Supporting Information

Ferrocenyl Naphthalenes: Substituent- and Substitution Pattern-depending Charge Transfer Studies

Andrea Preuß,^a Marcus Korb,^b Dominique Miesel,^a Tobias Rüffer,^a Alexander Hildebrandt^a and Heinrich Lang^{a*}

- a) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany
- b) Presently, The University of Western Australia, Faculty of Science, School of Molecular Sciences, Crawley, Perth, WA 6009, Australia

*Corresponding author: Email: heinrich.lang@chemie.tu-chemnitz.de; phone: +49(0)371-531-21210; fax.: +49(0)371-531-21219.

Content:

Figure SI24	UV/vis/NIR spectra of 3d	pS19
Figure SI25	vis/NIR spectra and deconvolution of 3e	pS19
Figure SI26	UV/vis/NIR spectra of 3e	pS19
Figure SI27	vis/NIR spectra and deconvolution of 4	pS20
Figure SI28	UV/vis/NIR spectra of 4	pS20
Figure SI29	vis/NIR spectra and deconvolution of 6a	pS20
Figure SI30	UV/vis/NIR spectra of 6a	pS21
Figure SI31	vis/NIR spectra and deconvolution of 6b	pS21
Figure SI32	UV/vis/NIR spectra of 6b	pS21
Figure SI33	vis/NIR spectra and deconvolution of 6c	pS22
Figure SI34	UV/vis/NIR spectra of 6c	pS22
Figure SI35	Deconvolution of the NIR spectra of [6d]*	pS22
Figure SI36	UV/vis/NIR spectra of 6d	pS23
Figure SI37	vis/NIR spectra and deconvolution of 7b	pS23
Figure SI38	UV/vis/NIR spectra of 7b	pS24
Figure SI39	vis/NIR spectra and deconvolution of 7c	pS24
Figure SI40	UV/vis/NIR spectra of 7c	pS25
Figure SI41	UV/vis/NIR spectra of 7d	pS25
Figure SI42	¹ H NMR spectrum of 3a in CDCl ₃	pS26
Figure SI43	¹³ C NMR spectrum of 3a in CDCI ₃	pS26
Figure SI44	¹ H NMR spectrum of 3b in CDCl ₃	pS27
Figure SI45	¹³ C NMR spectrum of 3b in CDCl ₃	pS27
Figure SI46	¹ H NMR spectrum of 3c in $CDCI_3$	pS28
Figure SI47	¹³ C NMR spectrum of 3c in CDCl ₃	pS28
Figure SI48	¹ H NMR spectrum of 6a in CDCI ₃	pS29
Figure SI49	¹³ C NMR spectrum of 6a in CDCI ₃	pS29
Figure SI50	¹ H NMR spectrum of 6b in CDCl ₃	pS30
Figure SI51	¹³ C NMR spectrum of 6b in CDCl ₃	pS30
Figure SI52	¹ H NMR spectrum of 6d in CDCl ₃	pS31
Figure SI53	¹³ C NMR spectrum of 6d in CDCl ₃	pS31
Figure SI54	¹ H NMR spectrum of 7a in CDCl ₃	pS32
Figure SI55	¹³ C NMR spectrum of 7a in CDCl ₃	pS32
Figure SI56	¹ H NMR spectrum of 7d in CDCl ₃	pS33
Figure SI57	¹³ C NMR spectrum of 7d in CDCl ₃	pS33

Compound	3a	3b	3c	3e
Empiric formula	$C_{20}H_{16}Fe$	C ₂₁ H ₁₈ FeO	C ₂₁ H ₁₈ Fe	C ₂₁ H ₁₆ FeO
<i>M</i> _r , g/mol	312.18	342.20	326.20	340.19
<i>λ</i> , Å	0.71073	0.71073	1.54184	1.54184
Crystal system	orthorhombic	monoclinic	monoclinic	orthorhombic
Space group	Pbca	P2 ₁ /c	P2 ₁ /c	Pna2 ₁
<i>a</i> , Å	20.2076(13)	15.3517(15)	9.662(5)	8.707(10)
b, Å	6.0150(4)	7.3645(7)	10.031(5)	9.473(3)
<i>c</i> , Å	22.725(2)	14.7940(14)	15.390(5)	36.37(3)
α, deg	90	90	90	90
β, deg	90	115.885(3)	94.773(5)	90
γ, deg	90	90	90	90
<i>V</i> , Å ³	2762.2(4)	1504.8(3)	1486.4(12)	3000.0(5)
$ ho_{ m calcd} m mgm^{-3}$	1.501	1.511	1.458	1.506
Ζ	8	4	4	8
µ, mm⁻¹	1.080	1.004	8.046	8.054
<i>Т</i> , К	114.7(4)	100	100	121(1)
\varTheta range, deg	3.516 – 24.995	3.761 – 25.000	5.217 – 65.987	4.824 - 64.990
Measured reflections	18663	12544	17497	8386
Independent reflections	2411	2638	2589	4410
R _{int}	0.0836	0.0518	0.0360	0.0595
<i>R</i> ₁	0.0367	0.0321	0.0270	0.0720
$wR_{2}, (I > 2\sigma(I))$	0.0784	0.0847	0.0682	0.1836
CCDC no.	1897600	1897601	1897602	1897603

Table SI1. Crystallographic data for 3a-c and 3e.

Table SI2. Crystallographic data for 4 and 6b-d.

Compound	4	6b	6c	6d
Empiric formula	$C_{30}H_{22}Fe$	$C_{20}H_{15}BrFe$	$C_{20}H_{15}BrFe$	$C_{20}H_{15}BrFe$
<i>M</i> _r , g/mol	438.32	391.08	391.07	391.08
<i>λ</i> , Å	0.71073	0.71073	1.54184	0.71073
Crystal system	monoclinic	monoclinic	monoclinic	orthorhombic
Space group	C2/c	P2 ₁ /c	<i>P</i> 2 ₁ / <i>c</i>	Pbca
<i>a</i> , Å	12.8866(8)	12.3825(5)	13.8326(7)	10.3319(10)
<i>b</i> , Å	7.5244(4)	7.7378(4)	11.0072(7)	7.7884(7)
<i>c</i> , Å	21.0448(17)	15.7332(7)	10.0041(5)	37.581(4)
α, deg	90	90	90	90
β, deg	101.335(7)	93.903(3)	96.575(4)	90
γ, deg	90	90	90	90

<i>V</i> , Å ³	2000.8(2)	1503.95(12)	1513.19(14)	3024.1(5)
$ ho_{ m calcd} m mgm^{-3}$	1.455	1.727	1.717	1.718
Ζ	4	4	4	8
µ, mm⁻¹	0.769	3.652	10.999	3.632
<i>T</i> , K	130.00(14)	130.00(10)	119(4)	125(10)
Θ range, deg	3.151 – 25.495	2.979 – 26.000	5.148 – 62.489	2.930 – 24.998
Measured reflections	6221	10528	4355	8085
Independent reflections	6221	2950	2364	2658
R _{int}	0.0538	0.0268	0.0391	0.0648
R_1	0.0751	0.0236	0.0407	0.0475
$wR_{2}, (l > 2\sigma(l))$	0.1498	0.0555	0.1050	0.0781
CCDC no.	1897604	1897605	1897606	1897607

Table SI3. Crystallographic data for 7a-d.

Compound	7a	7b	7c	7d
Empiric formula	$C_{30}H_{24}Fe_2$	$C_{30}H_{24}Fe_2$	$C_{30}H_{24}Fe_2$	$C_{30}H_{24}Fe_2$
<i>M</i> _r , g/mol	496.19	496.19	496.19	496.19
<i>λ</i> , Å	0.71073	1.54184	0.71073	0.71073
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	Pna2 ₁	P2 ₁ /n	P2 ₁ /c	P2 ₁ /n
<i>a</i> , Å	12.1550(4)	9.6644(16)	17.0392(7)	13.6264(18)
b, Å	12.9938(3)	10.7292(16)	10.0481(5)	9.7347(13)
<i>c</i> , Å	13.7119(4)	10.9942(18)	12.2011(5)	8.1052(11)
a, deg	90	90	90	90
β, deg	90	110.625(18)	92.020(3)	95.977(4)
γ, deg	90	90	90	90
<i>V</i> , Å ³	2165.65(11)	1066.9(3)	2087.67(16)	1069.3(2)
$ ho_{ m calcd} m mgm^{-3}$	1.522	1.545	1.579	1.541
Ζ	4	2	4	2
µ, mm⁻¹	1.356	11.006	1.406	1.373
<i>T</i> , K	129.95(10)	117(10)	125(10)	100
\varTheta range, deg	2.971 – 25.999	5.252 - 64.967	3.342 – 24.997	3.498 – 24.991
Measured reflections	8109	3123	10121	9787
Independent reflections	3646	1782	3653	1869
R _{int}	0.0269	0.0690	0.0225	0.0744
<i>R</i> ₁	0.0319	0.0732	0.0259	0.0470
$wR_{2}, (I > 2\sigma(I))$	0.0689	0.1985	0.0599	0.1081
CCDC no.	1897608	1897609	1897610	1897611

	3a	3b	3c	3e
D1–Fe1 (Å)		1.6459(3)	1.6493(7)	1.646(13)
D2–Fe1 (Å)		1.6489(3)	1.6524(7)	1.645(15)
D3–Fe2 (Å)				1.645(13)
D4–Fe2 (Å)				1.649(15)
D1–Fe1–D2 (°)	179.72(3)	178.16(2)	177.35(2)	177(3)
D3–Fe2–D4 (°)				178(3)
C ₅ H ₄ (D1)–C ₆ (C11) (°)	9.34(12)	46.98(9)	39.97(7)	45.2(5)
C ₅ H ₄ (D3)–C ₆ (C32) (°)				45.2(5)
C1–D1–D2–C6 (°)		-3.87(15)	0.93(11)	-0.2(8)
C1–D1–D2–C10 (°)	5.4 (2)			
C22–D3–D4–C27 (°)				0.6(8)

Table SI4. Selected D-Fe bond lengths, angles and torsion angles of 3a-c and 3e.

D1 = centroid of C1-C5; D2 = centroid of C6-C10.

Table SI5. Selected D-Fe bond lengths, angles and torsion angles of 4 and 6b-d.

	4	6b	6c	6d
D1–Fe1 (Å)	1.6576(1)	1.6452(3)	1.6595(6)	1.6480(6)
D2–Fe1 (Å)		1.6450(3)	1.6550(6)	1.6510(5)
D1–Fe1–D2 (°)		177.30(2)	177.48(4)	179.53(5)
C ₅ H ₄ (D1)–C ₆ (C11)) (°)	39.06(7)	58.26(16)	14.9(2)
$C_5H_4(D1)-C_6(C6)$	(°) 77.59(19)			
C1–D1–D2–C6 (°)		2.91(14)	-10.3(3)	-11.3(3)
D1 = centroid of C1-C5; D2 = ce	ntroid of C6-C10; D	3 = centroid of	C22-C26; D4	= centroid of (

Table SI6. Selected D–Fe bond lengths, angles and torsion angles, and plane intersections ($^{\circ}/\text{Å}$) of **7a**–**d**.

	7a	7b	7c	7d
D1–Fe1 (Å)	1.643(6)	1.6433(8)	1.6537(3)	1.6434(5)
D2–Fe1 (Å)	1.644(8)	1.6469(8)	1.6507(3)	1.6457(5)
D3–Fe2 (Å)	1.644(9)		1.6521(3)	
D4–Fe2 (Å)	1.650(8)		1.6512(3)	
D1–Fe1–D2 (°)	173.2(10)	179.26(6)	178.70(2)	178.64(4)
D3–Fe2–D4 (°)	176.6(10)		178.82(2)	
C ₅ H ₄ (D1)–C ₆ (C11) (°)		46.6(3)	40.02(7)	6.1(2)
C ₅ H ₄ (D1)–C ₆ (C21) (°)	52.57(15)		37.42(7)	
C ₅ H ₄ (D3)–C ₆ (C24) (°)	41.62(18)			
C1–D1–D2–C6 (°)	-19(10)	6.6(4)	-15.22(13)	2.2(3)
C11–D3–D4–C16 (°)	3.9(3)		3.15(12)	
C ₅ H ₄ ^A ····C ₅ H ₄ ^B	180.0(4)	151.37(6)	88.82(17)	180.0(3)

D1 = centroid of C1-C5; D2 = centroid of C6-C10; D3 = centroid of C11–C15; D4 = centroid of C16–C20. A, B = planes of cyclopentadienyls, according to an ascending labeling. The plane intersection is given while considering the orientation of the attached $Fe(C_5H_5)$ fragment.

Scheme SI1. Numbering scheme of naphthalene core.

	3a	3b	3c	3e (1)	3e (2)
C1–C2 (Å)	1.374(4)	1.387(3)	1.391(3)	1.397(18)	1.396(17)
C2–C3 (Å)	1.418(3)	1.409(3)	1.422(3)	1.42(2)	1.411(18)
C3–C4 (Å)	1.356(4)	1.361(3)	1.355(3)	1.34(2)	1.351(19)
C4–C4a (Å)	1.417(4)	1.408(3)	1.412(3)	1.427(19)	1.422(18)
C4a–C5 (Å)	1.414(4)	1.417(3)	1.413(3)	1.397(19)	1.422(19)
C4a–C8a (Å)	1.420(4)	1.427(3)	1.430(2)	1.430(19)	1.433(18)
C5–C6 (Å)	1.360(4)	1.364(3)	1.365(3)	1.381(19)	1.36(2)
C6–C7 (Å)	1.409(4)	1.404(3)	1.409(3)	1.41(2)	1.40(2)
C7–C8 (Å)	1.361(4)	1.369(3)	1.377(3)	1.36(2)	1.380(19)
C8–C8a (Å)	1.412(4)	1.419(3)	1.417(3)	1.430(18)	1.424(17)
C8a–C1 (Å)	1.419(4)	1.430(3)	1.448(3)	1.430(18)	1.431(18)

Table SI7. Bond lengths of the naphthalene substituents of **3a–c** and **3e**.

(1) = the first molecule in the asymmetric unit of **3e**; (2) = the second molecule in the asymmetric unit of **3e**.

Table SI8. Bond lengths of the naphthalene substituents of 4 and 6b–d.

	4	6b	6c	6d
C1–C2 (Å)	1.369(8)	1.374(3)	1.379(6)	1.381(5)
C2–C3 (Å)	1.408(8)	1.411(3)	1.421(6)	1.426(5)
C3–C4 (Å)	1.355(8)	1.357(3)	1.342(6)	1.361(6)
C4–C4a (Å)	1.414(8)	1.419(3)	1.412(7)	1.415(6)
C4a–C5 (Å)	1.420(8)	1.418(3)	1.423(7)	1.418(6)
C4a–C8a (Å)	1.432(8)	1.433(3)	1.441(6)	1.427(5)
C5–C6 (Å)	1.352(9)	1.359(3)	1.349(8)	1.365(6)
C6–C7 (Å)	1.414(8)	1.416(3)	1.400(7)	1.404(5)
C7–C8 (Å)	1.369(8)	1.356(3)	1.384(7)	1.363(6)
C8–C8a (Å)	1.401(8)	1.422(3)	1.425(6)	1.409(6)
C8a–C1 (Å)	1.440(8)	1.429(3)	1.433(6)	1.411(6)

Table SI9. Bond lengths of the naphthalene substituents of 7a–d.

	7a	7b	7c	7d
C1–C2 (Å)	1.369(5)	1.377(8)	1.376(3)	1.385(5)
C2–C3 (Å)	1.395(6)	1.414(8)	1.402(3)	1.411(5)
C3–C4 (Å)	1.373(6)	1.356(9)	1.355(3)	1.362(5)
C4–C4a (Å)	1.447(5)		1.410(3)	
C4a–C5 (Å)	1.419(6)		1.412(3)	
C4a–C8a (Å)	1.420(6)		1.434(3)	
C5–C6 (Å)	1.361(5)		1.363(3)	
C6–C7 (Å)	1.393(6)		1.402(3)	
C7–C8 (Å)	1.361(6)		1.374(3)	
C8–C8a (Å)	1.418(5)		1.437(3)	
C8a–C1 (Å)	1.437(5)	1.422(8)	1.435(2)	1.417(5)

	7c ^[1]	8 ^[2]	9 [3]	
C1–C2 (Å)	1.380	1.389	1.382	
C2–C3 (Å)	1.406	1.409	1.407	
C3–C4 (Å)	1.341	1.368	1.357	
C4–C4a (Å)	1.422	1.419	1.420	
C4a–C5 (Å)	1.411	1.422	1.420	
C4a–C8a (Å)	1.429	1.431	1.427	
C5–C6 (Å)	1.353	1.367	1.360	
C6–C7 (Å)	1.394	1.411	1.399	
C7–C8 (Å)	1.380	1.390	1.379	
C8–C8a (Å)	1.437	1.446	1.443	
C8a–C1 (Å)	1.443	1.443	1.444	

Table SI10. Bond lengths of the naphthalenes substituent of **7c**^[1], 1,8-Bis(cobaltocenyl)naphthalene^[2] (**8**) and 1,8-Bis[(η^{5} -pentamethylcyclopentadienyl)(η^{5} -cyclopentadiendiyl)-nickel(II)]naphthalene^[3] (**9**).

Table SI11. RMS (root mean square) deviations of the naphthalene planes of compounds **3a–e**, **6b–d** and **7a–d** and the atom showing the highest displacement $(d_{max} / Å)$.*)

Compd.	RMS	d _{max}	Compd.	RMS	d _{max}	
3a	0.0185	0.034(2) C11	6c	0.0893	0.150(3) C11	
3b	0.0466	0.0861(16) C11	C_{11-14}	0.0160	Angle: 10.9(4)°	
C_{11-14}	0.0137	Angle: $7.23(10)^{\circ}$	C ₁₆₋₁₉	0.0169	0.320(7) Br1 ^{a)}	
C ₁₆₋₁₉	0.0078	Angle. 1.23(19)	6d	0.0242	0.037(3) C2	
3c	0.0138	0.0257(14) C14	7a	0.0156	0.026(3) C23	
3e	0.0321	0.065(10) C11	7b	0.0182	0.020(4) C11	
	0.0290	0.067(10) C32	7c	0.1136	0.1894(14) C1	
4	0.0125	0.021(5) C6	C ₁₋₄	0.0163	Angle: 15.54(14)	
6b	0.0247	0.0349(18) C18	C ₆₋₉	0.0191	0.007(2) 014	
			7d	0.0350	0.007(3) C14	

*) The values were calculated by using WinGX. ^{a)} Deviation towards the C16–C19 plane.

Figure SI1. ORTEP (50 % probability level) of the molecular structures of **3a** (left) and **3b** (right) with the atom-numbering scheme. All hydrogen atoms have been omitted for clarity. Selected bond distances (Å), angles (deg), and torsion angles (deg): **3a**, C1–C11 = 1.471(4), C2–C1–C11 = 126.6(2), C5–C1–C11 = 126.6(2), C11–C1–C2–C3 = -175.1(2), C11–C1–C5–C4 = 174.9(2), C2–C1–C11–C12 = 178.0(2), C5–C1–C11–C12 = 2.9(4), C1–C11–C12–C13 = -173.7(2), C5–C1–C11–C20 = -173.0(2), C2–C1–C11–C20 = 2.1(4); **3b**, C1–C11 = 1.477(3), C12–O1 = 1.367(3), C21–O1 = 1.426(3), C2–C1–C11 = 128.02(19), C5–C1–C11 = 125.43(19), C12–O1–C21 = 118.33(17), C11–C1–C2–C3 = 174.39(19), C11–C1–C5–C4 = -174.71(19), C2–C1–C11–C12 = 48.7(3), C5–C1–C11–C12 = -135.9(2), C1–C11–C12–C13 = 172.24(19), C5–C1–C11–C20 = 45.5(3), C2–C1–C11–C20 = -129.9(2), C11–C12–O1–C21 = -10.2(3).

Figure SI2. ORTEP (50 % probability level) of the molecular structure of **3e** with the atom-numbering scheme. All hydrogen atoms have been omitted for clarity. Selected bond distances (Å), angles (deg), and torsion angles (deg): C1–C11 = 1.480(18), C22–C32 = 1.458(18), C21–O1 = 1.214(16), C21–H21 = 0.9300, C42–O2 = 1.234(15), C42–H42 = 0.9300, C5–C1–C11 = 129.2(12), C2–C1–C11 = 123.5(11), O1–C21–C12 = 124.7(13), O1–C21–H21 = 117.7, C12–C21–H21 = 117.7, C23–C22–C32 = 131.1(12), C26–C22–C32 = 123.2(11), O2–C42–C33 = 123.4(11), O2–C42–H42 = 118.3, C33–C42–H42 = 118.3, C11–C1–C2–C3 = -174.3(11), C11–C1–C5–C4 = 173.9(12), C2–C1–C11–C12 = 40.9(18), C5–C1–C11–C12 = -133.9(13), C1–C11–C12–C13 = -170.7(12), C5–C1–C11–C20 = 50.4(19), C2–C1–C11–C20 = -134.8(13), C32–C22–C23–C24 = -175.8(12), C32–C22–C26–C25 = 174.8(11), C26–C22–C33 = 131.6(13), C26–C22–C33 = -41.6(17), C22–C32–C33–C34 = 170.6(11), C26–C22–C32–C31 = -51.1(19), C11–C12–C21–O1 = -168.1(12), C13–C12–C12–C12–C11–C12 = 17.6(19), C32–C23–C42–O2 = 168.9(12), C34–C33–C42–O2 = -15.1(18).

Figure SI3. ORTEP (50 % probability level) of the molecular structures of **6b** (left) and **6c** (right) with the atom-numbering scheme. All hydrogen atoms have been omitted for clarity. Selected bond distances (Å), angles (deg), and torsion angles (deg): **6b**, C1–C11 = 1.488(3), C16–Br1 = 1.911(2), C2–C1–C11 = 124.02(18), C5–C1–C11 = 129.04(18), C17–C16–Br1 = 117.84(16), C15–C16–Br1 = 118.71(15), C11–C1–C2–C3 = 172.64(18), C11–C1–C5–C4 = -172.22(19), C2–C1–C11–C12 = -34.8(3), C5–C1–C11–C12 = 136.6(2), C1–C11–C12–C13 = -178.1(2), C5–C1–C11–C20 = -40.8(3), C2–C1–C11–C20 = 147.8(2), C14–C15–C16–Br1 = -4.3(3), C20–C15–C16–Br1 = 177.33(14), Br1–C16–C17–C18 = -178.85(16); **6c**, C1–C11 = 1.490(5), C19–Br1 = 1.908(4), C2–C1–C11 = 126.1(3), C5–C1–C11 = 126.1(3), C18–C19–Br1 = 113.8(3), C20–C19–Br1 = 122.9(3), C11–C1–C2–C3 = -176.6(4), C11–C1–C5–C4 = 177.0(4), C2–C1–C11–C12 = -120.5(4), C5–C1–C11–C12 = 62.3(5), C1–C11–C12–C13 = 173.2(3), C5–C1–C11–C20 = -119.8(4), C2–C1–C11–C20 = 57.4(5), C17–C18–C19–Br1 = 171.3(3), Br1–C19–C20–C15 = -163.8(3), Br1–C19–C20–C11 = 13.6(6).

Figure SI4. ORTEP (50 % probability level) of the molecular structure of **6d** with the atom-numbering scheme. All hydrogen atoms have been omitted for clarity. Selected bond distances (Å), angles (deg), and torsion angles (deg): **6d**, C1–C12 = 1.469(6), C17–Br1 = 1.902(4), C2–C1–C11 = 125.9(4), C5–C1–C11 = 127.1(4), C18–C17–Br1 = 118.6(3), C16–C17–Br1 = 119.1(3), C12–C1–C2–C3 = 179.9(4), C12–C1–C5–C4 = 179.9(4), C11–C12–C1–C2 = -15.1(6), C11–C12–C1–C5 = 164.9(4), C13–C12–C1–C5 = -14.7(6), C13–C12–C1–C2 = 165.4(4), C20–C11–C12–C1 = 178.7(4), C1–C11–C12–C13 = -178.1(2), C15–C16–C17–Br1 = 179.0(3), Br1–C17–C18–C19 = -179.5(3).

Figure SI5. ORTEP (50 % probability level) of the molecular structure of **7b** with the atom-numbering scheme. All hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): C1-C11 = 1.495(8), C2-C1-C11 = 128.6(5), C5-C1-C11 = 123.8(5), C12-C11-C1 = 119.3(5), C15-C11-C1 = 120.9(5), C11-C1-C2-C3 = 178.7(6), C11-C1-C5-C4 = -179.3(5), C2-C1-C11-C12 = 133.5(6), C5-C1-C11-C12 = -45.7(8), C1-C11-C12-C13 = 179.4(3), C5-C1-C11-C15 = 132.7(6), C2-C1-C11-C15 = -48.1(8). (Symmetry generated atomes are indicated by the suffix A; symmetry code: -x, -y, -z+1.).

Figure SI6. ORTEP (50 % probability level) of the molecular structure of **7c** with the atom-numbering scheme. All hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): C1–C21 = 1.483(3), C11–C29 = 1.481(3), C2–C1–C21 = 126.49(16), C5–C1–C21 = 126.69(16), C30–C21–C1 = 121.86(16), C22–C21–C1 = 119.02(16), C15–C11–C29 = 127.51(16), C12–C11–C29 = 125.46(16), C28–C29–C11 = 119.18(17), C30–C29–C11 = 121.68(16), C21–C1–C2–C3 = –179.72(17), C21–C1–C5–C4 = 179.59(17), C2–C1–C21–C22 = –132.96(19), C5–C1–C21–C22 = 45.7(3), C1–C21–C22–C23 = 169.75(17), C5–C1–C21–C30 = –139.50(18), C2–C1–C21–C30 = 41.9(3), C1–C21–C30–C(29)–C(11)–C(29)–C(30)–C(21) = 17.9(3), C(28)–C(29)–C(11)–C(12) = 43.1(3), C(30)–C(29)–C(11)–C(12) = –141.67(18), C(28)–C(29)–C(11)–C(15) = 135.72(19), C(30)–C(29)–C(11)–C(15) = 39.5(3), C(29)–C(11)–C(15)–C(14) = –179.29(16), C(29)–C(11)–C(12)–C(12)–C(13) = 179.46(17).

Figure SI7. ORTEP (50 % probability level) of the molecular structure of **3b** with selected atomnumbering scheme, showing the intermolecular *T*-shaped π -interaction (blue dashed lines) between the C₅H₅ unit and the C₆H₄ moiety (including C11 to C20). Only a section of different π - π interaction pattern is shown and all hydrogen atoms have been omitted for clarity. (Symmetry code for generatingequivalent atoms; A: x, 3/2–y, -1/2+z; B: x, 3/2–y, 1/2+z).

Figure SI8. ORTEP (50 % probability level) of the molecular structure of **3c** with selected atomnumbering scheme, showing the intermolecular *T*-shaped π -interaction (green dashed lines) between the C₅H₅ unit and the C₆H₄ moiety (including C16 and C18) and parallel displaced pattern (blue dashed lines) between the C₆H₄ moieties (including C16 and C18). Only a section of different π - π interaction pattern is shown and all hydrogen atoms have been omitted for clarity. (Symmetry code for generatingequivalent atoms; A: -1/2+x, 1/2+y, 3/2-z; B: -1+x, -y, 1-z; C: -1/2+x, 1/2-y, -1/2+z).

Figure SI9. ORTEP (50 % probability level) of the molecular structure of 3e with selected atomnumbering scheme, showing the intermolecular parallel displaced π -interaction (blue dashed lines)

between the naphthalene moieties (including C11 to C20 and C32 to C41) forming dimers. All hydrogen atoms have been omitted for clarity. (Symmetry code for generating-equivalent atoms; A: x+1/2, 3/2-y, z; B: x+1/2, 3/2-y, z).

Figure SI10. ORTEP (50 % probability level) of the molecular structure of **6b** with selected atomnumbering scheme, showing the intermolecular *T*-shaped π -interaction (green dashed lines) between the C₅H₅ unit and the C₆H₄ moiety (including C11 to C20) and parallel displaced pattern (blue dashed lines) between the C₆H₄ moieties (including C11 to C20 and C15 to C20). Only a section of different π - π interaction pattern is shown and all hydrogen atoms have been omitted for clarity. (Symmetry code for generating-equivalent atoms; A: 2–x, 1–y, 2–z; B: x, 3/2–y, 1/2–z).

Figure SI11. ORTEP (50 % probability level) of the molecular structure of **6d** with selected atomnumbering scheme, showing the intermolecular *T*-shaped π -interaction (blue dashed lines) between the

 C_5H_5 units and C_4H_5 units. All hydrogen atoms and further interactions have been omitted for clarity. (Symmetry code for generating-equivalent atoms; A: 5/2–x, –1/2+y, z; B: 5/2–x, 1/2+y, z).

Figure SI12. ORTEP (50 % probability level) of the molecular structure of **7a** with selected atomnumbering scheme, showing the intermolecular *T*-shaped π -interaction (blue dashed lines) between the C₅H₅ unit and the C₆H₄ moiety (including C25 to C30). All hydrogen atoms and further interactions have been omitted for clarity. (Symmetry code for generating-equivalent atoms; A: –x, –y, z–1/2; B: 1–x, –y, z–1/2).

Figure SI13. ORTEP (50 % probability level) of the molecular structure of **7c** with selected atomnumbering scheme, showing the intramolecular π - π interaction between the C₅H₅ unit of the ferrocene moletys. All hydrogen atoms have been omitted for clarity.

Figure SI14. Cyclic and square wave voltammograms (CV: potential area -1000 to 1000 mV; SW: potential area -1000 to 750 mV) of **3a–3e** and **4**. Conditions: scan rate 100 mV s⁻¹ (CV), 2.5 mV s⁻¹ (SW) in dichloromethane solutions (1.0 mmol L⁻¹), supporting electrolyte 0.1 mol L⁻¹ [N^{*n*}Bu₄][B(C₆F₅)₄], working electrode glassy carbon.

Figure SI15. Cyclic and square wave voltammograms (CV: potential area -1000 to 1000 mV; SW: potential area -1000 to 750 mV) of **6a–d**. Conditions: scan rate 100 mV s⁻¹ (CV), 2.5 mV s⁻¹ (SW) in dichloromethane solutions (1.0 mmol L⁻¹), supporting electrolyte 0.1 mol L⁻¹ [N^{*n*}Bu₄][B(C₆F₅)₄], working electrode glassy carbon.

Scheme SI2. Resonance structures illustrating the through-bond charge transfer pathways in [**6a**]⁺, [**6b**]⁺, [**6c**]⁺ and [**6d**]⁺.

Figure SI16. Cyclic and square wave voltammograms (CV: potential area -500 to 1000 mV; SW: potential area -500 to 750 mV) of **7c**. Conditions: scan rate 100 mV s⁻¹ (CV), 2.5 mV s⁻¹ (SW) in dichloromethane solutions (1.0 mmol L⁻¹), supporting electrolyte 0.1 mol L⁻¹ [NⁿBu₄][PF₆], working electrode glassy carbon.

Figure SI17. Left: vis/NIR spectra of **3a** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 1100 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**3a**]⁺ using two Gaussian shaped bands.

Figure SI18. UV/vis/NIR spectra of **3a** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 1100 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI19. Left: vis/NIR spectra of **3b** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 1000 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**3b**]⁺ using two Gaussian shaped bands.

Figure SI20. UV/vis/NIR spectra of **3b** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 1000 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI21. Deconvolution of the NIR absorption of [3c]⁺ using two Gaussian shaped bands.

Figure SI22. UV/vis/NIR spectra of **3c** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 250 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI23. Left: vis/NIR spectra of **3d** at 25 °C in dichloromethane (2.00 mmol L^{-1}) at rising potentials (-200 to 400 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**3d**]⁺ using two Gaussian shaped bands.

Figure SI24. UV/vis/NIR spectra of **3d** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 400 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI25. Left: vis/NIR spectra of **3e** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 950 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**3e**]⁺ using three Gaussian shaped bands.

Figure SI26. UV/vis/NIR spectra of **3e** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 950 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI27. Left: vis/NIR spectra of **4** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 400 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**4**]⁺ using three Gaussian shaped bands.

Figure SI28. UV/vis/NIR spectra of **4** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 400 mV vs Ag/Ag⁺); supporting electrolyte [NⁿBu₄][B(C₆F₅)₄].

Figure S29. Left: vis/NIR spectra of **6a** at 25 °C in dichloromethane (2.00 mmol · L⁻¹) at rising potentials (-200 to 950 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**6a**]⁺ using three Gaussian shaped bands.

Figure S30. UV/vis/NIR spectra of **6a** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 950 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI31. Left: vis/NIR spectra of **6b** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 1100 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**6b**]⁺ using two Gaussian shaped bands.

Figure SI32. Left: UV/vis/NIR spectra of **6b** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 1100 mV vs Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI33. Left: vis/NIR spectra of **6c** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 800 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing absorptions. Right: Deconvolution of the NIR absorption of [**6c**]⁺ using two Gaussian shaped bands.

Figure SI34. UV/vis/NIR spectra of **6c** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 800 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI35. Deconvolution of the NIR absorption of [6d]⁺ using two Gaussian shaped bands.

Figure SI36. UV/vis/NIR spectra of **6d** at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 900 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI37. Left: vis/NIR spectra of 1,5-diferrocenylnaphthalene (**7b**) at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 555 mV; top: 555 to 1100 mV vs Ag/Ag⁺); supporting electrolyte [NⁿBu₄][B(C₆F₅)₄]; arrows indicate the increasing and decreasing absorptions. Right, top: Deconvolution of the NIR absorption of [**7b**]⁺ using three Gaussian shaped bands. Right, bottom: Deconvolution of NIR absorption of [**7b**]²⁺ using two Gaussian shaped bands.

Figure SI38. UV/vis/NIR spectra of 1,5-diferrocenylnaphthalene (**7b**) at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (-200 to 1100 mV vs Ag/Ag⁺); supporting electrolyte [NⁿBu₄][B(C₆F₅)₄].

Figure SI39. Left: vis/NIR spectra of 1,8-diferrocenylnaphthalene (**7c**) at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (bottom: -200 to 525 mV; top: 525 to 700 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄]; arrows indicate the increasing and decreasing absorptions. Right, top: Deconvolution of the NIR absorption of [**7c**]⁺ using three Gaussian shaped bands. Right, bottom: Deconvolution of NIR absorption of [**7c**]²⁺ using two Gaussian shaped bands.

Figure SI40. UV/vis/NIR spectra of 1,8-diferrocenylnaphthalene (**7c**) at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (bottom: -200 to 700 mV vs Ag/Ag⁺); supporting electrolyte [NⁿBu₄][B(C₆F₅)₄].

Figure SI41. UV/vis/NIR spectra of 2,6-diferrocenylnaphthalene (**7d**) at 25 °C in dichloromethane (2.00 mmol \cdot L⁻¹) at rising potentials (bottom: -200 to 700 mV *vs* Ag/Ag⁺); supporting electrolyte [N^{*n*}Bu₄][B(C₆F₅)₄].

Figure SI43. ¹³C NMR spectrum of 3a in CDCl₃.

Figure SI45. ¹³C NMR spectrum of 3b in CDCl₃.

Figure SI47. ¹³C NMR spectrum of 3c in CDCl₃.

Figure SI48. ¹H NMR spectrum of 6a in CDCl₃.

136.67	— 133.29 — 132.04	129.47 128.48 127.69 127.10 127.10 126.69	121.40			86.45	- 70.76 - 68.50 - 68.50
--------	----------------------	--	--------	--	--	-------	-------------------------------

Figure SI49. ¹³C NMR spectrum of 6a in CDCl₃.

Figure SI51. ¹³C NMR spectrum of 6b in CDCl₃.

Figure SI53. ¹³C NMR spectrum of 6d in CDCl₃.

Figure SI55. ¹³C NMR spectrum of 7a in CDCl₃.

Figure SI57. ¹³C NMR spectrum of 7d in CDCl₃.

References

- [1] M. Lee, B. M. Foxman, M. Rosenblum, *Organometallics* **1985**, *4*, 539–547.
- [2] N. Pagels, O. Albrecht, D. Görlitz, A. Y. Rogachev, M. H. Prosenc, J. Heck, *Chem. - A Eur. J.* 2011, *17*, 4166–4176.
- [3] S. Trtica, M. H. Prosenc, M. Schmidt, J. Heck, O. Albrecht, D. Görlitz, F. Reuter, E. Rentschler, *Inorg. Chem.* 2010, 49, 1667–1673.