Electronic Supplementary Information for

Solvent-responsive cavitand lanthanum complex

Francesca Guagnini,^a Alessandro Pedrini,^a Timothy M. Swager,^b Chiara Massera,^a* Enrico Dalcanale^a*

^a Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale and INSTM UdR

Parma, Università di Parma, Parco Area delle Scienze 17/A, 43123 Parma (PR), Italy

^b Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

Table of contents

1.	NMR spectra	
2.	ITC experiments	
3.	X-Ray Crystallography	S10
4.	Radius Models	S15
5.	1D NMR study of solvent responsiveness	S17

1. NMR spectra

Figure S1. ¹H NMR (CDCl₃, 400 MHz, 298 K) of resorcinarene II.

Figure S2. ¹H NMR (CDCl₃, 400 MHz, 298 K) of tetraphosphonate cavitand III.

Figure S3. ³¹P NMR (CDCl₃, 162 MHz, 298 K) of tetraphosphonate cavitand III.

Figure S4. ¹H NMR (CD₃OD, 400 MHz, 298 K) of tetraphosphonate cavitand 1.

Figure S5. ³¹P NMR (CD₃OD, 162 MHz, 298 K) of tetraphosphonate cavitand 1.

Figure S6. ¹³C NMR (CD₃OD, 100 MHz, 298 K) of tetraphosphonate cavitand 1.

2. ITC experiments

Figure S7. ITC titration of 1 and LaCl₃ in acetonitrile; [cavitand] = 2.07 mM; [LaCl₃] = 0.12 mM.

Figure S8. ITC titration of 1 and LaCl₃ in acetone; [cavitand] = 11.1 mM; [LaCl₃] = 0.54 mM.

3. X-Ray Crystallography

Formula	C68H116Cl3LaN4O30P4
Formula weight	1838.78
Crystal system	Triclinic
Space group	<i>P</i> -1
a/Å	14.6516(2)
b/Å	15.3311(3)
c/Å	20.0375(5)
$lpha/^{\circ}$	92.916(1)
β /°	95.482(1)
γ^{\prime} °	92.327(1)
V/Å ³	4469.9(2)
Ζ	2
$D_c/\mathrm{g~cm^{-3}}$	1.366
<i>F(000)</i>	1920
μ/mm^{-1}	0.715
$ heta_{min,max}/^{\circ}$	2.501-28.285
Reflections collected	59535
Independent reflections	20927 [R(int) = 0.0519]
Observed reflections	16270
Data/restr./param.	20927 / 6 / 1073
Sa	1.015
$R[Fo>4\sigma(Fo)]^b$	0.0498
wR ₂ ^b	0.1248
$\Delta ho_{ m min,max}/ m e$ Å ⁻³	2.064, -1.479

Table S1. Crystallographic data for La-1

^aGoodness-of-fit S = $[\Sigma w(F_o^2 - F_c^2)^2 / (n-p)]1/2$, where n is the number of reflections and p the number of parameters. ^bR₁ = $\Sigma ||F_o|| - |F_c||/\Sigma |F_o||$, wR₂ = $[\Sigma [w(F_o^2 F_c^2)^2]/\Sigma [w(F_o^2)^2]]^{1/2}$.

Figure S9. Ortep view of La-1 with partial atom labelling scheme and displacement ellipsoids drawn at the 20% probability level. H atoms have been omitted for clarity.

Table S2.	Selected	bond	lengths	(Å)) in La-1.
-----------	----------	------	---------	-----	------------

La1-N1S	2.732(4)	La1-O4W	2.529(3)
La1-O5A	2.537(2)	La1-O5W	2.523(3)
La1-O1W	2.542(3)	La1-O6W	2.511(3)
La1-O2W	2.529(4)	La1-O7W	2.513(3)
La1-O3W	2.632(3)		

Table S3. H bonding parameters (Å, °) in La-1.

Donor-H	DonorAcceptor	HAcceptor	Donor-HAcceptor
O1W-H2W	O1W…O4A	H2W…O4A	O1W-H2W…O4A
0.854(3)	2.814(4)	1.97(3)	170.2(2)
O7W-H14W	O7W…Cl1	H14W…Cl1	O7W-H14W…Cl1
0.807(9)	3.162(3)	2.37(8)	165.9(9)
O8W-H15W	O8W…Cl2	H15W…Cl2	O8W-H15W…Cl2
0.800	3.216(3)	2.47	157
O8W-H16W	O8W…O3C	H16W…O3C	O8W-H16W…O3C
0.800	2.700(4)	1.92	163
O10W-H19W	O10W…Cl1	H19W…Cl1	O10W-H19W…Cl1
0.800	3.179(4)	2.39	168
O10W-H20W	O20W…Cl2	H20W…Cl2	O10W-H20W…Cl2
0.800	3.200(3)	2.44	168
O9W-H17W	O9W…O3B ⁱ	H17W…O3B ⁱ	O9W-H17W···O3B ⁱ
0.800	2.841(4)	2.06	167
O2W-H4W	O2W…O10W ⁱ	H4W…O10W ⁱ	O2W-H4W…O10W ⁱ
0.76(5)	2.762(5)	2.00(9)	178(5)
O4W-H7W	O4W…O3D ⁱ	H7W…O3D ⁱ	O4W-H7W…O3D ⁱ
0.98(6)	2.713(4)	1.74(6)	171(2)
O7W-H13W	O7W···O3A ⁱ	H13W…O3A ⁱ	O7W-H13W····O3A ⁱ
0.66(6)	2.729(5)	2.09(7)	165(4)
O1W-H1W	O1W…Cl1i	H1W…Cl1i	O1W-H1W…Cl1 ⁱ
0.849(3)	3.117(3)	2.272(1)	173.2(2)

O5W-H10W	O5W…O8W ⁱ	H10W…O8W ⁱ	O5W-H10W…O8W ⁱ
0.872(3)	2.707(4)	1.931(3)	147.5(2)
O4W-H8W	O4W…O10W ⁱ	H8W…O10W ⁱ	O4W-H8W…O10W ⁱ
0.77(7)	3.378(5)	2.78(7)	134(7)
O4W-H8W	O4W…Cl2 ⁱ	H8W…Cl2 ⁱ	O4W-H8W…Cl2 ⁱ
0.77(7)	3.330(3)	2.64(7)	151(6)
O5W-H9W	O5W…Cl2 ⁱⁱ	H9W…Cl2 ⁱⁱ	O5W-H9W…Cl2 ⁱⁱ
0.872(3)	3.101(3)	2.352(1)	144.1(2)
O2W-H3W	O2W…O8W ⁱⁱ	H9W… O8W ⁱⁱ	O2W-H3W…O8W ⁱⁱ
0.98(6)	2.776(4)	1.78(6)	174(5)
O3W-H6W	O3W···· Cl3 ⁱⁱ	H6W···· Cl3 ⁱⁱ	O3W-H6W…Cl3 ⁱⁱ
0.883(3)	3.091(3)	2.220(1)	168.5(2)
O6W-H11W	O6W···· Cl3 ⁱⁱ	H11W···· Cl3 ⁱⁱ	O6W-H11W…Cl3 ⁱⁱ
0.871(3)	3.124(3)	2.310(1)	155.7(2)
O5C-H5C	O5C… Cl3 ⁱⁱⁱ	H5C… Cl3 ⁱⁱⁱ	O5C-H5C···Cl3 ⁱⁱⁱ
0.840(7)	3.068(7)	2.251(1)	164.6(5)
O5B-H5OB	O5B···· Cl1 ⁱⁱⁱ	H5OB… Cl1 ⁱⁱⁱ	O5B-H5OB…Cl1 ⁱⁱⁱ
0.840(3)	3.083(3)	2.287(1)	158.2(2)
O9W-H18W	O9W… N2Si ^v	H18W… N2Si ^v	O9W-H18W…N2Si ^v
0.800	2.980(7)	2.23	155

i = -x+1, -y, -z+1; ii = x-1, +y, +z; iii = x, +y-1, +z; iv = -x+1, -y+1, -z+1

Figure S10. Molecular structure of cavitand **1** crystallized by slow evaporation of a solution of La-**1** in methanol. The H-bond pattern is shown as blue dashed lines.

Main crystallography data for cavitand 1 (C₆₀H₈₄P₄O₂₀·2CH₃OH): Monoclinic, C2/m, a = 14.068(1) Å, b = 23.176(2) Å, c = 24.274(2) Å, β = 93.678(3)°, V = 7898.1(11) Å³, Z = 8. Theta range for data collection: 2.322 to 17.284°. Reflections collected / unique: 32510 / 2496 [R(int) = 0.1176].

4. Radius Models

Figure S11. (top) Space-filling model for cavitand **1** showing calculated centroid (yellow dot); (bottom) sphere grown from the centroid with a radius of 8 Å.

Figure S12. (top) Space-filling model for La-1 dimer showing calculated centroid (yellow dot); (middle) sphere grown from the centroid with a radius of 8 Å; (bottom) sphere grown from the centroid with a radius of 14 Å.

5. 1D NMR study of solvent responsiveness

Figure S13. ¹H NMR spectra of La-1 complex in acetonitrile-d₃ before (top) and after the addition of 5% (middle) and 10% (bottom) of acetone. The broadening of the signals related to the coordinating glycol units are evidenced by the arrows.