)	0.906(6)
Mn2	1/3	2/3	1/2	0.0082(11)	0.094(6)
Te2	2/3	1/3	1/2	0.0090(19)	0.094(6)
0	0.3815(2)	0.0019(4)	0.30184(17)	0.0085(2)	1

 Table S3. Atomic coordinates, thermal displacement parameters and site occupancy factors of PbMnTeO₆, space group P312

Preparation and properties of PbGeTeO₆

PbGeTeO₆ was prepared similar to PbMnTeO₆, by solid-state reactions from reagent-grade PbO₂, GeO₂ and TeO₂ in three steps: at 500 °C (1h), 730 °C (15 h) and 700 °C (5 h) with intermediate regrinding and pressing. Phase purity of the product is illustrated by its XRD pattern (Fig. S1). Lattice parameters were refined with corundum as internal standard: a=5.0885(2); c=5.4484(1) Å. Another single-phase sample was prepared by a slightly different route with essentially same lattice constants: a=5.0885(2); c=5.4487(1) Å.

Fig. S1. XRD pattern of PbGeTeO₆ (low angle part)

Dense PbGeTeO₆ ceramics was prepared by uniaxial hot pressing for 1 h at 700 °C in surrounding coarse-grained corundum. Then, the outer contaminated layer was eliminated using a diamond saw and two discs were cut, with diameter of 12.5 mm and thickness of 1.2 mm. Their apparent density, 6.52 g/cm³, constitutes 95% of the X-ray density (6.84 g/cm³).

XRD of the disc surface revealed considerable grain orientation indicated by enhanced intensity ratio of reflections 0 0 2 and 1 1 0, as compared with the powder mixed with coffee eliminating grain orientation (Fig. S2). This means preferred orientation of the three-fold axis, suggested to be polar, perpendicular to the disc, thus making favourable conditions for discovery of dielectric anomalies, if any.

Fig. S2. Comparison of reflections from planes parallel (002) and perpendicular (110) to the layers of the PbGeTeO₆ crystal structure. Top (black): powder mixed with coffee; bottom (red): ceramic disc

The discs were electroded by firing silver paste. One of them was used for study of temperature dependence of dielectric properties: permittivity and loss tangent (Fig. S3). The measurements were made with a semi-automatic bridge Tesla BM-484 at a fixed frequency of 1592 Hz. No signs of expected ferroelectric phase transition could be found between room temperature and 300 °C, and at higher temperatures, rapid growth of conductivity and losses precluded meaningful measurements. In addition, absolute values of relative permittivity, in the range 20-50, were too low for ferroelectric ceramics. Another disc was tested for ferroelectric hysteresis using a standard Sawyer-Tower circuit at room temperature. Here, again, meaningful results could not be obtained: instead of characteristic hysteresis loop, only oval loops could be observed typical of conducting samples.

Fig. S3. Temperature dependence of the relative dielectric permittivity (red) and loss tangent (black) of dense PbGeTeO₆ ceramics at 1592 Hz.