SUPPORTING INFORMATION

for

A family of readily synthesised phosphorescent platinum(II) complexes based on

tridentate N^N^O-coordinating Schiff-base ligands

Emma V. Puttock, Jack D. Fradgley, Dmitry S. Yufit and J. A. Gareth Williams*

Department of Chemistry, Durham University, Durham, DH1 3LE, U.K. * E-mail: j.a.g.williams@durham.ac.uk

Figure S1 The molecular and crystal structures of (left) the N–H hydrazone complexes PtL^6Cl , PtL^8Cl and $PtL^{12}Cl$, and (right) the N–Me hydrazone complexes $PtL^{14}Cl$, $PtL^{17}Cl$ and $PtL^{19}Cl$. T = 120 K; H atoms are omitted for clarity.

Identification code	PtL ¹ C1	PtL ¹ CCAr	PtL ⁶ Cl	PtL ⁸ C1	PtL ¹² Cl	PtL ¹⁴ Cl	PtL ¹⁷ Cl	PtL ¹⁹ Cl	PtL ²⁰ Cl
Empirical formula	C ₁₆ H ₁₁ ClN ₂ OPt	$C_{26}H_{14}F_6N_2OPt$	C ₁₃ H ₁₂ ClN ₃ OPt	C ₁₂ H ₉ ClN ₄ O ₃ Pt	$C_{13}H_{14}ClN_3O_3Pt$	C ₁₃ H ₁₂ ClN ₃ OPt	$C_{13}H_{10}Cl_3N_3OPt$	$C_{14}H_{14}ClN_3O_2Pt$	C ₁₄ H ₁₁ ClF ₃ N ₃ OPt
	x CH ₂ Cl ₂	$x \ 2 \ C_2 H_6 OS$	x C ₃ H ₇ NO	x C ₂ H ₆ SO			x C ₃ H ₇ NO		x C ₂ H ₆ OS
Formula weight	562.73	835.74	529.89	565.90	490.81	456.80	598.78	486.82	602.92
Temperature/K	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0
Crystal system	triclinic	monoclinic	monoclinic	monoclinic	triclinic	monoclinic	triclinic	monoclinic	orthorhombic
Space group	P-1	$P2_1/c$	$P2_1/c$	$P2_1/n$	P-1	$P2_1/c$	P-1	$P2_1/n$	Pnma
a/Å	7.8778(6)	16.5452(7)	14.4735(9)	7.0662(2)	8.5021(7)	11.1945(5)	8.5082(7)	8.3913(5)	11.5812(5)
b/Å	8.8726(8)	18.5441(7)	14.4419(9)	23.0266(5)	8.6034(7)	9.5950(4)	8.8816(7)	8.2576(5)	6.8946(3)
c/Å	13.2483(10)	9.7467(4)	8.3539(5)	11.1435(3)	10.4411(8)	12.2845(5)	13.2120(11)	19.9601(11)	23.2291(9)
α/°	75.787(7)	90	90.00	90.00	66.850(2)	90.00	108.748(2)	90	90
β/°	72.823(7)	91.0751(14)	96.170(2)	106.773(2)	88.962(3)	105.6722(14)	100.964(3)	92.4713(19)	90
γ/°	74.302(8)	90	90.00	90.00	86.218(3)	90.00	97.584(3)	90	90
Volume/Å ³	837.79(12)	2989.9(2)	1736.06(18)	1736.02(8)	700.68(10)	1270.44(9)	907.91(13)	1381.79(14)	1854.79(13)
Ζ	2	4	4	4	2	4	2	4	4
$\rho_{calc}g/cm^3$	2.231	1.857	2.027	2.165	2.326	2.388	2.190	2.340	2.159
µ/mm ⁻¹	8.859	4.906	8.253	8.384	10.216	11.248	8.189	10.355	7.868
F(000)	532.0	1632.0	1016.0	1080.0	464.0	856.0	572.0	920.0	1152.0
Reflections collected	17866	65412	21653	34017	15145	27170	18871	22080	39498
Independent refl., R _{int}	4252, 0.0856	8719, 0.0488	4619, 0.0703	4619, 0.0784	4080, 0.0387	3706, 0.0275	5283, 0.0418	4032, 0.0527	2910, 0.0295
Data/restraints/parameters	4252/0/217	8719/7/405	4619/0/220	4619/0/228	4080/0/194	3706/0/174	5283/0/238	4032/0/192	2910/192/158
Goodness-of-fit on F ²	0.990	1.039	1.026	1.204	1.059	1.082	1.044	1.041	1.188
Final R ₁ indexes $[I \ge 2\sigma(I)]$	0.0388	0.0243	0.0334	0.0408	0.0187	0.0114	0.0230	0.0268	0.0212
Final wR ₂ [all data]	0.0693	0.0429	0.0720	0.0749	0.0410	0.0240	0.0474	0.0461	0.0384

Table S1 Crystal data and structure refinement parameters

Figure S2 Molecular orbital plots for the HOMO and LUMO (bottom and top in each case) of $PtL^{1-4}Cl$ and $PtL^{1}-C=C-Ar$ calculated at the energy-minimised S_0 geometry.

Figure S3 UV-visible absorption spectra of PtL⁹Cl in MeCN at 295 K (green line), and its evolution upon exposure to sunlight, monitored at hourly intervals.

Figure S4 Molecular orbital plots for the HOMO (bottom) and LUMO (top) of $PtL^{14}Cl$ at the energy-minimised S_0 geometry.

Figure S5 UV-visible absorption spectra of $PtL^{14}Cl$ and $PtL^{14}-C=C-Ar$ in CH_2Cl_2 at 295 K (solid and dotted lines respectively).

Figure S6 Emission spectra in EPA glass at 77 K: (a) $PtL^{14-18}Cl$, (b) $PtL^{19-20}Cl$ with $PtL^{14}Cl$ also shown for comparision, (c) $PtL^{14}Cl$ and $PtL^{14}-C=C-Ar$.

Figure S7 Emission spectra of PtL⁶Cl in deoxygenated MeCN at 295 K in the presence of CH₃CO₂H (to ensure the fully protonated form is present) and Et₃N (to generate the deprotonated form), shown in red and blue, respectively.

Synthetic procedures and characterisation of compounds other than the representative examples described in the main text

The platinum precursor $Pt(COD)Cl_2$ was prepared by a standard procedure.¹ In the NMR assignments below, non-primed resonances indicate the quinoline or pyridine ring, primed resonances the phenol ring, double-primed the alkyne aromatic ring and triple-primed the alkyne bridge.

PtL²Cl

8-Aminoquinoline (0.10 g, 0.69 mmol) and 2-hydroxy-5-methoxybenzaldehyde (107 mg, 0.70 mmol) were placed under vacuum and heated to 65°C for 2 h with stirring. The crude ligand, HL², was directly in the next step without purification. A mixture of HL² (31 mg, 0.11 mmol), Pt(COD)Cl₂ (42 mg, 0.11 mmol), anhydrous triethylamine (20 mg, 0.20 mmol) and anhydrous acetonitrile (1 mL) was stirred overnight at reflux under argon before allowing to cool to ambient temperature. The mixture was filtered and the precipitate washed with acetonitrile (2 × 1 mL) to give the title compound as a purple-red solid (43 mg, 11% over two steps). ¹H NMR (DMSO-d₆, 700 MHz): 9.74 (1H, s, H^{imine}), 9.60 (1H, dd, J = 5 and 1, H⁹), 8.84 (1H, dd, J = 8 and 1, H⁸), 8.71 (1H, d, J = 8, H⁴), 8.03 (1H, d, J = 8, H⁶), 7.91 (1H, t, J = 8, H⁵), 7.82 (1H, dd, J = 8 and 5, H¹⁰), 7.27 – 7.25 (2H, m, H^{3°} and H^{5°}), 6.91 (1H, d, J = 9, H^{6°}), 3.76 (3H, s, H^{OMe}). ¹³C NMR (DMSO-d₆, 176 MHz): 159.2 (C^{1°}), 152.1 (C⁹), 150.0 (C^{4°}), 148.4 (C^{imine}), 146.3 (C³), 146.3 (C²), 143.6 (C⁸), 139.3 (C⁸), 129.1 (C⁷), 128.8 (C⁵), 127.6 (C⁶), 126.5 (C^{3°}), 123.7 (C¹⁰), 122.4 (C^{6°}), 120.2 (C^{2°}), 118.7 (C⁴), 113.1 (C^{5°}). MS (ES–): *m/z* 507 [M–H]⁺. HRMS (ES⁺) *m/z* 507.0394 [M+H]⁺, calcd for 507.0371 [C₁₇H₁₄N₂O₂Cl¹⁹⁴Pt].

PtL³Cl

8-Aminoquinoline (0.10 g, 0.69 mmol) and 2-hydroxy-5-(trifluoromethoxy)benzaldehyde (144 mg, 0.70 mmol) were placed under vacuum and heated to 65°C for 2 h with stirring. The crude ligand, HL³, was directly in the next step without purification. A mixture of HL³ (37 mg, 0.11 mmol), Pt(COD)Cl₂ (42 mg, 0.11 mmol), anhydrous triethylamine (20 mg, 0.20 mmol) and anhydrous acetonitrile (1 mL) was stirred overnight at reflux under argon before allowing to cool to ambient temperature. The mixture was filtered and the precipitate washed with acetonitrile (2 × 1 mL) to give the title compound as an orange-red solid (35 mg, 9% over two steps). ¹H NMR (DMSO-d₆, 600 MHz): 9.85 (1H, s, H^{imine}), 9.57 (1H, d, J = 5, H⁹), 8.84 (1H, d, J = 8, H⁸), 8.70 (1H, d, J = 8, H⁴), 8.06 (1H, d, J = 8, H⁶), 7.91 (1H, t, J = 8, H⁵), 7.84 – 7.79 (2H, m, H¹⁰ and H^{3'}), 7.53 (1H, dd, J = 9 and 3, H^{5'}), 7.00 (1H, d, J = 9, H^{6'}). ¹³C NMR (DMSO-d₆, 151 MHz): 161.6 (C^{1'}), 152.2 (C⁹), 149.1 (C^{imine}), 145.9 (C³), 143.7 (C²), 139.5 (C⁸), 138.5 (C^{4'}), 129.1 (C⁷), 128.8 (C⁵), 128.6 (C^{5'}), 128.3 (C⁶), 125.8 (C¹⁰ or C^{3'}), 123.8 (C¹⁰ or C^{3'}), 123.0 (C^{6'}), 121.0 (C^{2'}), 119.3 (C⁴). MS (ES+): *m/z* 561.0106 [M+H]⁺; calculated for [C₁₇H₁₁N₂O₂F₃ClPt]⁺ 561.0088.

PtL⁴Cl

8-Aminoquinoline (0.10 g, 0.69 mmol) and 2-hydroxy-5-fluorobenzaldehyde (98 mg, 0.70 mmol) were placed under vacuum and heated to 65°C for 2 h with stirring. The crude ligand, HL^4 , was directly in the next step without purification. A mixture of HL^4 (29 mg, 0.11 mmol), $Pt(COD)Cl_2$ (42 mg, 0.11 mmol), anhydrous triethylamine (20 mg, 0.20 mmol) and anhydrous acetonitrile (1

mL) was stirred overnight at reflux under argon before allowing to cool to ambient temperature. The mixture was filtered and the precipitate washed with acetonitrile (2 × 1 mL) to give the title compound as an orange-red solid (28 mg, 9% over two steps). ¹H NMR (DMSO-d₆, 600 MHz): 9.74 (1H, s, H^{imine}), 9.54 (1H, dd, J = 5 and 1, H⁹), 8.81 (1H, dd, J = 8.5 and 1, H⁸), 8.67 (1H, d, J = 8, H⁴), 8.02 (1H, d, J = 8.5, H⁶), 7.88 (1H, t, J = 8, H⁵), 7.79 (1H, dd, J = 8 and 5.5, H¹⁰), 7.54 (1H, dd, J = 9.5 and 3, H^{3'}), 7.44 (1H, ddd, J = 9.5, 8 and 3, H^{4'}), 6.91 (1H, dd, J = 9 and 5, H^{6'}). ¹³C NMR (DMSO-d₆, 151 MHz): 160.0 (C^{1'}), 152.6 (C^{4'}), 152.1 (C⁹), 148.5 (C^{imine}), 145.9 (C³), 143.6 (C²), 139.3 (C⁸), 129.1 (C⁷), 128.8 (C⁵), 128.0 (C⁶), 123.7 (C^{5'}), 122.8 (C¹⁰), 120.3 (C^{6'}), 119.1 (C^{2'}), 117.0 (C^{3'}). MS (ES+): *m/z* 496 [M–H]⁺. HRMS (ES⁺) *m/z* 495.0161 [M+H]⁺, calcd for 495.0171 [C₁₆H₁₁N₂OFCl¹⁹⁴Pt].

HL^7

3,5-Dichlorosalicylaldehyde (361 mg, 1.89 mmol) was added slowly to a stirred solution of 2hydrazinopyridine (206 mg, 1.89 mmol) in MeOH (30 mL). The resulting yellow suspension was heated to reflux and stirred for 1 h. The mixture was allowed to cool to room temperature, filtered and washed with hexane (2 x 5 mL) to give the title compound as a yellow solid (471 mg, 89%). The experimental data were consistent with those previously reported by Li *et. al.*²

HL⁸

2-Hydroxy-5-nitrobenzaldehyde (154 mg, 0.93 mmol) was added slowly to a stirred solution of 2-hydrazinopyridine (100 mg, 0.92 mmol) in MeOH (8 mL). The resulting yellow slurry was heated to reflux and stirred for 1 h. The resulting mixture was allowed to cool to room temperature, filtered and washed with hexane (2 × 2 mL) to give the title compound as a bright yellow solid (188 mg, 79%). The synthesis of this compound had been reported previously,³ but no charcterisation data was provided. ¹H NMR (DMSO-d₆, 600 MHz): 11.77 (1H, s, H^{OH}), 11.14 (1H, s, H^{NH}), 8.55 (1H, d, J = 3, H^{3'}), 8.31 (1H, s, H^{imine}), 8.14 (1H, d, J = 5, H³), 8.07 (1H, dd, J = 9 and 3, H^{5'}), 7.68 (1H, ddd, J = 9, 7 and 2, H⁴), 7.16 (1H, d, J = 8, H⁶), 7.06 (1H, d, J = 9, H^{6'}), 6.81 (1H, dd, J = 7 and 5, H⁵). ¹³C NMR (DMSO-d₆, 151 MHz): 161.2 (C^{OH}), 156.3 (C²), 147.9 (C³), 140.1 (C^{4'}), 138.1 (C⁴), 134.2 (C^{imine}), 125.0 (C^{5'}), 122.0 (C^{2'}), 121.4 (C^{3'}), 116.5 (C^{6'}), 115.5 (C⁵), 106.5 (C⁶). MS (ES-): *m/z* 257 [M–H].

HL9

5-Fluorosalicylaldehyde (133 mg, 0.95 mmol) was added slowly to a stirred solution of 2hydrazinopyridine (100 mg, 0.92 mmol) in MeOH (8 mL). The resulting yellow slurry was heated to reflux and stirred for 1 h. The mixture was allowed to cool to room temperature, filtered and washed with hexane (2×5 mL) to give the title yellow as a bright yellow solid (109 mg, 51%).

¹H NMR (DMSO-d₆, 700 MHz): 10.97 (1H, s, H^{OH}), 10.22 (1H, s, H^{NH}), 8.24 (1H, s, H^{imine}), 8.12 (1H, dd, J = 5 and 1, H³), 7.64 (1H, ddd, J = 8, 7 and 2, H⁵), 7.43 (1H, dd, J = 10 and 3, H^{3'}), 7.14 (1H, d, J = 8, H⁶), 7.00 (1H, td, J = 9 and 3, H^{5'}), 6.86 (1H, dd. J = 9 and 5, H^{6'}), 6.77 (1H, ddd, J = 7, 5 and 1, H⁴). ¹³C NMR (DMSO-d₆, 176 MHz): 156.5 (C^{OH}), 155.0 (C²), 151.90 (C^{2'}), 147.8 (C³), 138.0 (C⁵), 136.0 (C^{imine}), 122.1 (C^{4'}), 117.1 (C^{6'}), 115.9 (C^{5'}), 115.2 (C⁵), 111.5 (C^{3'}), 106.4 (C⁶). MS (ES-): m/z 230 [M–H]⁻; HRMS (ES+) m/z = 232.0884 [M+H]⁺; calculated for [C₁₂H₁₁N₃OF]⁺ 232.0886.

HL¹⁰

5-Chlorosalicylaldehyde (151 mg, 0.96 mmol) was added slowly to a stirred solution of 2-hydrazinopyridine (104 mg, 0.95 mmol) in MeOH (8 mL). The resulting white slurry was heated to reflux and stirred for 1 h. The mixture was allowed to cool to room temperature, filtered and washed with hexane (2 × 2 mL) to give the title compound as a white solid (165 mg, 70%). The synthesis of this compound has been reported previously but characterisation was limited to the IR spectrum.⁴ ¹H NMR (DMSO-d₆, 700 MHz): 11.00 (1H, s, H^{OH}), 10.52 (1H, s, H^{NH}), 8.23 (1H, s, H^{imine}), 8.12 (1H, ddd, J = 5, 2 and 1, H³), 7.67 (1H, d, J = 3, H⁵), 7.64 (1H, ddd, J = 8, 7 and 2, H³), 7.18 (1H, dd, J = 9 and 3, H⁵), 7.13 (1H, d, J = 8, H⁶), 6.89 (1H, d, J = 7, H⁶), 6.78 (1H, ddd, J = 7, 5 and 1, H⁴). ¹³C NMR (DMSO-d₆, 176 MHz): 156.4 (C^{OH}), 154.4 (C²), 147.8 (C³), 138.0 (C³), 135.6 (C^{imine}), 128.9 (C⁵), 125.1 (C⁵), 123.1 (C⁴), 122.8 (C²), 117.7 (C⁶), 115.2 (C⁴), 106.4 (C⁶). MS (ES-): *m/z* 246 [M–H]⁻.

HL^{11}

2,4-Dihydroxybenzaldehyde (134 mg, 0.97 mmol) was added slowly to a stirred solution of 2-hydrazinopyridine (106 mg, 0.97 mmol) in MeOH (8 mL). The resulting orange slurry was heated to reflux and stirred for 1 h. The mixture was allowed to cool to ambient temperature, then cooled to 5 °C before being filtered and washed with hexane (2 × 5 mL) to give the title compound as an orange solid (97 mg, 44%). The synthesis of this compound had been reported previously, but characterisation was limited to a melting point.⁵ ¹H NMR (DMSO-d₆, 700 MHz): 10.66 (2H, s, H^{OH}), 9.69 (1H, s, H^{NH}), 8.16 (1H, s, H^{imine}), 8.10 (1H, ddd, J = 5, 2 and 1, H³), 7.61 (1H, ddd, J = 8, 7 and 2, H⁵), 7.31 (1H, d, J = 8, H³), 6.92 (1H, d, J = 8, H⁶), 6.72 (1H, ddd, J = 7, 5 and 1, H⁴), 6.32 – 6.30 (2H, m, H^{6°} and H^{4′}). ¹³C NMR (DMSO-d₆, 176 MHz): 159.3 (C^{5′}), 157.7 (C^{1′}), 156.4 (C²), 147.9 (C³), 140.4 (C^{imine}), 137.9 (C⁵), 129.0 (C^{3′}), 114.5 (C⁴), 111.9 (C^{2′}), 107.5 (C^{6′}), 105.7 (C^{6′}), 102.5 (C^{4′}). MS (ES-): *m/z* 228 [M–H]⁻.

HL¹²

2-Hydroxy-5-methoxybenzaldehyde (150 mg, 0.98 mmol) was added slowly to a stirred solution of 2-hydrazinopyridine (102 mg, 0.94 mmol) in MeOH (8 mL). The resulting whte slurry was heated to reflux and stirred for 1 hour. The mixture was allowed to cool to room temperature, filtered and washed with hexane (2 × 5 mL) to give the title compound as a white solid (133 mg, 58%). The synthesis of the compound was described previously but no characterisation data were provided.³ ¹H NMR (CDCl₃, 700 MHz): 10.25 (1H, br s, H^{OH}), 9.10 (1H, br s, H^{NH}), 8.18 (1H, d, J = 5, H³),

11 NMR (CDCl₃, 700 MHz): 10.25 (11, 61 s, 11 -), 9.10 (11, 61 s, 11 -), 8.18 (11, d, J = 5, 11), 7.91 (1H, s, H^{imine}), 7.66 (1H, t, J = 8, H⁵), 7.09 (1H, d, J = 8, H⁶), 6.94 (1H, d, J = 9, H³), 6.87 – 6.84 (2H, m, H⁴ and H^{5'}), 6.71 (1H, d, J = 3, H^{6'}), 3.79 (3H, s, H^{OMe}). ¹³C NMR (CDCl₃, 176 MHz): 155.6 (C²), 152.8 (C^{4'}), 151.5 (C^{1'}), 147.5 (C³), 142.9 (C^{imine}), 139.0 (C⁵), 118.3 (C^{2'}), 117.5 (C^{3'}), 117.1 (C^{5'}), 116.5 (C⁴), 114.2 (C^{6'}), 107.0 (C⁶). MS (ES+): m/z 244 [M+H]⁺.

2-(1-methylhydrazinyl)pyridine

Bromopyridine (3.3 g, 21 mmol) was added under a stream of argon to methyl hydrazine (14.5 g, 315 mmol) to form a pale-yellow solution. The solution was heated to reflux and stirred under argon for 4 hours. The solution was allowed to cool to room temperature and the solvent removed in vacuo to give a yellow oil. The crude product was washed with sat. aq. Na₂CO₂ (40 mL) and extracted into EtOAc (3×50 mL). The combined organic layers were washed with brine (2×40 mL), dried over anhydrous magnesium sulphate and filtered. The solvent was removed to yield the

title compound as a yellow oil (1.19 g, 96%). The experimental data were consistent with those previously reported by Leung *et. al.*⁶

HL¹⁵

2-Hydroxy-5-methoxybenzaldehyde (93 mg, 0.61 mmol) was added to a stirring solution of 2-(1-methylhydrazinyl)pyridine (75 mg, 0.61 mmol) in MeOH (3 mL). The resulting yellow solution was heated to reflux and stirred for 30 min, forming a lemon slurry. The mixture was allowed to cool to room temperature, filtered and washed with cold MeOH (2 × 5 mL) to give the title compound as a white solid (104 mg, 66%). ¹H NMR (CDCl₃, 700 MHz): 10.77 (1H, s, H^{OH}), 8.27 (1H, dd, J = 8 and 1, H³), 7.76 (1H, s, H^{imine}), 7.63 (1H, ddd, J = 8.5, 7 and 2, H⁵), 7.27 (1H, d, J = 8.5, H⁶), 6.93 (1H, d, J = 9, H^{3'}), 6.85-6.83 (2H, m, H^{5'} and H⁴), 6.80 (1H, d, J = 3, H^{6'}), 3.80 (3H, s, H^{OMe}), 3.71 (3H, s, H^{NMe}). ¹³C NMR (CDCl₃, 176 MHz): 156.6 (C²), 152.8 (C^{4'}), 151.0 (C^{1'}), 147.5 (C³), 138.3 (C⁵), 138.0 (C^{imine}), 119.3 (C^{2'}), 117.3 (C^{3'}), 116.4 (C⁴ or C^{5'}), 116.3 (C⁴ or C^{5'}), 114.5 (C^{6'}), 108.8 (C⁶), 56.1 (C^{OMe}), 29.6 (C^{NMe}). MS (ES+): m/z 258 [M+H]⁺.

HL¹⁶

2-Hydroxy-5-(trifluoromethoxy)benzaldehyde (343 mg, 1.66 mmol) was added to a stirring solution of 2-(1-methylhydrazinyl)pyridine (205 mg, 1.66 mmol) in MeOH (2 mL). The resulting yellow solution was heated to reflux and stirred for 30 min. The solution was allowed to cool to room temperature and placed in the fridge overnight. The resulting yellow slurry was filtered and washed with cold MeOH (2 × 2 mL) to yield the title compound as a lemon solid (192 mg, 37%). ¹H NMR (CDCl₃, 600 MHz): 11.23 (1H, s, H^{OH}), 8.29 (1H, ddd, J = 5, 2 and 1, H³), 7.74 (1H, s, H^{imine}), 7.65 (1H, ddd, J = 8.5, 7 and 2, H⁵), 7.25 (1H, d, J = 8.5, H⁶), 7.14 (1H, dd, J = 2.5, H^{3'}), 7.09 (1H, dd, J = 9 and 2.5, H^{5'} or H^{6'}), 6.98 (1H, d, J = 9, H^{5'} or H^{6'}), 6.87 (1H, ddd, J = 7, 5 and 1, H⁴), 3.71 (3H, s, H^{NMe}). ¹³C NMR (CDCl₃, 151 MHz): 156.4 (C²), 155.4 (C^{1'}), 147.7 (C³), 141.8 (C^{4'}), 138.4 (C⁵), 136.6 (C^{imine}), 122.8 (C^{5'} or C^{6'}), 122.4 (C^{3'}), 121.6 (C^{OCF3}), 119.8 (C^{2'}), 117.7 (C^{5'} or C^{6'}), 116.7 (C⁴), 108.7 (C⁶), 29.7 (C^{NMe}). MS (ES–): m/z 310 [M–H]⁻; HRMS (ES–): m/z 310.0798 [M–H]⁻; calculated for [C₁₄H₁₁N₃O₂F₃]⁻ 310.0803.

HL^{17}

3,5-Dichlorosalicylaldehyde (150 mg, 0.79 mmol) was added to a stirring solution of 2-(1-methylhydrazinyl)pyridine (95 mg, 0.77 mmol) in MeOH (5 mL). The resulting lemon slurry was heated to reflux and stirred for 30 min. The mixture was allowed to cool to room temperature, filtered and washed with cold MeOH (2×5 mL) to give the title compound as a white solid (169 mg, 74%). ¹H NMR (CDCl₃, 700 MHz): 11.85 (1H, s, H^{OH}), 8.29 (1H, ddd, J = 9.5, 2 and 1, H³). 7.68 (1H, s, H^{imine}), 7.66 (1H, ddd, J = 9, 7 and 2, H⁵), 7.31 (1H, d, J = 2, H⁵), 7.28 (1H, d, J = 8.5, H⁶), 7.18 (1H, d, J = 2.5, H³), 6.90 (1H, ddd, J = 7, 5 and 1, H⁴), 3.71 (3H, s, H^{NMe}). ¹³C NMR (CDCl₃, 176 MHz): 156.1 (C²), 151.3 (C¹), 147.7 (C³), 138.6 (C⁵), 135.5 (C^{imine}), 129.4 (C⁵), 127.7 (C³), 124.3 (C²), 122.2 (C⁶), 121.3 (C⁴), 117.2 (C⁴), 108.9 (C⁶), 29.9 (C^{NMe}). MS (ES+): m/z 296 [M+H]⁺; HRMS (ES+): *m*/z 296.0362 [M+H]⁺; calculated for [C₁₃H₁₂N₃OCl₂]⁺ 296.0357.

4-Methoxy-2-(1-methylhydrazinyl)pyridine

2-Chloro-4-methoxypyridine (126 mg, 0.88 mmol) was added under a stream of argon to methyl hydrazine (2.63 g, 57 mmol) to form a pale-yellow solution. The solution was heated to reflux and stirred under argon for 24 h. The solution was allowed to cool to room temperature, diluted with

water (10 mL) and extracted with Et₂O (3 × 30 mL). The combined organic later were dried over anhydrous magnesium sulphate, filtered and the solvent removed in vacuo to yield the title compound as a pale orange oil (130 mg, 97%). ¹H NMR (CDCl₃, 400 MHz): 7.98 (1H, d, J = 6), 6.49 (1H, d, J = 6), 6.24 (1H, dd, J = 6 and 2), 4.02 (2H, br s), 3.83 (3H, s), 3.27 (3H, s). MS (ES+): m/z 154 [M+H]⁺.

HL¹⁹

Salicylaldehyde (130 mg, 1.06 mmol) was added to a stirring solution of 4-methoxy-2-(1-methylhydrazinyl)pyridine (120 mg, 0.78 mmol) in MeOH (2.5 mL). The resulting orange solution was heated to reflux and stirred for 3 h. The solution was allowed to cool to room temperature and placed in the fridge overnight. The resulting white slurry was filtered and washed with cold methanol (2×2 mL) to yield the title compound as a white crystalline solid (51mg, 19%). ¹H NMR (CDCl₃, 700 MHz): 11.19 (1H, s, H^{OH}), 8.08 (1H, d, J = 6, H³), 7.80 (1H, s, H^{imine}), 7.27-7.23 (2H, m, H⁴ and H^{5'}), 7.00 (1H, d, J = 8, H^{6'}), 6.93 (1H, td, J = 7.5, H^{3'}), 6.75 (1H, d, J = 2, H⁶), 6.44 (1H, dd, J = 6, 2), 3.89 (3H, s, H^{OMe}), 3.70 (3H, s, H^{NMe}). ¹³C NMR (CDCl₃, 176 MHz): 167.8 (C⁴), 158.6 (C²), 157.0 (C^{1'}), 148.4 (C³), 138.4 (C^{imine}), 130.2 (C^{4'} or C^{5'}), 130.0 (C^{4'} or C^{5'}), 119.7 (C^{3'}), 119.4 (C^{2'}), 116.7 (C^{2'}), 105.2 (C⁵), 92.6 (C⁶), 55.3 (C^{OMe}), 29.9 (C^{NMe}). MS (ES+): m/z 258 [M+H]⁺; HRMS (ES+): m/z 258.1245 [M+H]⁺; calculated for [C₁₄H₁₆N₃O]⁺ 258.1243.

2-(1-Methylhydrazinyl)-4-(trifluoromethyl)-pyridine

2-Bromo-4-(trifluoromethyl)pyridine (200 mg, 0.88 mmol) was added under a stream of argon to methyl hydrazne (2.63 g, 57 mmol) to form a pale-yellow solution. The solution was heated to reflux and stirred under argon for 24 hours. The solution was allowed to cool to room temperature, diluted with water (10 mL) and extracted with Et₂O (3 × 30 mL). The combined organic later were dried over anhydrous magnesium sulphate, filtered and the solvent removed in vacuo to yield the title compound as a pale yellow oil (100 mg, 59%). ¹H NMR (CDCl₃, 400 MHz): 8.22 (1H, d, J = 5), 7.30-7.28 (1H, m), 6.72 (1H, dd, J = 5 and 1), 4.00 (2H, br s), 3.32 (3H, s). MS (ES+): m/z 192 [M+H]⁺.

HL²⁰

Salicylaldehyde (105 mg, 0.89 mmol) was added to a stirring solution of 2-(1-methylhydrazinyl)-4- (trifluoromethyl)-pyridine (169 mg, 0.86 mmol) in MeOH (2.5 mL). The resulting yellow solution was heated to reflux and stirred for 3 h. The solution was allowed to cool to room temperature and placed in the fridge overnight. The resulting white slurry was filtered and washed with cold methanol (2×2 mL) to yield the title compound as a crystalline white solid (188 mg, 72%).

¹H NMR (CDCl3, 700 MHz): 10.83 (1H, br s, H^{OH}), 8.40 (1H, d, J = 5, H[?]), 7.89 (1H, s, H³), 7.43 (1H, s, H^{imine}), 7.28-7.25 (2H, m, H^{4'} and H^{5'}), 7.04-7.00 (2H, m, H^{6'} and H^{3'}), 6.93 (1H, td, J = 7.5 and 1, H⁵), 3.73 (3H, d, J = 1, H^{NMe}). ¹³C NMR (CDCl₃, 176 MHz): 156.8, 148.7, 140.4, 130.5, 130.4, 125.2, 123.6, 122.1, 119.6, 118.7, 116.7, 111.2, 104.4, 29.7. MS (ES+): m/z 296 [M+H]⁺; HRMS (ES+): m/z = 296.1011 [M+H]⁺; calculated for [C₁₄H₁₃F₃N₃O]⁺ = 296.2672.

PtL⁵Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL^5 (26 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting mustard yellow slurry was separated

by centrifuge and the precipitate washed with water $(2 \times 5 \text{ mL})$, EtOH $(2 \times 5\text{mL})$ and Et₂O (5 mL) to isolate a green solid. The crude product was then extracted into hot MeCN, filtered through celite and the solvent removed in vacuo to give the title compound as a yellow solid (32 mg, 60%). The synthesis of this compound had been reported previously, but characterisation was limited to the IR spectrum.⁴ ¹H NMR (DMSO-d₆, 700 MHz): 8.86 (1H, ddd, J = 6, 2 and 1, H³), 8.70 (1H, s, H^{imine}), 7.97 (1H, ddd, J = 8.5, 7 and 1.5, H⁵) 7.70 (1H, dd, J = 8 and 2, H^{3'}), 7.45 (1H, ddd, J = 8.5, 6.5 and 2, H^{4'}), 7.23 (1H, t, J = 8.5, H⁶), 7.09 (1H, d, J = 8.5, H^{6'}), 7.01 (1H, ddd, J = 7, 6 and 1, H⁴), 6.77 (1H, ddd, J = 8, 7 and 1, H^{5'}). ¹³C NMR (DMSO-d₆, 176 MHz): 159.2 (C^{1'}), 153.8 (C²), 145.2 (C³), 138.4 (C⁵), 138.3 (C^{imine}), 132.8 (C^{3'}), 132.3 (C^{4'}), 120.7 (C^{6'}), 118.6 (C^{2'}), 116.0 (C^{5'}), 115.2 (C⁴), 107.0 (C⁶). MS (ES+): *m/z* 442 [M+H]⁺; HRMS (ES+): *m/z* 442.0206 [M+H]⁺; calculated for [C₁₂H₁₁N₃OPtCl]⁺ 442.0217.

PtL⁷Cl

A solution of potassium tetrachloroplatinate (300 mg, 0.73 mmol) in deionised water (5 mL) was added to a solution of HL⁷ (200 mg, 0.71 mmol) in EtOH (15 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting yellow slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give a mustard yellow solid. The crude product was recrystallized in hot DMF to give the title compound as a bright yellow solid (223 mg, 61%). ¹H NMR (DMSO-d₆, 600 MHz): 8.84 (1H, d, J = 6, H³), 8.72 (1H, s, H^{imine}), 7.99 (1H, ddd, J = 8.5, 7 and 1.5, H⁵), 7.88 (1H, d, J = 3, H^{3°}), 7.72 (1H, d, J = 3, H^{5°}), 7.24 (1H, d, J = 8.5, H⁶), 7.03 (1H, t, J = 6.5, H⁴). ¹³C NMR (DMSO-d₆, 151 MHz): 154.3 (C^{OH}), 152.8 (C²), 145.3 (C³), 138.7 (C⁵), 137.4 (C^{imine}), 130.8 (C^{5°}), 130.3 (C^{3°}), 125.7 (C^{4°} or C^{6°}), 120.5 (C^{2°}), 118.2 (C^{4°} or C^{6°}), 115.4 (C⁴), 107.3 (C⁶). MS (ES-): *m/z* 510 [M-H]⁻. HRMS (ES⁺) *m/z* 509.9453 [M+H]⁺, calcd for 509.9438 [C₁₂H₉N₃OCl₃¹⁹⁴Pt].

PtL⁸Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL^8 (31 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting orange-yellow slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give the title compound as an orange solid (44 mg, 75%). The synthesis of this compound had been reported previously, but characterisation was limited to the IR spectrum.⁴

¹H NMR (DMSO-d₆, 700 MHz): 8.88 (1H, s, H^{imine} or H^{3'}), 8.87 (1H, s, H^{imine} or H^{3'}), 8.80 (1H, d, J = 6, H³), 8.22 (1H, dd, J = 9 and 3, H^{5'}), 7.98 (1H, ddd, J = 8, 7 and 1, H⁵), 7.23 (1H, d, J = 8, H⁶), 7.16 (1H, d, J = 9, H^{6'}), 7.01 (1H, t, J = 7, H⁴). ¹³C NMR (DMSO-d₆, 176 MHz): 163.7 (C^{OH}), 154.9 (C²), 145.3 (C³), 138.9 (C⁵), 137.9 (C^{imine}), 137.0 (C^{4'}), 130.7 (C^{3'}), 125.6 (C^{5'}), 121.7 (C^{6'}), 118.9 (C^{2'}), 115.2 (C⁴), 107.4 (C⁶). MS (ES–): m/z 486 [M–H]⁻.

PtL⁹Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL^9 (27 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting orange slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give the title compound as a yellow solid (41 mg, 73%). ¹H NMR (DMSO-d₆, 700 MHz): 8.86 (1H, ddd, J = 6, 1.5 and 1, H³), 8.68 (1H, s, H^{imine}), 7.98 (1H, ddd, J = 9, 7 and 1.5, H⁵), 7.61 (1H, dd, J =

10 and 3, H^{3'}), 7.34 (1H, ddd, J = 11, 7 and 2, H^{5'}), 7.23 (1H, d, J = 8.5, H⁶), 7.09 (1H, dd, J = 9 and 5, H^{6'}), 7.03 (1H, ddd, J = 7, 6 and 1, H⁴). ¹³C NMR (DMSO-d₆, 176 MHz): 156.6 (C^{1'}), 154.2 (C²), 152.8 (C^{4'}), 145.7 (C³), 138.9 (C⁵), 137.9 (C^{imine}), 122.3 (C^{6'}), 120.7 (C^{5'}), 118.1 (C^{2'}), 116.2 (C^{3'}), 115.8 (C^{4'}), 107.6 (C⁶). MS (ES+): m/z 460 [M+H]⁺; HRMS (ES+): m/z 460.0113 [M+H]⁺; calculated for [C₁₂H₁₀N₃OFPtCl]⁺ 460.0123.

PtL¹⁰Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL¹⁰ (29 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting yellow slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give the title compound as a yellow solid (43 mg, 75%). The synthesis of this compound had been reported previously, but characterisation was limited to the IR spectrum.⁴ ¹H NMR (DMSO-d₆, 700 MHz): 8.82 (1H, d, J = 6, H³), 8.67 (1H, s, H^{imine}), 7.95 (1H, ddd, J = 9, 7 and 1, H⁵), 7.84 (1H, d, J = 3, H³), 7.41 (1H, dd, J = 9 and 3, H⁵), 7.20 (1H, d, J = 9, H⁶), 7.07 (1H, d, J = 9, H⁶), 7.00 (1H, t, J = 7, H⁴). ¹³C NMR (DMSO-d₆, 176 MHz): 158.5 (C^{OH}), 154.5 (C²), 145.7 (C³), 138.9 (C⁵), 137.8 (C^{imine}), 132.0 (C⁵), 131.3 (C³), 123.0 (C⁶), 120.1 (C⁴ or C²), 119.6 (C⁴ or C²), 115.7 (C⁴), 107.6 (C⁶). MS (ES–): *m/z* 476 [M–H]⁻.

PtL¹¹Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL¹¹ (27 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting brown slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give the title compound as a green solid (20 mg, 36%). ¹H NMR (DMSO-d₆, 700 MHz): 13.50 (1H, br s, H^{NH}), 9.94 (1H, s, H^{OH}), 8.78 (1H, ddd, J = 6, 2 and 1, H³), 8.45 (1H, s, H^{imine}), 7.92 (1H, ddd, J = 9, 7 and 2, H⁵), 7.48 (1H, d, J = 9, H^{6°}), 7.15 (1H, dt, J = 9 and 1, H⁶), 6.94 (1H, ddd, J = 7, 6 and 1, H⁴), 6.43 (1H, d, J = 3, H^{4°}), 6.31 (1H, dd, J = 9 and 2, H^{3°}). ¹³C NMR (DMSO-d₆, 176 MHz): 161.8 (C^{5°}), 161.6 (C^{1°}), 153.8 (C²), 145.2 (C³), 138.20 (C^{imine}), 138.1 (C⁵), 134.2 (C^{6°}), 114.7 (C⁴), 112.0 (C^{2°}), 107.6 (C^{3°}), 106.7 (C⁶), 104.4 (C^{4°}). MS (ES-): *m/z* 458 [M–H]⁻.

PtL¹²Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL¹² (29 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 hours. The resulting yellow slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give the title compound as a yellow solid (41 mg, 72%). ¹H NMR (DMSO-d₆, 700 MHz): 8.86 (1H, ddd, J = 6, 2 and 1, H³), 8.68 (1H, s, H^{imine}), 7.97 (1H, ddd, J = 9, 7 and 2, H⁵), 7.23-7.22 (2H, m, H⁶ and H³'), 7.14 (1H, dd, J = 9 and 3, H⁵'), 7.04 (1H, d, J = 9, H⁶'), 7.01 (1H, ddd, J = 7, 6 and 1, H⁴), 3.75 (1H, s, H^{OMe}). ¹³C NMR (DMSO-d₆, 176 MHz): 154.9 (C^{1'}), 153.6 (C²), 149.6 (C^{4'}), 145.2 (C³), 138.2 (C⁵), 137.8 (C^{imine}), 122.4 (C^{5'}), 121.5 (C^{6'}), 117.3 (C^{2'}), 115.1 (C⁴), 112.6 (C^{3'}), 107.0 (C⁶), 55.7 (C^{OMe}). MS (ES-): *m/z* 471 [M-H]⁻. HRMS (ES⁺) *m/z* 472.0323 [M+H]⁺, calcd for 472.0323 [C₁₃H₁₃N₃O₂Cl¹⁹⁴Pt].

PtL¹⁴Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL¹⁴ (27 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting mustard yellow slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5mL) and Et₂O (5 mL) to isolate a green solid. The crude product was then extracted into DCM, filtered through celite and the solvent removed in vacuo to give the title compound as a yellow solid (45 mg, 82%). ¹H NMR (DMSO-d₆, 700 MHz): 9.06 (1H, ddd, J = 6, 2 and 0.5, H³), 8.94 (1H, s, H^{imine}), 8.07 (1H, ddd, J = 9, 7 and 2, H⁵), 7.82 (1H, dd, J = 8 and 2, H^{3'}), 7.48 (1H, d, J = 9, H⁶), 7.45 (1H, ddd, J = 8.5, 6.5 and 2, H^{6'}), 7.09 (2H, m, H⁴ and H^{5'}), 6.79 (1H, ddd, J = 8, 7 and 1, H^{4'}), 3.91 (3H, s, H^{NMe}). ¹³C NMR (DMSO-d₆, 176 MHz): 159.3 (C²), 152.9 (C^{1'}), 145.9 (C³), 138.7 (C⁵), 137.6 (C^{imine}), 133.7 (C^{3'}), 132.5 (C^{5'}), 120.5 (C^{6'}), 118.8 (C^{2'}), 116.1 (C^{4'}), 115.8 (C^{4'}), 108.7 (C⁶), 34.03 (C^{NMe}). MS (ES+): *m/z* 461.0865 [M+H]⁺; calculated for [C₁₅H₁₅N₄OPt]⁺461.0878.

PtL¹⁵Cl

A solution of potassium tetrachloroplatinate (75 mg, 0.18 mmol) in deionised water (1.5 mL) was added to a solution of HL¹⁵ (44 mg, 0.17 mmol) in EtOH (4 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting dark green slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give a green solid. The crude product was recrystallized in hot DMF to give the title compound as a bright yellow solid (36 mg, 43%). ¹H NMR (DMSO-d₆, 700 MHz): 9.09 (1H, d, J = 6), 8.96 (1H, s), 8.08 (1H, ddd, J = 9, 7 and 2), 7.50 (1H, d, J = 9), 7.37 (1H, d, J = 3), 7.15 (1H, dd, J = 9 and 3), 7.10 (1H, t, J = 7), 7.05 (1H, d, J = 9). The material was not sufficiently soluble to obtain a ¹³C NMR spectrum. MS (ES+): m/z 487 [M+H]⁺. HRMS (ES⁺) m/z 486.0472 [M+H]⁺, calcd for 486.0480 [C₁₄H₁₅N₅O₂Cl¹⁹⁴Pt].

PtL¹⁶Cl

A solution of potassium tetrachloroplatinate (100 mg, 0.24 mmol) in deionised water (2 mL) was added to a solution of HL¹⁶ (62 mg, 0.20 mmol) in EtOH (5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 hours. The resulting dark green slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give a green solid. The crude product was recrystallized in hot DMF to give the title compound as a bright yellow solid (47 mg, 43%). ¹H NMR (DMSO-d₆, 700 MHz): 9.03 (1H, dd, J = 6 and 1, H³), 9.00 (1H, s, H^{imine}), 8.07 (1H, ddd, J = 9, 7 and 1.5, H⁵), 7.88 (1H, d, J = 3, H³), 7.49 (1H, d, J = 9, H⁶), 7.43 (1H, dd, J = 9 and 3, H⁵), 7.13 (1H, d, J = 9, H⁶), 7.09 (1H, ddd, J = 7, 6 and 1, H⁴), 3.91 (3H, s, H^{NMe}). ¹³C NMR (DMSO-d₆, 176 MHz): 157.8 (C^{1°}), 152.9 (C²), 145.9 (C³), 138.8 (C⁵), 137.9 (C^{2°}), 136.9 (C^{imine}), 125.6 (C^{4°}), 124.8 (C^{5°}), 121.9 (C^{3°}), 119.7 (C^{OCF3}), 118.5 (C^{6°}), 116.0 (C⁴), 108.8 (C⁶). MS (ES+): m/z 541 [M+H]⁺; HRMS (ES+): m/z 540.0207 [M+H]⁺; calculated for [C₁₄H₁₂N₃O₂F₃PtCl]⁺ 540.0197.

PtL¹⁷Cl

A solution of potassium tetrachloroplatinate (291 mg, 0.70 mmol) in deionised water (5 mL) was added to a solution of HL¹⁷ (200 mg, 0.68 mmol) in EtOH (15 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting dark green slurry was separated by

centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give a green solid. The crude product was recrystallized in hot DMF to give the title compound as a bright yellow solid (114 mg, 32%). ¹H NMR (DMSO-d₆, 700 MHz): 9.03 (1H, dd, J = 6 and 1, H³), 8.98 (1H, s, H^{imine}), 8.09 (1H, ddd, J = 9, 7 and 1.5, H⁵), 7.92 (1H, d, J = 3, H³), 7.71 (1H, d, J = 3, H⁵), 7.79 (1H, d, J = 9, H⁶), 7.11 (1H, ddd, J = 7, 6 and 1, H⁴), 3.87 (3H, s, H^{NMe}). The material was not sufficiently soluble to obtain a ¹³C NMR spectrum. MS (ES+): *m/z* 531 [M-Cl+MeCN]⁺. HRMS (ES⁺) *m/z* 529.0087 [M-Cl+MeCN]⁺, calcd for 529.0093 [C₁₅H₁₃N₄OCl₂¹⁹⁴Pt].

PtL¹⁸Cl

A solution of potassium tetrachloroplatinate (75 mg, 0.18 mmol) in deionised water (1.5 mL) was added to a solution of HL^{18} (50 mg, 0.17 mmol) in EtOH (4 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting green slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5 mL) and Et₂O (5 mL) to give a green solid. The crude product was recrystallized in hot DMF to give the title compound as a yellow solid (30 mg, 35%). ¹H NMR (DMSO-d₆, 700 MHz): 9.45 (1H, s), 9.06 (1H, d, J = 7), 8.41 (1H, d, J = 8.5), 8.08 (1H, t, J = 8), 7.92 (1H, d, J = 9), 7.85 (1H, d, J = 8), 7.61 (1H, t, J = 7.5), 7.56 (1H, d, J = 9), 7.36 (1H, t, J = 7), 7.30 (1H, d, J = 9), 7.10 (1H, t, J = 6). The material was not sufficiently soluble to obtain a ¹³C NMR spectrum. MS (ES+): *m/z* 507 [M+H]⁺

PtL¹⁹Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL¹⁹ (27 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting green slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5mL) and Et₂O (5 mL) to isolate a green solid. The crude product was recrystallized in hot DMF to give the title compound as a yellow solid (17 mg, 32%). ¹H NMR (DMSO-d₆, 700 MHz): 8.85 (1H, s, H^{imine}), 8.75 (1H, d, J = 7, H³), 7.75 (1H, dd, J = 8 and 2, H^{3°}), 7.40 (1H, ddd, J = 8.5, 7 and 2, H⁵), 7.02 (1H, d, J = 8, H^{6°}), 6.88 (1H, d, J = 2.5, H⁶), 6.76 – 6.72 (2H, m, H⁵ and H^{4°}), 3.94 (3H, s, H^{OMe}), 3.86 (3H, s, H^{NMe}). ¹³C NMR (DMSO-d₆, 176 MHz): 166.8 (C⁴), 159.4 (C^{1°}), 154.7 (C²), 146.6 (C³), 137.3 (C^{imine}), 133.7 (C^{3°}), 132.4 (C^{5°}), 120.5 (C^{6°}), 118.9 (C^{2°}), 115.9 (C^{4°}), 105.5 (C⁵), 91.6 (C⁶). MS (ES+): *m/z* 492 [M+H]⁺; HRMS (ES+): *m/z* 491.0976 [M+H]⁺; calculated for [C₁₆H₁₇N₄O₂PtCl]⁺ 491.0978.

PtL²⁰Cl

A solution of potassium tetrachloroplatinate (50 mg, 0.12 mmol) in deionised water (1 mL) was added to a solution of HL^{20} (29 mg, 0.12 mmol) in EtOH (2.5 mL) and the resulting pale pink solution was heated to reflux and stirred for 4 h. The resulting green slurry was separated by centrifuge and the precipitate washed with water (2 × 5 mL), EtOH (2 × 5mL) and Et₂O (5 mL) to isolate a green solid. The crude product was recrystallized in hot DMF to give the title compound as a yellow solid (22 mg, 38%). ¹H NMR (DMSO-d₆, 700 MHz): 9.31 (1H, d, J = 6), 9.07 (1H, s), 7.88 (1H, s), 7.86 (1H, dd, J = 8 and 1.5), 7.48 (1H, ddd, J = 85, 7 and 2), 7.40 (1H, dd, J = 6.5 and 1.5), 7.13 (1H, d, J = 8), 6.82 (1H, t, J = 7). The material was not sufficiently soluble to obtain a ¹³C NMR spectrum. MS (ES+): m/z 530 [M+H]⁺; HRMS (ES+): m/z 529.0762 [M]⁺; calculated for [C₁₆H₁₄N₄OF₃PtCl]⁺ 529.0746.

PtL¹⁴-C≡C-Ar

A mixture of PtL¹⁴Cl (37 mg, 0.08 mmol), CuI (5 mg, 0.03 mmol), 1-ethynyl-3,5bis(trifluoromethyl)benzene (30 mg, 0.12 mmol) and anhydrous NEt₃ (0.4 mL) in anhydrous DCM (7 mL) was heated to reflux for a period of 48 under argon. The resulting slurry was filtered and wash with DCM (3×2 mL) to give the title compound as a bright yellow solid (20 mg, 38%).

¹H NMR (DMSO-d₆, 600 MHz): 9.26 (1H, dd, J = 6 and 1, H³), 8.91 (1H, s, H^{imine}), 8.10 (1H, ddd, J = 9, 7 and 1.5, H⁵), 8.00 (2H, s, H²"), 7.88 (1H, s, H⁴"), 7.82 (1H, dd, J = 8 and 2, H³), 7.54 (1H, d, J = 9, H⁶), 7.46 (1H, ddd, J = 8.5, 7 and 2, H⁵), 7.17 (1H, d, J = 8, H⁶), 7.08 (1H, t, J = 6.5, H⁴), 6.81 (1H, t, J = 7, H⁴), 3.94 (3H, s, H^{NMe}). ¹³C NMR (DMSO-d₆, 151 MHz): 159.8, 153.0, 149.1, 138.5, 138.4, 134.1, 132.3, 131.7, 130.5, 130.2, 124.2, 122.4, 121.1, 118.8, 116.3, 115.7, 109.1, 104.1, 33.6, 30.7, 7.2. MS (ES+): m/z 659 [M+H]⁺.

Density functional theory

DFT calculations were carried out using the Gaussian 09 suite⁷ of programs to predict energyminimised structures of the singlet ground state. The LANL2DZ basis set was used for all atoms. Calculations were run using the B3LYP functional⁸ in the gas phase. Geometries were optimised without symmetry constraints. Harmonic vibrational wavenumber calcualtions were performed to confirm that the structures obtained correspond to minima of the potential energy surface.

References

- 1. A. Tronnier, A. Poethig, E. Herdtweck and T. Strassner, *Organometallics*, 2014, **33**, 898.
- 2. K. Li and A. Tong, Sensors Actuators, B Chem., 2013, 184, 248.
- 3. A. Sarkar and S. Pal, Polyhedron, 2006, 25, 1689.
- 4. M. Mohan, N. S. Gupta, L. Chandra and N. K. Jha, J. Inorg. Biochem., 1987, 31, 7.
- M. Cushman, D. Nagarathnam, D. Gopal and R. L. Geahlen, *Bioorg. Med. Chem. Lett.*, 1991, 1, 215.
- 6. D. Leung and E. V Anslyn, Org. Lett., 2011, 13, 2298.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09, 2009.
- 8. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.