Site-selective cation-т-interaction as a way of selective recognition of caesium cation with sumanene-functionalized ferrocenes

Artur Kasprzak ${ }^{\text {a* }}$, Hidehiro Sakurai ${ }^{\text {b }}$
a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland${ }^{\text {b }}$ Division of Applied Chemistry Graduate School of Engineering, Osaka University,2-1 Yamadaoka, Suita, Osaka 565-0871, Japan* e-mail: akasprzak@ch.pw.edu.pl
Supplementary Information
Table of contents
S1. Experimental section 2
S1.1 Materials and methods 2
S1.2 Synthesis 3
S1.3 Florescence spectra titration 8
S1.4 ${ }^{1} \mathrm{H}$ NMR titration 8
S1.5 Cyclic voltammetry 9
S2. NMR spectra 10
S3. IR spectra 22
S4. UV-Vis spectra 30
S5. Fluorescence spectroscopy and titration experiments 33
S6. The Job's plots 42
S7. ${ }^{1} \mathrm{H}$ NMR titration experiments 45
S8. Cyclic voltammograms 48
S9. Details on calculation of K_{a} and LOD 53
S10. References 55

S1. Experimental section

S1.1 Materials and methods

Chemical reagents and solvents were commercially purchased and purified according to the standard methods, if necessary. Air- and moisture-sensitive reactions were carried out using commercially available anhydrous solvents under an inert atmosphere of nitrogen. The NMR experiments were carried out using JEOL JNMECZS spectrometer operating at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR at 400 MHz or ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ at 100 MHz). Unless otherwise stated, the spectra were recorded at $23^{\circ} \mathrm{C}$. Standard 5 mm NMR tubes were used. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) were reported in parts per million (ppm) relative to the solvent signals: $\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$ (residual CHCl_{3}) 7.26 ppm , δ_{C} 77.23 ppm , or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, \delta_{\mathrm{H}}$ (residual $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right) 2.05 \mathrm{ppm}$. Melting points were determined on Standford Research Systems MPA 100 and were uncorrected. Infrared (IR) spectra were recorded on a JASCO FT IR-4100 spectrometer with a spectral resolution of $2 \mathrm{~cm}^{-1}$ (80 scans) in the wavelength range of $2000-600 \mathrm{~cm}^{-1}$. UV-visible (UV-Vis) absorption spectra were recorded on a JASCO V-670 spectrometer with the spectral resolution of 1 nm . Fluorescence spectra were recorded on a JASCO FP6500 spectrometer with the spectral resolution of 1 nm . Cyclic voltammetry (CV) was measured with a ALS/CH Instruments Electrochemical Analyzer Model 600A. Elemental analyses were performed using CHNS Elementar Vario EL III apparatus. Each elemental composition was reported as an average of two analyses. APCI-MS spectra were measured with ACQUITY ultra performance LC instrument. Gel permeable chromatography (GPC) was conducted on JAIGEL 2H using a JAI Recycling Preparative HPLC LC-908W with CHCl_{3} as eluent. TLC analysis was performed using Merck Silica gel 60 F254 and PTLC was conducted using Wako Wakogel $\mathrm{B}-5 \mathrm{~F}$ or with $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) plates.

Sumanene (1) $)^{[1]}$, formylsumanene (2) ${ }^{[2]}$, nitrosumanene (6) ${ }^{[2],}$, formylferrocene (Fc2) ${ }^{[3]}$, 1,1'-diformylferrocene ($\left.\mathrm{Fc}-4\right)^{[4]}, N$-(ferrocenylmethyl)benzene-1,4-diamine (Fc $3)^{[5]}$, were synthesized according to the literature procedures.

S1.2 Synthesis

Scheme S1. Synthesis of the ferrocene derivatives: (a) ferrocene $100 \mathrm{~mol} \%$, DMF $200 \mathrm{~mol} \%, \mathrm{POCl}_{3} 200$ $\mathrm{mol} \%, \mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, 24 \mathrm{~h}, 69 \%$ yield; (b) formylferrocene $100 \mathrm{~mol} \%$, p-phenylenediamine $500 \mathrm{~mol} \%$, MeOH , reflux, 6 h then $\mathrm{NaBH}_{4} 200 \mathrm{~mol} \%$, reflux, 1h, 70% yield; (c) ferrocene $100 \mathrm{~mol} \%$, TMEDA 200\%, ${ }^{n}$ BuLi $220 \mathrm{~mol} \%$, hex, $27^{\circ} \mathrm{C}, 24 \mathrm{~h}$ then DMF $220 \mathrm{~mol} \%$ in diethyl ether, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 72 \%$ yield; (d) 1, 1^{\prime} 'diformylferrocene $100 \mathrm{~mol} \%$, p-phenylenediamine $600 \mathrm{~mol} \%$, MeOH , reflux, 6 h then $\mathrm{NaBH}_{4} 800 \mathrm{~mol} \%$, reflux, $1 \mathrm{~h}, 73 \%$ yield.

$\boldsymbol{N}^{1}, \boldsymbol{N}^{1}$ '-(1,1'-bis(methyl)ferrocenyl)bis(benzene-1,4-diamine) (Fc-5)

A solution of 1,1'-diformylferrocene ($24.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) and p-phenylenediamine (64.9 $\mathrm{mg}, 0.6 \mathrm{mmol}$) in methanol ${ }^{[6]}(5 \mathrm{~mL})$ was refluxed for 6 h . Sodium borohydride (30.2 $\mathrm{mg}, 0.8 \mathrm{mmol}$) was then added and the mixture was further refluxed for 1 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with water (5 mL), brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuum. The crude product was purified by PTLC $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5 \mathrm{v} / \mathrm{v}\right)$ to give compound $N^{1}, N^{1}-\left(1,1^{\prime}-\right.$ bis(methyl)ferrocenyl)bis(benzene-1,4-diamine) (Fc-5; $31.1 \mathrm{mg} ; 73 \%$ yield) as a darkorange solid.
$\mathrm{Mp}: 132{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{H}} 6.64-6.62(\mathrm{~m}, 4 \mathrm{H}), 6.58-$ $6.54(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.22(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.13(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 4 \mathrm{H})$, 3.29 (bs, 6H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}$), $\delta_{\mathrm{C}} 114.7$ (2C), 138.8 (2C), 138.2 (2C), 116.9 (2C), 114.9 (2C), 87.4 (2C), 68.8 (4C), 68.5 (4C), 68.0 (2C), 44.7 (2C); IR (ATR), v 1565, 1510, 1485, 1300, 1245, 1105, $815 \mathrm{~cm}^{-1}$; Elemental analysis: calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FeN}_{4}$: C (67.61\%), H (6.15\%), N (13.14\%); found: C (67.50\%), H (6.13\%), N (13.28\%); APCI-MS calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FeN}_{4}[\mathrm{M}]^{+}=426.15$, found: $\mathrm{m} / \mathrm{z} 426.16 ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5 \mathrm{v} / \mathrm{v}\right)=0.55$

\mathbf{N}^{1}-(ferrocenylmethyl)- \mathbf{N}^{4}-(sumanenylmethyl)benzene-1,4-diamine (3)

3
A solution of N-(ferrocenylmethyl)benzene-1,4-diamine (Fc-3; $2.5 \mathrm{mg}, 0.0082 \mathrm{mmol}$) in $\mathrm{MeOH}^{[6]}(0.8 \mathrm{~mL})$ was added to a stirred solution of formylsumanene (2; 2.4 mg , $0.0082 \mathrm{mmol})$ in dry THF (1.0 mL). Formic acid (85%; $10 \mu \mathrm{~L}$) was added and the mixture was stirred at $27^{\circ} \mathrm{C}$ for 24 h . Then, sodium borohydride ($1.2 \mathrm{mg}, 0.0248 \mathrm{mmol}$) was added and the mixture was further stirred at $27^{\circ} \mathrm{C}$ for $3 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added and the organic layer was washed with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, water (2 mL), brine (2 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuum. The resultant residue was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=\right.$ 99.5:0.5 v / v) to give N^{1}-(ferrocenylmethyl)- N^{4}-(sumanenylmethyl)benzene-1,4-diamine (3; $3.6 \mathrm{mg}, 75 \%$ yield) as the light-orange solid.
$\mathrm{Mp}: 195{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}$), $\delta_{\mathrm{H}} 7.16$ (s, 1H), 7.11-7.09 (m, $4 \mathrm{H})$, 6.63-6.62 (m, 4H), 4.35-4.22 (m, 5H), 4.24-4.23 (t, J = 1.9 Hz, 2H), $4.17(\mathrm{~s}, 5 \mathrm{H})$, 4.13-4.12 (t, J = $1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.91 (s, 2H), 3.52 (d, $J=19.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (d, J = 15.0 $\mathrm{Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{H}} 7.25(\mathrm{~s}$, 1H), 7.16-7.14 (m, 4H), 6.60-6.54 (m, 4H), 4.72-4.64 (m, 4H), 4.40-4.27 (m, 4H), 4.23$4.22(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 5 \mathrm{H}), 4.12-4.10(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.05(\mathrm{t}, J=1.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.91(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{C}} 150.3,149.2,149.2$, 149.1, 149.0, 148.9, 148.8 (2C), 148.2, 147.1, 141.3, 141.2, 135.9, 123.6, 123.5 (2C), 123.4 (2C), 115.1 (2C), 115.0 (2C), 87.2, 87.2, 68.7 (5C), 68.3 (2C), 68.0 (2C), 49.0, 45.0, 42.0 (2C), 41.0; IR (ATR), v 1560, 1510, 1460, 1300, 1225, 1100, 1000, 800, 750 cm^{-1}; UV-Vis, $\lambda_{\max }\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}\right) 250,280,360,395 \mathrm{~nm}$; Elemental analysis: calculated for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{FeN}_{2}$: $\mathrm{C}(80.41 \%), \mathrm{H}(5.19 \%), \mathrm{N}(4.81 \%)$; found: C (80.07%), H (5.28\%), N (4.65\%); APCI-MS: calcd. for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{FeN}_{2}[\mathrm{M}]^{+}=582.81$, found: m/z 582.83; $\mathrm{R}_{\mathrm{f}}\left(\mathrm{Al}_{2} \mathrm{O}_{3} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 99.5: 0.5 \mathrm{v} / \mathrm{v}\right)=0.40$
(E)- N^{1}-(ferocenylmethyl)- \mathbf{N}^{4}-(sumenenylmethyl)benzene-1,4-diamine (4)

4
A solution of N -(ferrocenylmethyl)benzene-1,4-diamine (Fc-3; $2.5 \mathrm{mg}, 0.0082 \mathrm{mmol}$) in $\mathrm{MeOH}^{[6]}(0.8 \mathrm{~mL})$ was added to a stirred solution of formylsumanene (2; 2.4 mg ,
$0.0082 \mathrm{mmol})$ in dry THF (1.0 mL). Formic acid (85%; $10 \mu \mathrm{~L}$) was added and the mixture was stirred at $27^{\circ} \mathrm{C}$ for $24 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added and the organic layer was washed with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, water $(2 \mathrm{~mL})$, brine $(2 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give (E)- $N^{1}-$ (ferocenylmethyl)- N^{4}-(sumenenylmethyl)benzene-1,4-diamine (4; $4.5 \mathrm{mg}, 94 \%$ yield) as the dark yellow solid.
$\mathrm{Mp}: 178^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right), 8.60$ (s, 1H), 7.61 (s, 1H), 7.25-7.23 (m, 2H), 7.17-7.11 (m, 4H), 6.71-6.69 (m, 2H), $4.98(\mathrm{~d}, \mathrm{~J}=20.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (d, $J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.26(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}$, 5 H), 4.17-4.16 (t, J = $1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.00-3.98 (bm, 3H), $3.66(\mathrm{~d}, J=20.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (d, $J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=19.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right)$, $\delta_{c} 156.1,150.1,149.5,149.4$ (2C), 149.1, 149.0, 148.9, 148.8, 148.6, 148.2, 147.5, 147.3, 147.1, 142.6, 133.7, 124.9, 124.1, 124.0, 123.6 (2C), 122.7 (2C), 113.4 (2C), 86.5, 68.7 (5C), 68.4 (2C), 68.2 (2C), 43.8, 43.0, 42.0, 41.8; IR (ATR), v 1635, 1555, 1510, 1455, 1300, 1250, 1100, 995, 805, $755 \mathrm{~cm}^{-1}$; UV-Vis, $\lambda_{\max }\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1\right.$ v/v) 255, 295, 360, 390 nm ; Elemental analysis: calculated for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{FeN}_{2}$: C (80.69\%), H (4.86\%), N (4.83\%); found: C (80.15\%), H (4.59\%), N (4.60\%); APCI-MS: calcd. for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{FeN}_{2}[\mathrm{M}]^{+}=580.49$, found: $\mathrm{m} / \mathrm{z} 582.48$. $\mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.56$
$\left(N^{4} E, N^{4} E\right)-N^{1}, N^{1}-\left(1,1\right.$ '-bis(methyl)ferrocenyl)bis(N^{4}-(sumanenylmethyl)benzene-1,4-diamine) (5)

A solution of N^{1}, N^{1}-(1,1'-bis(methyl)ferrocenyl)bis(benzene-1,4-diamine) (Fc-5; 3.1 $\mathrm{mg}, 0.0072 \mathrm{mmol})$ in $\mathrm{MeOH}^{[6]}(1.0 \mathrm{~mL})$ was added to a stirred solution of formylsumanene (2; $4.2 \mathrm{mg}, 0.0144 \mathrm{mmol}$) in dry THF (2.0 mL). Formic acid (85%; 20 $\mu \mathrm{L}$) was added and the mixture was stirred at $27^{\circ} \mathrm{C}$ for $24 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added and the organic layer was washed with saturated $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, water (2 mL), brine (3 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give $\quad\left(N^{4} E, \quad N^{4} E\right)$ - N^{1}, N^{1} - $\left(1,1^{\prime}\right.$-bis(methyl)ferrocenyl)bis(N^{4} -(sumanenylmethyl)benzene-1,4-diamine) (5; $5.0 \mathrm{mg}, 72 \%$ yield) as the yellow solid. ${ }^{[7]}$
Mp: $171^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}$), $\delta 8.57$ (s, 1H), 8.55 (s, 1H), $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 8 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 4 \mathrm{H})$,
4.94-4.84 (m, 2H), 4.72-4.59 (m, 4H), 4.29-4.28 (t, J = 1.8 Hz, 2H), 4.21-4.20 (t, J = $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-4.00(\mathrm{bm}, 6 \mathrm{H}), 3.84-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.29(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{C}} 156.3,156.1,149.5$ (2C), 149.4 (2C), 149.3 (4C), 149.2 (2C), 149.1 (2C), 149.0 (2C), 148.9 (2C), 148.2 (2C), 148.0 (2C), 147.8 (2C), 147.5 (4C), 147.4 (2C), 147.3 (2C), 135.5 (2C), 124.9 (2C), 124.4 (2C), 124.1 (2C), 123.9 (2C), 123.5 (2C), 122.8 (4C), 113.50 (6C), 87.0 (2C), 68.8 (2C), 68.7 (2C), 43.0 (2C), 42.8 (2C), 42.0 (2C), 41.7 (2C); IR (ATR), v 1650, 1605, 1510, 1460, 1395, 1255, 1085, 1020, $795 \mathrm{~cm}^{-1}$; UV-Vis, $\lambda_{\max }\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}\right) 255,295,395 \mathrm{~nm}$; Elemental analysis: calculated for $\mathrm{C}_{68} \mathrm{H}_{46} \mathrm{FeN}_{4}$: C (83.77%), $\mathrm{H}(4.76 \%), \mathrm{N}(5.75 \%)$; found: C (84.02\%), H (4.85\%), N (5.60\%); APCI-MS: calcd. for $\mathrm{C}_{68} \mathrm{H}_{46} \mathrm{FeN}_{4}[\mathrm{M}]^{+}=974.97$, found: m / z 974.96. $\mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.75$

Aminosumanene (7)

7
A mixture containing nitrosumanene ($6 ; 4.0 \mathrm{mg}, 0.0121 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{Pd} ; 8.0$ $\mathrm{mg}, 200 \mathrm{w} / \mathrm{w} \%$) in the solvent (EtOH/AcOEt $=1: 1 \mathrm{v} / \mathrm{v}, 4.0 \mathrm{~mL})^{[8]}$ was stirred at $27{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was filtered through celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The volatiles were distilled off in vacuum to give aminosumanene (7; $3.4 \mathrm{mg}, 99 \%$ yield) as a yellow-white solid.
$\mathrm{Mp}: 118{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}$), $\delta 7.12-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.03-$ $6.96(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{bs}, 2 \mathrm{H}), 4.70-4.49(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.28(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, \mathrm{ppm}), \delta_{\mathrm{C}} 153.0,150.7,150.1,149.3,149.1,149.0,148.4,147.9,147.4$, 143.2, 140.8, 129.4, 123.6, 123.5, 123.3, 121.7, 121.7, 111.7, 41.8, 41.6, 39.7; IR (ATR), v 1585, 1535, 1320, 1250, 985, 815, $750 \mathrm{~cm}^{-1}$; Elemental analysis: calculated for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}$: C (90.29\%), H (4.70\%), N (5.01\%); found: C (90.20\%), H (4.59\%), N (5.21\%); APCI-MS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}]^{+}=279.33$, found: $\mathrm{m} / \mathrm{z} 279.34 . \mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.67$

N -(ferrocenylmethyl)sumanene (8)

8
A solution of formylferrocene ($3.0 \mathrm{mg}, 0.0140 \mathrm{mmol}$), aminosumanene ($3.9 \mathrm{mg}, 0.0140$ mmol) and formic acid ($85 \% ; 20 \mu \mathrm{~L}$) in THF/methanol solvent system ($1: 2 \mathrm{v} / \mathrm{v}$) ${ }^{[8]}(2.5$ mL) was refluxed for 6 hours at nitrogen atmosphere. Sodium borohydride (1.7 mg , $0.0420 \mathrm{mmol}, 3 \mathrm{eq}$) was then added and the mixture was further refluxed for 1 h . The
reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, water (2 mL), brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give N-(ferrocenylmethyl)sumanene ($8 ; 4.6 \mathrm{mg}, 69 \%$) as the light-orange solid. ${ }^{[9]}$
Mp: $221{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{H}} 7.10-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.04-$ 6.94 (m, 2H), 6.45 (bs, 1H), 4.68 (d, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ ($\mathrm{d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.27-4.26(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 5 \mathrm{H}), 4.18-4.17(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.01 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.32 (d, J=19.4 Hz, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{C}} 153.1,149.8,149.5$, 149.2, 148.4, 148.3, 148.0, 147.9, 147.5, 147.4 (2C), 147.1, 146.9, 146.6, 136.0, 134.6, 123.4, 108.0, 98.4, 68.73 (5C), 68.33, (2C), 68.2 (2C), 51.2, 42.7, 41.7, 40.6; IR (ATR), v 1545, 1515, 1465, 1290, 1245, 1130, 1105, 995, $810 \mathrm{~cm}^{-1}$; UV-Vis, $\lambda_{\max }$ $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}\right) 250,280,370 \mathrm{~nm}$; Elemental analysis: calculated for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{FeN}: \mathrm{C}(80.51 \%)$, $\mathrm{H}(4.86 \%)$, N (2.93\%); found: C (80.71\%), H (4.72\%), N (3.04\%); APCI-MS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{FeN}[\mathrm{M}]^{+}=477.38$, found: m/z 477.36. $\mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, $95: 5 \mathrm{v} / \mathrm{v}$) $=0.82$
(E)-N-(ferrocenylmethyl)sumanene (9)

A solution of formylferrocene ($3.0 \mathrm{mg}, 0.0140 \mathrm{mmol}$), aminosumanene ($3.9 \mathrm{mg}, 0.0140$ mmol) and formic acid ($85 \% ; 20 \mu \mathrm{~L}$) in THF/methanol solvent system (1:2 $\mathrm{v} / \mathrm{V})^{[8]}(2.5$ mL) was refluxed for 6 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, water (2 mL), brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give (E)-N(ferrocenylmethyl)sumanene ($9 ; 4.1 \mathrm{mg}, 61 \%$) as the orange solid.
$\mathrm{Mp}: 202{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}$), $\delta_{\mathrm{H}} 8.56$ (s, 1H), 7.13-7.09 (m, 4 H), $6.96(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=19.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.81(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=$ $19.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 5 \mathrm{H}), 3.56$ (d, J = $19.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (d, $J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right)$, δ_{C} 162.1, 151.7, 149.5, 149.3, 149.2, 149.1, 149.0, 148.9, 148.7, 148.6, 148.5, 148.4 (2C), 123.8, 123.6, 123.5 (2C), 123.1, 119.3, 71.5, 69.6 (5C), 69.3 (2C), 69.2 (2C), 41.9, 41.8, 41.5; IR (ATR), v 1630, 1520, 1465, 1395, 1295, 1255, 1120, 1005, $815 \mathrm{~cm}^{-1}$; UV-Vis, $\lambda_{\max }\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}\right) 240,280,375 \mathrm{~nm}$; Elemental analysis: calculated for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{FeN}$: C (80.85\%), H (4.45\%), N (2.95\%); found: C (80.99\%), H (4.28\%), N (3.09\%); APCI-MS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{FeN}[\mathrm{M}]^{+}=475.36$, found: $\mathrm{m} / \mathrm{z} 475.35 . \mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, $\left.90: 10 \mathrm{v} / \mathrm{v}\right)=0.85$

N^{1}-(ferrocenylmethyl)- \boldsymbol{N}^{4}-(naphthalen-2-ylmethyl)benzene-1,4-diamine (10)

A solution of N-(ferrocenylmethyl)benzene-1,4-diamine (Fc-3; $5.6 \mathrm{mg}, 0.0082 \mathrm{mmol}$), 2-napthaldehyde ($2.9 \mathrm{mg}, 0.0183 \mathrm{mmol}$) and formic acid ($85 \% ; 30 \mu \mathrm{~L}$) in $\mathrm{MeOH}^{[6]}(2.0$ mL) was stirred at $27^{\circ} \mathrm{C}$ for 24 h . Then, sodium borohydride ($1.2 \mathrm{mg}, 0.0248 \mathrm{mmol}$) was added and the mixture was further stirred at $27{ }^{\circ} \mathrm{C}$ for $3 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added and the organic layer was washed with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, water (2 mL), brine (2 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuum. The resultant residue was purified by PTLC $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give N^{1}-(ferrocenylmethyl)-N^{4}-(naphthalen-2-ylmethyl)benzene-1,4-diamine (10; $5.5 \mathrm{mg}, 67 \%$ yield) as the lightorange solid.
Mp: $110{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{H}} 7.86-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.52-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{bs}, 1 \mathrm{H}), 4.44-4.455(\mathrm{bm}, 2 \mathrm{H}), 4.24-4.23(\mathrm{t}, \mathrm{J}=$ $1.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.17(\mathrm{~s}, 5 \mathrm{H}), 4.13-4.12(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.89(\mathrm{bm}, 2 \mathrm{H}), 3.64(\mathrm{bs}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right), \delta_{\mathrm{C}} 141.2,141.0,137.7,132.9,128.4,128.1$, 128.0, 127.9, 126.3 (2C), 126.2 (2C), 125.8, 125.4, 115.0 (2C), 87.13, 68.6 (5C), 68.3 (2C), 67.9 (2C), 49.9, 44.9; IR (ATR), v 1555, 1515, 1460, 1295, 1250, 1130, 1095, 1005, 810, $745 \mathrm{~cm}^{-1}$; UV-Vis, $\lambda_{\max }\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}\right) 260,265,270,380 \mathrm{~nm}$; Elemental analysis: calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FeN}_{2}$: C (75.34\%), H (5.87\%), N (6.28\%); found: C (75.83\%), H (5.26\%), N (6.36\%); APCI-MS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FeN}_{2}[\mathrm{M}]^{+}=$ 446.36, found: m/z 446.35; $\mathrm{R}_{\mathrm{f}}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.31$.

S1.3 Florescence spectra titration

The 0.5 mM stock solution of the sumanene-ferrocene conjugate and 2 mM stock solution of $\mathrm{Cs}^{+}($in the form of CsCl$)$ in the solvent system $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1 / 1 \mathrm{v} / \mathrm{v}\right)$ were prepared. The concentration of sumanene-ferrocene conjugate was kept constant (0.1 mM), whilst the samples varied in the molar equivalent of Cs^{+}added (eq $=0,0.5,1,2$, 4,6 or 12).

S1.4 ¹H NMR titration

The 3.0 mM stock solution of the sumanene-ferrocene conjugate and 9 mM stock solution of $\mathrm{Cs}^{+}($in the form of CsCl$)$ in the solvent system $\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=1 / 1 \mathrm{v} / \mathrm{v}\right)$ were prepared. The concentration of sumanene-ferrocene conjugate was kept constant (1.5 mM), whilst the samples varied in the molar equivalent of Cs^{+}added (eq $=0,0.5,1,2,3)$.

S1.5 Cyclic voltammetry

Measurements were conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with tetrabutylammonium perchlorate (TBAP; 0.1 M) as a supporting electrolyte, with a sumanene-ferrocene conjugate concentration of 0.5 mM and a scan rate of $0.05 \mathrm{~V} / \mathrm{s}$. The voltammograms were referenced against the ferrocene/ferrocenium couple ($\mathrm{Fc} / \mathrm{Fc}^{+}$). The glassy carbon electrode (GCE) played a role of the working electrode, $\mathrm{Ag} / \mathrm{AgCl}$ electrode was used as the reference electrode and a platinum wire was used as the counter electrode. The working electrode was polished with $\mathrm{Al}_{2} \mathrm{O}_{3}$ slurry on a wet pad before the measurement. After the polishing step, the electrode was rinsed with the pure solvent.

For the Cs^{+}recognition tests, cyclic voltammograms were measured in the solvent system $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=1 / 1 \mathrm{v} / \mathrm{v}\right)$ with TBAP as a supporting electrolyte (0.1 M). Two tests were run: (1) with the solution of pristine sumanene-ferrocene conjugate (0.5 mM), (2) with the solution of sumanene-ferrocene conjugate (0.5 mM) containing 12 molar equivalents of Cs^{+}(in the form of its corresponding chloride).

S2. NMR spectra

Fig. S1. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound Fc-3.

Fig. S2. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound Fc -3.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 3 .

Fig. S4. ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400 \mathrm{MHz}\right)$ spectrum of compound 3.

Fig. S5. Inset of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400 \mathrm{MHz}\right)$ spectrum of compound 3.

Fig. S6. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ TOCSY NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400 \mathrm{MHz}\right)$ spectrum of compound 3 together with the representation of the optimized partial structure of compound 3. ${ }^{[10]}$ The crucial cross-correlations are marked in blue.

Table S1. Graphical representation and summary of the data on the crucial crosscorrelations observed in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (marked blue) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ TOCSY (marked red) spectra of compound 3 (spectra recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$). The chemical shifts for the respective protons are also presented. Cross-correlation between CH_{2}-sumanene (4.40-4.27 ppm) and $\mathbf{H}-A r$ of sumanene ($7.25-7.16 \mathrm{ppm}$) observed in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ TOCSY experiment, confirmed that the CH_{2}-sumanene diastereotopic protons and $\mathrm{H}-\mathrm{Ar}$ of sumanene are included in the same spin system (U-shaped system, see the graphical representation in Fig. S6). This feature stands for the signal multiplicity of $\mathrm{CH}_{2^{-}}$ sumanene (multiplet, 4.40-4.27 ppm).

Fig. S7. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound 3 .

Fig. S8. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 4.

Fig. S9. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 4. The crucial cross correlations are also marked.

Fig. S10. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound 4 .

Fig. S11. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 5.

Fig. S12. ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 5. The crucial cross correlations are also marked.

Fig. S13. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound 5 .

Fig. S14. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 7 .

Fig. S15. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound 7.

Fig. S16. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 8 .

Fig. S17. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound 8 .

Fig. S18. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 9.

Fig. S19. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound 9 .

Fig. S20. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 10.

Fig. S21. ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of compound 10. The crucial cross correlations are also marked.

Fig. S22. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of compound 10.

S3. IR spectra

Fig. S23. IR (ATR) spectrum of compound Fc-5 in the wavenumber range of 2000$600 \mathrm{~cm}^{-1}$ (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

Fig. S24. IR (ATR) spectrum of compound 3 in the wavenumber range of 2000-600 cm^{-1} (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

Fig. S25. IR (ATR) spectrum of compound 4 in the wavenumber range of 2000-600 cm^{-1} (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

Fig. S26. IR (ATR) spectrum of compound 5 in the wavenumber range of 2000-600 cm^{-1} (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

Fig. S27. IR (ATR) spectrum of aminosumanene (7) in the wavenumber range of 2000$600 \mathrm{~cm}^{-1}$ (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

Fig. S28. IR (ATR) spectrum of compound 8 in the wavenumber range of 2000-600 cm^{-1} (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

Fig. S29. IR (ATR) spectrum of compound 9 in the wavenumber range of 2000-600 cm^{-1} (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

Fig. S30. IR (ATR) spectrum of compound 10 in the wavenumber range of 2000-600 cm^{-1} (top) and in the range of $3600-600 \mathrm{~cm}^{-1}$ showing NH stretching vibrations (bottom).

S4. UV-Vis spectra

Fig. S31. UV-Vis spectra of compound 3 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-5} \mathrm{M}$ (left), $1 \cdot 10^{-4} \mathrm{M}$ (right)).

Fig. S32. UV-Vis spectrum of compound 4 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$).

Fig. S33. UV-Vis spectrum of compound 5 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-5} \mathrm{M}$).

Fig. S34. UV-Vis spectra of compound 8 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v} ; 1 \cdot 10^{-5} \mathrm{M}$ (left), $1 \cdot 10^{-4} \mathrm{M}$ (right)).

Fig. S35. UV-Vis spectrum of compound 9 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$).

Fig. S36. UV-Vis spectra of compound 10 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-5} \mathrm{M}$ (left), $1 \cdot 10^{-4} \mathrm{M}$ (right)).

S5. Fluorescence spectroscopy and titration experiments

Fig. S37. Emission spectra of compound 3 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S38. Emission spectra of compound 4 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S39. Emission spectra of compound 5 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S40. Emission spectrum of compound 8 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm (left), 370 nm (right)).

Fig. S41. Emission spectra of compound 9 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S42. Emission spectra of compound 10 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S43. Comparison between UV-Vis (top) or fluorescence (bottom) spectra titration methods for caesium cation (Cs^{+}; in the form of CsCl) binding studies with representative compound 3 (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 3 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength for the fluorescence spectra: 280 nm).

Fig. S44. Caesium cation (Cs^{+}; in the form of CsCl) binding studies with compound 4 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 4 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S45. Caesium cation (Cs^{+}; in the form of CsCl) binding studies with compound 5 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 5 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S46. Caesium cation (Cs^{+}; in the form of CsCl) binding studies with compound 8 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 8 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S47. Caesium cation (Cs^{+}; in the form of CsCl) binding studies with compound 9 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 9 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S48. Potassium cation (K^{+}; in the form of KCl) binding studies with compound 3 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 3 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S49. Iron cation (Fe^{2+}; in the form of FeCl_{2}) binding studies with compound $\mathbf{3}$ using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 3 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S50. Magnesium cation (Mg^{2+}; in the form of MgCl_{2}) binding studies with compound 3 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=$ $1: 1 \mathrm{v} / \mathrm{V}$; compound 3 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S51. Rubidium cation (Rb^{+}; in the form of RbCl) binding studies with compound 3 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 3 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

Fig. S52. Barium cation (Ba^{+}; in the form of BaCl_{2}) binding studies with compound 3 using the fluorescence spectra titration method (solvent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$; compound 3 concentration: $1 \cdot 10^{-4} \mathrm{M}$; excitation wavelength: 280 nm).

S6. The Job's plots

Fig. S53. The Job's plot related to the interactions of the compound 3 with Cs^{+}(based on the data from the florescence spectra titration; x stands for the molar fraction of compound $3, I_{0}$ stands for the emission intensity of compound 3 without Cs^{+}added, I stands for the emission intensity of compound with the given amount of Cs^{+}added).

Fig. S54. The Job's plot related to the interactions of the compound 4 with Cs^{+}(based on the data from the florescence spectra titration; x stands for the molar fraction of compound $4, I_{0}$ stands for the emission intensity of compound 4 without Cs^{+}added, I stands for the emission intensity of compound with the given amount of Cs^{+}added).

Fig. S55. The Job's plot related to the interactions of the compound 5 with Cs^{+}(based on the data from the florescence spectra titration; x stands for the molar fraction of compound $5, I_{0}$ stands for the emission intensity of compound 5 without Cs^{+}added, I stands for the emission intensity of compound with the given amount of Cs^{+}added).

Fig. S56. The Job's plot related to the interactions of the compound 8 with Cs^{+}(based on the data from the florescence spectra titration; x stands for the molar fraction of compound $8, I_{0}$ stands for the emission intensity of compound 8 without Cs^{+}added, I stands for the emission intensity of compound with the given amount of Cs^{+}added).

Fig. S57. The Job's plot related to the interactions of the compound 9 with Cs^{+}(based on the data from the florescence spectra titration; x stands for the molar fraction of compound $9, I_{0}$ stands for the emission intensity of compound 9 without Cs^{+}added, I stands for the emission intensity of compound with the given amount of Cs^{+}added).

S7. ${ }^{1} \mathrm{H}$ NMR titration experiments

Fig. S58. Caesium cation (Cs^{+}; in the form of CsCl) binding studies with compound 3 using the ${ }^{1} \mathrm{H}$ NMR titration method (solvent: $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=1: 1 \mathrm{v} / \mathrm{v}$, compound 3 concentration: 1.5 mM). The insets of the spectra are presented.

Fig. S59. Caesium cation (Cs^{+}; in the form of CsCl) binding studies with compound 4 using the ${ }^{1} \mathrm{H}$ NMR titration method (solvent: $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=1: 1 \mathrm{v} / \mathrm{v}$, compound 4 concentration: 1.5 mM). The insets of the spectra are presented.

Fig. S60. Caesium cation (Cs^{+}; in the form of CsCl$)$ binding studies with compound 10 using the ${ }^{1} \mathrm{H}$ NMR titration method (solvent: $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=1: 1 \mathrm{v} / \mathrm{v}$; compound 10 concentration: 1.5 mM).

S8. Cyclic voltammograms

Fig. S61. Cyclic voltammogram of compound $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S62. Cyclic voltammogram of compound $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S63. Cyclic voltammogram of compound $\mathbf{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S64. Cyclic voltammogram of compound 8 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S65. Cyclic voltammogram of compound 9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S66. Cyclic voltammogram of compound $\mathbf{3}$ in $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$, with (black curve) and without (red curve) Cs^{+}added (12 eq).

Fig. S67. Cyclic voltammogram of compound $\mathbf{4}$ in $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$, with (black curve) and without (red curve) Cs^{+}added (12 eq).

Fig. S68. Cyclic voltammogram of compound $\mathbf{5}$ in $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / v$, with (black curve) and without (red curve) Cs^{+}added (12 eq).

Fig. S69. Cyclic voltammogram of compound $\mathbf{8}$ in $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$, with (black curve) and without (red curve) Cs^{+}added (12 eq).

Fig. S70. Cyclic voltammogram of compound $\mathbf{9}$ in $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 1 \mathrm{v} / \mathrm{v}$, with (black curve) and without (red curve) Cs^{+}added (12 eq).

S9. Details on calculation of K_{a} and LOD

Calculations were based on the Stern-Volmer equation:
$\frac{I_{0}}{I}=1+K_{a} \cdot C_{\text {cation }}$
, where $C_{\text {cation }}$ is the molar concentration of the cation, I_{0} and I are the fluorescence intensity of Fc-sumanene derivative in the absence and in the presence of cation, respectively (reference no. 26 in the manuscript). K_{a} and LOD were calculated as follows:

- K_{a} value for compound 5 was calculated accordingly on the basis of the $\mathrm{I}_{0} / \mathrm{I}=$ $f\left(C_{\text {cation }}\right)$ linear dependency (Fig. S71). K_{a} values for compounds 3, 4, 8, 9 were calculated accordingly on the basis of the $I_{0} I I=f\left(C_{\text {cation }}{ }^{2}\right)$ linear dependences (Fig. S72). $I_{0} I I=f\left(C_{\text {cation }}\right)$ linear plots for compounds 3, 4, 8, 9 are also presented in Fig. S71. Despite the fact that the Stern-Volmer method fits best for $1: 1$ interaction model, both $\mathrm{I}_{0} / \mathrm{I}=\mathrm{f}\left(\mathrm{C}_{\text {cation }}\right)$ and $\mathrm{I}_{0} / \mathrm{I}=\mathrm{f}\left(\mathrm{C}_{\text {cation }}{ }^{2}\right)$ plots for compounds 3, 4, 8 were linear, thus enabling calculation of K_{a}. However, the calculated K_{a} numbers for compounds $\mathbf{3}, \mathbf{4}, \mathbf{8}, 9$ should be treated as the approximate ones.
- LOD values were calculated accordingly on the basis of the $I_{0}-1 / I_{0}=f\left(C_{\text {cation }}\right)$ linear dependences (Fig. S73).

The plots are given below. The results of calculations are summarized in Table 2 in the main article file.

Fig. S71. $\mathrm{I}_{0} / \mathrm{l}=\mathrm{f}\left(\mathrm{C}_{\text {cation }}\right)$ plot for: (a) compound 3, (b) compound 4, (c) compound (5), (d) compound (8), (e) compound 9.

Fig. S72. $\mathrm{I}_{0} / \mathrm{I}=\mathrm{f}\left(\mathrm{C}_{\text {cation }}{ }^{2}\right)$ plot for: (a) compound 3, (b) compound 4, (c) compound (8), (d) compound 9 .

Fig. S73. $\mathrm{I}_{0}-\mathrm{I} / \mathrm{I}=\mathrm{f}\left(\mathrm{C}_{\text {cation }}\right)$ plot for: (a) compound 3, (b) compound 4, (c) compound (5), (d) compound (8), (e) compound 9.

S10. References

[1] H. Sakurai, T. Daiko, T. Hirao. Science, 2003, 301, 1878.
[2] B. B. Shrestha, S. Karanjit, G. Panda, S. Higashibayashi, H. Sakurai. Chem. Lett., 2013, 42, 386-388.
[3] P. Chen, C. Liu, J. Hu, H. Zhang, R. Sun. J. Organomet. Chem., 2018, 854, 113-121.
[4] N. Dwadnia, F. Allouch, N. Pirio, J. Roger, H. Cattey, S. Fournier, M.-J. Penouilh, C. H. Devillers, D. Lucas, D. Naoufal, R. B. Salem, J.-C. Hierso. Organometallics, 2013, 32, 5784-5797.
[5] R. Arancibia, A. H. Klahn, G. E. Buono-Core, E. Gutierrez-Puebla, A. Monge, M. E. Medina, C. Olea-Azar, J. D. Maya, F. Godoy. J. Organomet. Chem., 2011, 696, 3238-3244.
[6] MeOH was dried over molecular sieves $3 \AA$ and bubbled with N_{2} before the reaction.
[7] The compound 5 can be also isolated by means of filtration (67% yield). After filtration of the reaction mixture, the crude product is washed with cold $\left(-30^{\circ} \mathrm{C}\right)$ methanol (5 mL), cold $\left(-30^{\circ} \mathrm{C}\right)$ THF (1.5 mL) and dried under vacuum.
[8] The solvent was bubbled with N_{2} before the reaction.
[9] The compound 8 and be also purified with PTLC $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=95: 5\right.$ $v / v ; \mathrm{R}_{\mathrm{f}}(8)=0.9 ; 63 \%$ yield).
[10] The optimized partial structure of compound 3 was obtained with Gaussian09 software (M. J. Frisch, et al. Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT, 2010).

