Site-selective cation-π-interaction as a way of selective recognition of caesium cation with sumanene-functionalized ferrocenes

Artur Kasprzak^{a*}, Hidehiro Sakurai^b

^a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland

^b Division of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

* e-mail: akasprzak@ch.pw.edu.pl

Supplementary Information

Table of contents

S1.	Exp	perimental section	2
S1.	1	Materials and methods	2
S1.	2	Synthesis	3
S1.3		Florescence spectra titration	8
S1.	4	¹ H NMR titration	8
S1.	5	Cyclic voltammetry	9
S2.	NM	R spectra	10
S3.	IR s	spectra	22
S4.	UV-	Vis spectra	
S5.	Flue	prescence spectroscopy and titration experiments	33
S6.	The	e Job's plots	42
S7.	¹ H I	NMR titration experiments	45
S8.	Сус	lic voltammograms	48
S9.	Det	ails on calculation of K _a and LOD	53
S10.	R	eferences	55

S1. Experimental section

S1.1 Materials and methods

Chemical reagents and solvents were commercially purchased and purified according to the standard methods, if necessary. Air- and moisture-sensitive reactions were carried out using commercially available anhydrous solvents under an inert atmosphere of nitrogen. The NMR experiments were carried out using JEOL JNM-ECZS spectrometer operating at 400 MHz (¹H NMR at 400 MHz or ¹³C{¹H} NMR at 100 MHz). Unless otherwise stated, the spectra were recorded at 23 °C. Standard 5 mm NMR tubes were used. ¹H and ¹³C chemical shifts (δ) were reported in parts per million (ppm) relative to the solvent signals: CDCl₃, δ_{H} (residual CHCl₃) 7.26 ppm, δ_{C} 77.23 ppm, or $(CD_3)_2CO$, δ_H (residual $(CH_3)_2CO$) 2.05 ppm. Melting points were determined on Standford Research Systems MPA 100 and were uncorrected. Infrared (IR) spectra were recorded on a JASCO FT IR-4100 spectrometer with a spectral resolution of 2 cm⁻¹ (80 scans) in the wavelength range of 2000-600 cm⁻¹. UV-visible (UV–Vis) absorption spectra were recorded on a JASCO V-670 spectrometer with the spectral resolution of 1 nm. Fluorescence spectra were recorded on a JASCO FP6500 spectrometer with the spectral resolution of 1 nm. Cyclic voltammetry (CV) was measured with a ALS/CH Instruments Electrochemical Analyzer Model 600A. Elemental analyses were performed using CHNS Elementar Vario EL III apparatus. Each elemental composition was reported as an average of two analyses. APCI-MS spectra were measured with ACQUITY ultra performance LC instrument. Gel permeable chromatography (GPC) was conducted on JAIGEL 2H using a JAI Recycling Preparative HPLC LC-908W with CHCl₃ as eluent. TLC analysis was performed using Merck Silica gel 60 F254 and PTLC was conducted using Wako Wakogel B-5F or with Al_2O_3 (neutral) plates.

Sumanene (1)^[1], formylsumanene (2)^[2], nitrosumanene (6)^[2], formylferrocene (Fc-2)^[3], 1,1'-diformylferrocene (Fc-4)^[4], *N*-(ferrocenylmethyl)benzene-1,4-diamine (Fc-3)^[5], were synthesized according to the literature procedures.

S1.2 Synthesis

Scheme S1. Synthesis of the ferrocene derivatives: (**a**) ferrocene 100 mol%, DMF 200 mol%, POCl₃ 200 mol%, CHCl₃, 55°C, 24 h, 69% yield; (**b**) formylferrocene 100 mol%, *p*-phenylenediamine 500 mol%, MeOH, reflux, 6 h then NaBH₄ 200 mol%, reflux, 1h, 70% yield; (**c**) ferrocene 100 mol%, TMEDA 200%, ⁿBuLi 220 mol%, hex, 27°C, 24 h then DMF 220 mol% in diethyl ether, -78°C, 2 h, 72% yield; (**d**) 1,1'- diformylferrocene 100 mol%, *p*-phenylenediamine 600 mol%, MeOH, reflux, 6 h then NaBH₄ 800 mol%, reflux, 1h, 73% yield.

N¹,N¹'-(1,1'-bis(methyl)ferrocenyl)bis(benzene-1,4-diamine) (Fc-5)

A solution of 1,1'-diformylferrocene (24.2 mg, 0.1 mmol) and *p*-phenylenediamine (64.9 mg, 0.6 mmol) in methanol^[6] (5 mL) was refluxed for 6 h. Sodium borohydride (30.2 mg, 0.8 mmol) was then added and the mixture was further refluxed for 1 h. The reaction mixture was diluted with CH_2CI_2 (20 mL), washed with water (5 mL), brine (3 mL), dried over Na_2SO_4 , filtered and evaporated in vacuum. The crude product was purified by PTLC (SiO₂; $CH_2CI_2/MeOH$, 95:5 v/v) to give compound N^1,N^1 -(1,1'-bis(methyl)ferrocenyl)bis(benzene-1,4-diamine) (**Fc-5**; 31.1 mg; 73% yield) as a dark-orange solid.

Mp: 132 °C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), δ_{H} 6.64-6.62 (m, 4H), 6.58-6.54 (m, 4H), 4.23-4.22 (t, *J* = 1.8 Hz, 2H), 4.14–4.13 (t, *J* = 1.9 Hz, 2H), 3.92 (s, 4H), 3.29 (bs, 6H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 114.7 (2C), 138.8 (2C), 138.2 (2C), 116.9 (2C),114.9 (2C), 87.4 (2C), 68.8 (4C), 68.5 (4C), 68.0 (2C), 44.7 (2C); IR (ATR), *v* 1565, 1510, 1485, 1300, 1245, 1105, 815 cm⁻¹; Elemental analysis: calculated for C₂₄H₂₆FeN₄: C (67.61%), H (6.15%), N (13.14%); found: C (67.50%), H (6.13%), N (13.28%); APCI-MS calcd. for C₂₄H₂₆FeN₄ [M]⁺ = 426.15, found: m/z 426.16; R_f (SiO₂; CH₂Cl₂/MeOH, 95:5 *v*/*v*) = 0.55

 N^{1} -(ferrocenylmethyl)- N^{4} -(sumanenylmethyl)benzene-1,4-diamine (3)

A solution of *N*-(ferrocenylmethyl)benzene-1,4-diamine (**Fc-3**; 2.5 mg, 0.0082 mmol) in MeOH^[6] (0.8 mL) was added to a stirred solution of formylsumanene (**2**; 2.4 mg, 0.0082 mmol) in dry THF (1.0 mL). Formic acid (85%; 10 µL) was added and the mixture was stirred at 27 °C for 24 h. Then, sodium borohydride (1.2 mg, 0.0248 mmol) was added and the mixture was further stirred at 27°C for 3 h. CH₂Cl₂ (15 mL) was added and the organic layer was washed with saturated NaHCO₃ (2 mL), water (2 mL), brine (2 mL), dried with Na₂SO₄, filtered, and the solvent was removed in vacuum. The resultant residue was purified by column chromatography (Al₂O₃; CH₂Cl₂/MeOH = 99.5:0.5 v/v) to give N¹-(ferrocenylmethyl)-N⁴-(sumanenylmethyl)benzene-1,4-diamine (**3**; 3.6 mg, 75% yield) as the light-orange solid.

Mp: 195 °C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), δ_{H} 7.16 (s, 1H), 7.11-7.09 (m, 4H), 6.63-6.62 (m, 4H), 4.35-4.22 (m, 5H), 4.24-4.23 (t, *J* = 1.9 Hz, 2H), 4.17 (s, 5H), 4.13–4.12 (t, *J* = 1.9 Hz, 2H), 3.91 (s, 2H), 3.52 (d, *J* = 19.9 Hz, 1H), 3.44 (d, *J* = 15.0 Hz, 1H), 3.39 (d, *J* = 15.1 Hz, 1H); ¹H NMR ((CD₃)₂CO, 400 MHz, ppm), δ_{H} 7.25 (s, 1H), 7.16-7.14 (m, 4H), 6.60-6.54 (m, 4H), 4.72-4.64 (m, 4H), 4.40-4.27 (m, 4H), 4.23-4.22 (t, *J* = 1.9 Hz, 2H), 4.16 (s, 5H), 4.12-4.10 (t, *J* = 5.9 Hz, 1H), 4.07–4.05 (t, *J* = 1.9 Hz, 2H), 3.91 (d, *J* = 5.9 Hz, 2H), 3.64 (d, *J* = 20.0 Hz, 1H), 3.48 (d, *J* = 15.1 Hz, 1H), 3.44 (d, *J* = 15.0 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 150.3, 149.2, 149.2, 149.1, 149.0, 148.9, 148.8 (2C), 148.2, 147.1, 141.3, 141.2, 135.9, 123.6, 123.5 (2C), 123.4 (2C), 115.1 (2C), 115.0 (2C), 87.2, 87.2, 68.7 (5C), 68.3 (2C), 68.0 (2C), 49.0, 45.0, 42.0 (2C), 41.0; IR (ATR), *v* 1560, 1510, 1460, 1300, 1225, 1100, 1000, 800, 750 cm⁻¹; UV-Vis, λ_{max} (CHCl₃:MeOH = 1:1 *v/v*) 250, 280, 360, 395 nm; Elemental analysis: calculated for C₃₉H₃₀FeN₂: C (80.41%), H (5.19%), N (4.81%); found: C (80.07%), H (5.28%), N (4.65%); APCI-MS: calcd. for C₃₉H₃₀FeN₂[M]⁺ = 582.81, found: m/z 582.83; R_f (Al₂O₃; CH₂Cl₂/MeOH, 99.5:0.5 *v/v*) = 0.40

A solution of *N*-(ferrocenylmethyl)benzene-1,4-diamine (**Fc-3**; 2.5 mg, 0.0082 mmol) in MeOH^[6] (0.8 mL) was added to a stirred solution of formylsumanene (2; 2.4 mg,

0.0082 mmol) in dry THF (1.0 mL). Formic acid (85%; 10 µL) was added and the mixture was stirred at 27 °C for 24 h. CH_2Cl_2 (15 mL) was added and the organic layer was washed with saturated NaHCO₃ (2 mL), water (2 mL), brine (2 mL), dried with Na₂SO₄, filtered, and the solvent was removed in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give (*E*)-*N*¹- (ferocenylmethyl)-*N*⁴-(sumenenylmethyl)benzene-1,4-diamine (**4**; 4.5 mg, 94% yield) as the dark yellow solid.

Mp: 178°C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), 8.60 (s, 1H), 7.61 (s, 1H), 7.25-7.23 (m, 2H), 7.17-7.11 (m, 4H), 6.71-6.69 (m, 2H), 4.98 (d, *J* = 20.6 Hz, 1H), 4.75 (d, *J* = 19.6 Hz, 1H), 4.72 (d, *J* = 19.6 Hz, 1H), 4.27-4.26 (t, *J* = 1.9 Hz, 2H), 4.20 (s, 5H), 4.17–4.16 (t, *J* = 1.9 Hz, 2H), 4.00-3.98 (bm, 3H), 3.66 (d, *J* = 20.6 Hz, 1H), 3.50 (d, *J* = 19.6 Hz, 1H), 3.45 (d, *J* = 19.6 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 156.1, 150.1, 149.5, 149.4 (2C), 149.1, 149.0, 148.9, 148.8, 148.6, 148.2, 147.5, 147.3, 147.1, 142.6, 133.7, 124.9, 124.1, 124.0, 123.6 (2C), 122.7 (2C), 113.4 (2C), 86.5, 68.7 (5C), 68.4 (2C), 68.2 (2C), 43.8, 43.0, 42.0, 41.8; IR (ATR), *v* 1635, 1555, 1510, 1455, 1300, 1250, 1100, 995, 805, 755 cm⁻¹; UV-Vis, λ_{max} (CHCl₃:MeOH = 1:1 *v/v*) 255, 295, 360, 390 nm; Elemental analysis: calculated for C₃₉H₂₈FeN₂: C (80.69%), H (4.86%), N (4.83%); found: C (80.15%), H (4.59%), N (4.60%); APCI-MS: calcd. for C₃₉H₂₈FeN₂ [M]⁺ = 580.49, found: m/z 582.48. R_f (SiO₂; CH₂Cl₂) = 0.56

A solution of N^1 , N^1 -(1,1'-bis(methyl)ferrocenyl)bis(benzene-1,4-diamine) (**Fc-5**; 3.1 mg, 0.0072 mmol) in MeOH^[6] (1.0 mL) was added to a stirred solution of formylsumanene (**2**; 4.2 mg, 0.0144 mmol) in dry THF (2.0 mL). Formic acid (85%; 20 μ L) was added and the mixture was stirred at 27 °C for 24 h. CH₂Cl₂ (20 mL) was added and the organic layer was washed with saturated NaHCO₃ (3 mL), water (2 mL), brine (3 mL), dried with Na₂SO₄, filtered, and the solvent was removed in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give (N^4E , $N^4'E$)- N^1 , N^1 -(1,1'-bis(methyl)ferrocenyl)bis(N^4 -(sumanenylmethyl)benzene-1,4-diamine) (**5**; 5.0 mg, 72% yield) as the yellow solid.^[7] Mp: 171°C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), δ 8.57 (s, 1H), 8.55 (s, 1H), 7.59 (s, 1H), 7.56 (s, 1H), 7.23-7.20 (m, 4H), 7.11-7.06 (m, 8H), 6.67-6.63 (m, 4H),

4.94-4.84 (m, 2H), 4.72-4.59 (m, 4H), 4.29-4.28 (t, J = 1.8 Hz, 2H), 4.21–4.20 (t, J = 1.8 Hz, 2H), 4.02-4.00 (bm, 6H), 3.84-3.69 (m, 2H), 3.45-3.29 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 156.3, 156.1, 149.5 (2C), 149.4 (2C), 149.3 (4C), 149.2 (2C), 149.1 (2C), 149.0 (2C), 148.9 (2C), 148.2 (2C), 148.0 (2C), 147.8 (2C), 147.5 (4C), 147.4 (2C), 147.3 (2C), 135.5 (2C), 124.9 (2C), 124.4 (2C), 124.1 (2C), 123.9 (2C), 123.5 (2C), 122.8 (4C), 113.50 (6C), 87.0 (2C), 68.8 (2C), 68.7 (2C), 43.0 (2C), 42.8 (2C), 42.0 (2C), 41.7 (2C); IR (ATR), *v* 1650, 1605, 1510, 1460, 1395, 1255, 1085, 1020, 795 cm⁻¹; UV-Vis, λ_{max} (CHCl₃:MeOH = 1:1 *v/v*) 255, 295, 395 nm; Elemental analysis: calculated for C₆₈H₄₆FeN₄: C (83.77%), H (4.76%), N (5.75%); found: C (84.02%), H (4.85%), N (5.60%); APCI-MS: calcd. for C₆₈H₄₆FeN₄[M]⁺ = 974.97, found: m/z 974.96. R_f (SiO₂; CH₂Cl₂) = 0.75

Aminosumanene (7)

A mixture containing nitrosumanene (**6**; 4.0 mg, 0.0121 mmol) and Pd/C (10% Pd; 8.0 mg, 200 w/w%) in the solvent (EtOH/AcOEt = 1:1 v/v, 4.0 mL)^[8] was stirred at 27 °C for 3 h. The mixture was filtered through celite and washed with CH_2Cl_2 (15 mL). The volatiles were distilled off in vacuum to give aminosumanene (**7**; 3.4 mg, 99% yield) as a yellow-white solid.

Mp: 118 °C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), δ 7.12-7.10 (m, 3H), 7.03-6.96 (m, 2H), 6.42 (bs, 2H), 4.70-4.49 (m, 3H), 3.41-3.28 (m, 3H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 153.0, 150.7, 150.1, 149.3, 149.1, 149.0, 148.4, 147.9, 147.4, 143.2, 140.8, 129.4, 123.6, 123.5, 123.3, 121.7, 121.7, 111.7, 41.8, 41.6, 39.7; IR (ATR), *v* 1585, 1535, 1320, 1250, 985, 815, 750 cm⁻¹; Elemental analysis: calculated for C₂₁H₁₃N: C (90.29%), H (4.70%), N (5.01%); found: C (90.20%), H (4.59%), N (5.21%); APCI-MS: calcd. for C₂₁H₁₃N [M]⁺ = 279.33, found: m/z 279.34. R_f (SiO₂; CH₂Cl₂) = 0.67

N-(ferrocenylmethyl)sumanene (8)

A solution of formylferrocene (3.0 mg, 0.0140 mmol), aminosumanene (3.9 mg, 0.0140 mmol) and formic acid (85%; 20 μ L) in THF/methanol solvent system (1:2 v/v)^[8] (2.5 mL) was refluxed for 6 hours at nitrogen atmosphere. Sodium borohydride (1.7 mg, 0.0420 mmol, 3 eq) was then added and the mixture was further refluxed for 1 h. The

reaction mixture was diluted with CH_2CI_2 (15 mL), washed saturated NaHCO₃ (2 mL), water (2 mL), brine (2 mL), dried over Na₂SO₄, filtered and evaporated in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give *N*-(ferrocenylmethyl)sumanene (**8**; 4.6 mg, 69%) as the light-orange solid.^[9]

Mp: 221 °C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), δ_{H} 7.10-7.09 (m, 3H), 7.04-6.94 (m, 2H), 6.45 (bs, 1H), 4.68 (d, *J* = 19.2 Hz, 1H), 4.63 (d, *J* = 19.1 Hz, 1H), 4.59 (d, *J* = 19.4 Hz, 1H), 4.27-4.26 (t, *J* = 1.8 Hz, 2H), 4.21 (s, 5H), 4.18–4.17 (t, *J* = 1.8 Hz, 2H), 4.01 (d, *J* = 7.8 Hz, 2H), 3.41 (d, *J* = 19.2 Hz, 1H), 3.36 (d, *J* = 19.1 Hz, 1H), 3.32 (d, *J* = 19.4 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 153.1, 149.8, 149.5, 149.2, 148.4, 148.3, 148.0, 147.9, 147.5, 147.4 (2C), 147.1, 146.9, 146.6, 136.0, 134.6, 123.4, 108.0, 98.4, 68.73 (5C), 68.33, (2C), 68.2 (2C), 51.2, 42.7, 41.7, 40.6; IR (ATR), *v* 1545, 1515, 1465, 1290, 1245, 1130, 1105, 995, 810 cm⁻¹; UV-Vis, λ_{max} (CHCl₃:MeOH = 1:1 *v/v*) 250, 280, 370 nm; Elemental analysis: calculated for C₃₂H₂₃FeN: C (80.51%), H (4.86%), N (2.93%); found: C (80.71%), H (4.72%), N (3.04%); APCI-MS: calcd. for C₃₂H₂₃FeN [M]⁺ = 477.38, found: m/z 477.36. R_f (SiO₂; CH₂Cl₂/hexane, 95:5 *v/v*) = 0.82

(E)-N-(ferrocenylmethyl)sumanene (9)

A solution of formylferrocene (3.0 mg, 0.0140 mmol), aminosumanene (3.9 mg, 0.0140 mmol) and formic acid (85%; 20 μ L) in THF/methanol solvent system (1:2 v/v)^[8] (2.5 mL) was refluxed for 6 h. The reaction mixture was diluted with CH₂Cl₂ (15 mL), washed saturated NaHCO₃ (2 mL), water (2 mL), brine (2 mL), dried over Na₂SO₄, filtered and evaporated in vacuum. The resultant residue was purified by using a recycling GPC (chloroform as eluting solvent) to give (*E*)-*N*-(ferrocenylmethyl)sumanene (**9**; 4.1 mg, 61%) as the orange solid.

Mp: 202 °C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), δ_{H} 8.56 (s, 1H), 7.13-7.09 (m, 4H), 6.96 (s, 1H), 4.80 (d, *J* = 19.9 Hz, 1H), 4.82-4.81 (t, *J* = 1.9 Hz, 2H), 4.72 (d, *J* = 19.6 Hz, 2H), 4.50 (t, *J* = 1.9 Hz, 2H), 4.25 (s, 5H), 3.56 (d, *J* = 19.9 Hz, 1H), 3.47 (d, *J* = 19.6 Hz, 1H), 3.42 (d, *J* = 19.6 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 162.1, 151.7, 149.5, 149.3, 149.2, 149.1, 149.0, 148.9, 148.7, 148.6, 148.5, 148.4 (2C),123.8, 123.6, 123.5 (2C), 123.1, 119.3, 71.5, 69.6 (5C), 69.3 (2C), 69.2 (2C), 41.9, 41.8, 41.5; IR (ATR), *v* 1630, 1520, 1465, 1395, 1295, 1255, 1120, 1005, 815 cm⁻¹; UV-Vis, λ_{max} (CHCl₃:MeOH = 1:1 *v/v*) 240, 280, 375 nm; Elemental analysis: calculated for C₃₂H₂₁FeN: C (80.85%), H (4.45%), N (2.95%); found: C (80.99%), H (4.28%), N (3.09%); APCI-MS: calcd. for C₃₂H₂₁FeN [M]⁺ = 475.36, found: m/z 475.35. R_f (SiO₂; CH₂Cl₂/hexane, 90:10 *v/v*) = 0.85

N¹-(ferrocenylmethyl)-N⁴-(naphthalen-2-ylmethyl)benzene-1,4-diamine (10)

A solution of *N*-(ferrocenylmethyl)benzene-1,4-diamine (**Fc-3**; 5.6 mg, 0.0082 mmol), 2-napthaldehyde (2.9 mg, 0.0183 mmol) and formic acid (85%; 30 µL) in MeOH^[6] (2.0 mL) was stirred at 27 °C for 24 h. Then, sodium borohydride (1.2 mg, 0.0248 mmol) was added and the mixture was further stirred at 27 °C for 3 h. CH₂Cl₂ (20 mL) was added and the organic layer was washed with saturated NaHCO₃ (2 mL), water (2 mL), brine (2 mL), dried with Na₂SO₄, filtered, and the solvent was removed in vacuum. The resultant residue was purified by PTLC (SiO₂; CH₂Cl₂) to give *N*¹-(ferrocenylmethyl)-*N*⁴-(naphthalen-2-ylmethyl)benzene-1,4-diamine (**10**; 5.5 mg, 67% yield) as the light-orange solid.

Mp: 110 °C (decomp.); ¹H NMR (CDCl₃, 400 MHz, ppm), δ_{H} 7.86-7.80 (m, 4H), 7.52-7.45 (m, 3H), 6.66-6.60 (m, 4H), 4.87 (bs, 1H), 4.44-4.455 (bm, 2H), 4.24-4.23 (t, *J* = 1.9 Hz, 2H), 4.17 (s, 5H), 4.13–4.12 (t, *J* = 1.9 Hz, 2H), 3.90-3.89 (bm, 2H), 3.64 (bs, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz, ppm), δ_{C} 141.2, 141.0, 137.7, 132.9, 128.4, 128.1, 128.0, 127.9, 126.3 (2C), 126.2 (2C), 125.8, 125.4, 115.0 (2C), 87.13, 68.6 (5C), 68.3 (2C), 67.9 (2C), 49.9, 44.9; IR (ATR), *v* 1555, 1515, 1460, 1295, 1250, 1130, 1095, 1005, 810, 745 cm⁻¹; UV-Vis, λ_{max} (CHCl₃:MeOH = 1:1 *v/v*) 260, 265, 270, 380 nm; Elemental analysis: calculated for C₂₈H₂₆FeN₂: C (75.34%), H (5.87%), N (6.28%); found: C (75.83%), H (5.26%), N (6.36%); APCI-MS: calcd. for C₂₈H₂₆FeN₂ [M]⁺ = 446.36, found: m/z 446.35; R_f (SiO₂; CH₂Cl₂) = 0.31.

S1.3 Florescence spectra titration

The 0.5 mM stock solution of the sumanene-ferrocene conjugate and 2 mM stock solution of Cs⁺ (in the form of CsCl) in the solvent system (CHCl₃:MeOH = 1/1 v/v) were prepared. The concentration of sumanene-ferrocene conjugate was kept constant (0.1 mM), whilst the samples varied in the molar equivalent of Cs⁺ added (eq = 0, 0.5, 1, 2, 4, 6 or 12).

S1.4 ¹H NMR titration

The 3.0 mM stock solution of the sumanene-ferrocene conjugate and 9 mM stock solution of Cs⁺ (in the form of CsCl) in the solvent system (CDCl₃:CD₃OD = 1/1 v/v) were prepared. The concentration of sumanene-ferrocene conjugate was kept constant (1.5 mM), whilst the samples varied in the molar equivalent of Cs⁺ added (eq = 0, 0.5, 1, 2, 3).

S1.5 Cyclic voltammetry

Measurements were conducted in CH_2CI_2 with tetrabutylammonium perchlorate (TBAP; 0.1 M) as a supporting electrolyte, with a sumanene-ferrocene conjugate concentration of 0.5 mM and a scan rate of 0.05 V/s. The voltammograms were referenced against the ferrocene/ferrocenium couple (Fc/Fc⁺). The glassy carbon electrode (GCE) played a role of the working electrode, Ag/AgCl electrode was used as the reference electrode and a platinum wire was used as the counter electrode. The working electrode was polished with AI_2O_3 slurry on a wet pad before the measurement. After the polishing step, the electrode was rinsed with the pure solvent.

For the Cs⁺ recognition tests, cyclic voltammograms were measured in the solvent system (CHCl₃:MeOH = 1/1 v/v) with TBAP as a supporting electrolyte (0.1 M). Two tests were run: (1) with the solution of pristine sumanene-ferrocene conjugate (0.5 mM), (2) with the solution of sumanene-ferrocene conjugate (0.5 mM) containing 12 molar equivalents of Cs⁺ (in the form of its corresponding chloride).

S2. NMR spectra

Fig. S1. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound **Fc-3**.

Fig. S2. ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound Fc-3.

Fig. S3. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound 3.

Fig. S4. ¹H NMR ((CD₃)₂CO, 400 MHz) spectrum of compound 3.

Fig. S5. Inset of ¹H-¹H COSY NMR ((CD₃)₂CO, 400 MHz) spectrum of compound 3.

Fig. **S6**. ¹H-¹H TOCSY NMR ((CD_3)₂CO, 400 MHz) spectrum of compound **3** together with the representation of the optimized partial structure of compound **3**.^[10] The crucial cross-correlations are marked in blue.

Table S1. Graphical representation and summary of the data on the crucial crosscorrelations observed in the ¹H-¹H COSY (marked blue) and ¹H-¹H TOCSY (marked red) spectra of compound **3** (spectra recorded in $(CD_3)_2CO$). The chemical shifts for the respective protons are also presented. Cross-correlation between CH₂-sumanene (4.40-4.27 ppm) and H-Ar of sumanene (7.25-7.16 ppm) observed in the ¹H-¹H TOCSY experiment, confirmed that the CH₂-sumanene diastereotopic protons and H-Ar of sumanene are included in the same spin system (U-shaped system, see the graphical representation in Fig. S6). This feature stands for the signal multiplicity of CH₂sumanene (multiplet, 4.40-4.27 ppm).

		7.25-7.16	4.72-4.64	4.40-4.27	4.12-	3.92-	3.67-3.42
		(m)	(m)	(m)	4.10 (t)	3.91 (d)	(3 x d)
Chemical shift [ppm]		Ar	benzylic	CH ₂ -	Fc-CH ₂ -	Fc-CH ₂	benzylic
and peak assignment		(sumanene)	exo +	sumanene	NH		endo
			NH-CH ₂ -				
			sumanene				
7.25-7.16	Ar			X			
(m)	(sumanene)						
4.72-4.64	benzylic			X			X
(m)	exo + N H -						
	CH ₂ -						
	sumanene						
4.40-4.27	CH ₂ -	X	X				
(m)	sumanene						
4.12-4.10	Fc-CH ₂ -NH					X	
(t)							
3.92-3.91	Fc-CH ₂				X		
(d)							
3.67-3.42	benzylic		X				
(3 x d)	endo						

Fig. S7. ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 3.

Fig. S8. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound 4.

Fig. S9. ¹H-¹H COSY NMR (CDCl₃, 400 MHz) spectrum of compound **4**. The crucial cross correlations are also marked.

Fig. S10. ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 4.

Fig. S11. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound 5.

Fig. S12. ¹H-¹H COSY NMR (CDCl₃, 400 MHz) spectrum of compound **5**. The crucial cross correlations are also marked.

Fig. S13. ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound **5**.

Fig. S14. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound 7.

Fig. S15. ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 7.

Fig. S16. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound 8.

Fig. S17. ¹³C NMR (CDCI₃, 100 MHz) spectrum of compound $\mathbf{8}$.

Fig. S18. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound 9.

Fig. S19. ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 9.

Fig. S20. ¹H NMR (CDCl₃, 400 MHz) spectrum of compound **10**.

Fig. S21. ¹H-¹H COSY NMR (CDCl₃, 400 MHz) spectrum of compound **10**. The crucial cross correlations are also marked.

Fig. S22. ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound **10**.

S3. IR spectra

Fig. **S23**. IR (ATR) spectrum of compound **Fc-5** in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

Fig. S24. IR (ATR) spectrum of compound **3** in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

Fig. S25. IR (ATR) spectrum of compound **4** in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

Fig. S26. IR (ATR) spectrum of compound **5** in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

Fig. **S27**. IR (ATR) spectrum of aminosumanene (**7**) in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

Fig. S28. IR (ATR) spectrum of compound **8** in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

Fig. S29. IR (ATR) spectrum of compound **9** in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

Fig. S30. IR (ATR) spectrum of compound **10** in the wavenumber range of 2000-600 cm⁻¹ (**top**) and in the range of 3600-600 cm⁻¹ showing NH stretching vibrations (**bottom**).

S4. UV-Vis spectra

Fig. S31. UV-Vis spectra of compound **3** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: 1·10⁻⁵ M (left), 1·10⁻⁴ M (right)).

Fig. S32. UV-Vis spectrum of compound **4** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: $1 \cdot 10^{-4}$ M).

Fig. **S33**. UV-Vis spectrum of compound **5** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: $1 \cdot 10^{-5}$ M).

Fig. **S34.** UV-Vis spectra of compound **8** (solvent: CHCl₃:MeOH = 1:1 v/v; 1·10⁻⁵ M (left), 1·10⁻⁴ M (right)).

Fig. **S35**. UV-Vis spectrum of compound **9** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: $1 \cdot 10^{-4}$ M).

Fig. **S36**. UV-Vis spectra of compound **10** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: $1 \cdot 10^{-5}$ M (left), $1 \cdot 10^{-4}$ M (right)).

S5. Fluorescence spectroscopy and titration experiments

Fig. **S37**. Emission spectra of compound **3** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: 1·10⁻⁴ M; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S38. Emission spectra of compound **4** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. **S39**. Emission spectra of compound **5** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S40. Emission spectrum of compound **8** (solvent: $CHCl_3:MeOH = 1:1 v/v$; concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm (left), 370 nm (right)).

Fig. S41. Emission spectra of compound **9** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. S42. Emission spectra of compound **10** (solvent: CHCl₃:MeOH = 1:1 v/v; concentration: 1·10⁻⁴ M; excitation wavelength: 280 nm (left), 380 nm (right)).

Fig. **S43**. Comparison between UV-Vis (**top**) or fluorescence (**bottom**) spectra titration methods for caesium cation (Cs⁺; in the form of CsCl) binding studies with representative compound **3** (solvent: CHCl₃:MeOH = 1:1 v/v; compound **3** concentration: 1·10⁻⁴ M; excitation wavelength for the fluorescence spectra: 280 nm).

Fig. S44. Caesium cation (Cs⁺; in the form of CsCl) binding studies with compound **4** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **4** concentration: 1·10⁻⁴ M; excitation wavelength: 280 nm).

Fig. S45. Caesium cation (Cs⁺; in the form of CsCl) binding studies with compound **5** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **5** concentration: 1·10⁻⁴ M; excitation wavelength: 280 nm).

Fig. **S46**. Caesium cation (Cs⁺; in the form of CsCl) binding studies with compound **8** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **8** concentration: 1·10⁻⁴ M; excitation wavelength: 280 nm).

Fig. **S47**. Caesium cation (Cs⁺; in the form of CsCl) binding studies with compound **9** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **9** concentration: 1·10⁻⁴ M; excitation wavelength: 280 nm).

Fig. **S48**. Potassium cation (K⁺; in the form of KCI) binding studies with compound **3** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **3** concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm).

Fig. **S49**. Iron cation (Fe²⁺; in the form of FeCl₂) binding studies with compound **3** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **3** concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm).

Fig. S50. Magnesium cation (Mg²⁺; in the form of MgCl₂) binding studies with compound **3** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **3** concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm).

Fig. S51. Rubidium cation (Rb⁺; in the form of RbCl) binding studies with compound **3** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **3** concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm).

Fig. **552**. Barium cation (Ba⁺; in the form of BaCl₂) binding studies with compound **3** using the fluorescence spectra titration method (solvent: CHCl₃:MeOH = 1:1 v/v; compound **3** concentration: $1 \cdot 10^{-4}$ M; excitation wavelength: 280 nm).

S6. The Job's plots

Fig. S53. The Job's plot related to the interactions of the compound **3** with Cs⁺ (based on the data from the florescence spectra titration; *x* stands for the molar fraction of compound **3**, I_0 stands for the emission intensity of compound **3** without Cs⁺ added, *I* stands for the emission intensity of compound with the given amount of Cs⁺ added).

Fig. S54. The Job's plot related to the interactions of the compound **4** with Cs⁺ (based on the data from the florescence spectra titration; *x* stands for the molar fraction of compound **4**, I_0 stands for the emission intensity of compound **4** without Cs⁺ added, *I* stands for the emission intensity of compound with the given amount of Cs⁺ added).

Fig. S55. The Job's plot related to the interactions of the compound **5** with Cs⁺ (based on the data from the florescence spectra titration; *x* stands for the molar fraction of compound **5**, I_0 stands for the emission intensity of compound **5** without Cs⁺ added, *I* stands for the emission intensity of compound with the given amount of Cs⁺ added).

Fig. **556**. The Job's plot related to the interactions of the compound **8** with Cs^+ (based on the data from the florescence spectra titration; *x* stands for the molar fraction of compound **8**, I_0 stands for the emission intensity of compound **8** without Cs^+ added, *I* stands for the emission intensity of compound with the given amount of Cs^+ added).

Fig. **S57**. The Job's plot related to the interactions of the compound **9** with Cs⁺ (based on the data from the florescence spectra titration; *x* stands for the molar fraction of compound **9**, I_0 stands for the emission intensity of compound **9** without Cs⁺ added, *I* stands for the emission intensity of compound with the given amount of Cs⁺ added).

S7. ¹H NMR titration experiments

Fig. S58. Caesium cation (Cs⁺; in the form of CsCl) binding studies with compound **3** using the ¹H NMR titration method (solvent: CDCl₃:CD₃OD = 1:1 v/v; compound **3** concentration: 1.5 mM). The insets of the spectra are presented.

Fig. **559**. Caesium cation (Cs⁺; in the form of CsCl) binding studies with compound **4** using the ¹H NMR titration method (solvent: CDCl₃:CD₃OD = 1:1 v/v; compound **4** concentration: 1.5 mM). The insets of the spectra are presented.

Fig. S60. Caesium cation (Cs⁺; in the form of CsCl) binding studies with compound **10** using the ¹H NMR titration method (solvent: CDCl₃:CD₃OD = 1:1 v/v; compound **10** concentration: 1.5 mM).

S8. Cyclic voltammograms

Fig. **S61**. Cyclic voltammogram of compound **3** in CH_2CI_2 .

Fig. S62. Cyclic voltammogram of compound 4 in CH_2CI_2 .

Fig. S63. Cyclic voltammogram of compound 5 in CH_2Cl_2 .

Fig. S64. Cyclic voltammogram of compound 8 in CH_2Cl_2 .

Fig. S65. Cyclic voltammogram of compound 9 in CH₂Cl₂.

Fig. **S66**. Cyclic voltammogram of compound **3** in CHCl₃:MeOH = 1:1 v/v, with (black curve) and without (red curve) Cs⁺ added (12 eq).

Fig. **S67**. Cyclic voltammogram of compound **4** in CHCl₃:MeOH = 1:1 v/v, with (black curve) and without (red curve) Cs⁺ added (12 eq).

Fig. S68. Cyclic voltammogram of compound **5** in CHCl₃:MeOH = 1:1 v/v, with (black curve) and without (red curve) Cs⁺ added (12 eq).

Fig. **S69**. Cyclic voltammogram of compound **8** in CHCl₃:MeOH = 1:1 v/v, with (black curve) and without (red curve) Cs⁺ added (12 eq).

Fig. **S70.** Cyclic voltammogram of compound **9** in CHCl₃:MeOH = 1:1 v/v, with (black curve) and without (red curve) Cs⁺ added (12 eq).

S9. Details on calculation of K_a and LOD

Calculations were based on the Stern-Volmer equation:

$$\frac{I_0}{I} = 1 + K_a \cdot C_{cation}$$

, where C_{cation} is the molar concentration of the cation, I_0 and I are the fluorescence intensity of Fc-sumanene derivative in the absence and in the presence of cation, respectively (reference no. 26 in the manuscript). K_a and LOD were calculated as follows:

- K_a value for compound 5 was calculated accordingly on the basis of the I₀/I = f(C_{cation}) linear dependency (Fig. S71). K_a values for compounds 3, 4, 8, 9 were calculated accordingly on the basis of the I₀/I = f(C_{cation}²) linear dependences (Fig. S72). I₀/I = f(C_{cation}) linear plots for compounds 3, 4, 8, 9 are also presented in Fig. S71. Despite the fact that the Stern-Volmer method fits best for 1:1 interaction model, both I₀/I = f(C_{cation}) and I₀/I = f(C_{cation}²) plots for compounds 3, 4, 8 were linear, thus enabling calculation of K_a. However, the calculated K_a numbers for compounds 3, 4, 8, 9 should be treated as the approximate ones.
- LOD values were calculated accordingly on the basis of the I_0 -I/I₀ = f(C_{cation}) linear dependences (Fig. S73).

The plots are given below. The results of calculations are summarized in **Table 2** in the main article file.

Fig. S71. $I_0/I = f(C_{cation})$ plot for: (a) compound 3, (b) compound 4, (c) compound (5), (d) compound (8), (e) compound 9.

Fig. S72. $I_0/I = f(C_{cation}^2)$ plot for: (**a**) compound **3**, (**b**) compound **4**, (**c**) compound (**8**), (**d**) compound **9**.

Fig. **S73.** I_0 -I/I = f(C_{cation}) plot for: (**a**) compound **3**, (**b**) compound **4**, (**c**) compound (**5**), (**d**) compound (**8**), (**e**) compound **9**.

S10. References

- [1] H. Sakurai, T. Daiko, T. Hirao. Science, 2003, 301, 1878.
- [2] B. B. Shrestha, S. Karanjit, G. Panda, S. Higashibayashi, H. Sakurai. *Chem. Lett.*, **2013**, *42*, 386-388.
- [3] P. Chen, C. Liu, J. Hu, H. Zhang, R. Sun. *J. Organomet. Chem.*, **2018**, *854*, 113-121.
- [4] N. Dwadnia, F. Allouch, N. Pirio, J. Roger, H. Cattey, S. Fournier, M.-J. Penouilh, C. H. Devillers, D. Lucas, D. Naoufal, R. B. Salem, J.-C. Hierso. Organometallics, 2013, 32, 5784–5797.
- R. Arancibia, A. H. Klahn, G. E. Buono-Core, E. Gutierrez-Puebla, A. Monge, M. E. Medina, C. Olea-Azar, J. D. Maya, F. Godoy. *J. Organomet. Chem.*, 2011, 696, 3238-3244.
- [6] MeOH was dried over molecular sieves 3Å and bubbled with N₂ before the reaction.
- [7] The compound 5 can be also isolated by means of filtration (67% yield). After filtration of the reaction mixture, the crude product is washed with cold (-30°C) methanol (5 mL), cold (-30°C) THF (1.5 mL) and dried under vacuum.
- [8] The solvent was bubbled with N_2 before the reaction.
- [9] The compound **8** and be also purified with PTLC (SiO₂; CH₂Cl₂/MeOH = 95:5 v/v; R_f (**8**) = 0.9; 63% yield).
- [10] The optimized partial structure of compound 3 was obtained with Gaussian09 software (M. J. Frisch, et al. Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT, 2010).