Electronic Supplementary Information (ESI)

High performance MIL-101(Cr)@6FDA-mPD and MOF-199@6FDA-mPD mixed-matrix membranes for CO₂/CH₄ separation

Alexander Nuhnen,^a Maximilian Klopotowski,^a Harold B. Tanh Jeazet,^a Sara Sorribas,^b Beatriz Zornoza,^{b,c} CarlosTéllez,^b Joaquín Coronas^{*b} and Christoph Janiak^{*a}

- ^a Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany. E-mail: alexander.nuhnen@uni-duesseldorf.de; Janiak@uni-duesseldorf.de
- ^bChemical and Environmental Engineering Department, Instituto de Nanociencia de Aragon and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. E-mail: coronas@unizar.es
- ^c Department of Energy and Environment, Instituto de Carboquímica-ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain.

Email addresses:

alexander.nuhnen@uni-duesseldorf.de, maximilian.klopotowski@hhu.de, tanharold2000@yahoo.fr, sarasr@unizar.es, bzornoza@unizar.es, ctellez@unizar.es, coronas@unizar.es, janiak@uni-duesseldorf.de

Fig. S1 Thermogravimetric analysis (TGA) curve of pure 6FDA-mPD under nitrogen at a heating flow of 5 K/min.

	M [Cu ₃ (b	[OF-199 tc) ₂ (H ₂ O) ₂] ^b	MIL-101(Cr) [Cr ₃ (O)(OH)(bdc) ₃ (H ₂ O) ₂]·DMF ^c		
Atom	calculated	experimental	calculated	experimental	
С	33.73	35.10	41.03	40.66	
Н	1.57	1.84	3.06	2.95	
Ν	0	0	1.77	1.52	

Table S1 Elemental analysis of MOF-199 and MIL-101(Cr)^a

^a We note that CHN analyses of MOFs are often ambiguous due to the solvent which can partly remain in the pores during sample preparation or at least water vapor which can be adsorbed from air during sample storage and handling for the analysis.

^b MOF-199: The aqua ligands are weakly bound to the Cu atoms with elongated Cu…O bond distances due to the inherent Jahn-Teller distortion at the Cu(II) atom. Upon drying and sample preparation part of the initially three aqua ligands (one at each Cu atom) will be removed.

^c MIL-101(Cr): The solvent DMF was used for washing and is obviously partly retained and not removed when the sample was then finally dried at room temperature.

Fig. S2 X-ray powder diffraction pattern of MIL-101 (Cr), 6FDA-mPD polyimide and a mixed matrix membrane of 6FDA-mPD with 24 wt% loading of MIL-101 (Cr).

Fig. S3 X-ray powder diffraction pattern of MOF-199, 6FDA-mPD polyimide and a mixed matrix membrane of 6FDA-mPD with 24 wt% loading of MOF-199.

We measured the N_2 -77 K sorption isotherms of MIL-101(Cr) @6FDA-mPD and MOF-199@6FDA-mPD to possibly verify the preserved porosity of the MOF filler.

Fig. S4 N₂-sorption isotherm of 24 wt% MIL-101(Cr) @6FDA-mPD and 24 wt% MOF-199@6FDA-mPD at 77K.

Due to the low temperature it is kinetically not possible for the N_2 molecules to diffuse in the necessary time or time limit through the dense polymer part of the membrane into the MOF. Thus, the isotherm corresponds to a nonporous sample (Matrimid). This confirms our earlier experience with other MMMs based, for example, on polysulfone where we had also (unsuccessfully) attempted to confirm the porosity of the embedded MOF through gas sorption measurements.

SEM images with EDX mapping

Fig. S5 SEM images combined with SEM/EDX mapping of chromium for cross sections of MMMs of MIL101(Cr)@6FDA-mPD with different loadings of MIL-101(Cr). a) 8 wt% MOF; b) 16 wt% MOF; c) 24 wt% MOF.

Fig. S6 SEM images combined with SEM/EDX mapping of copper for cross sections of MMMs of MOF-199@6FDA-mPD with different loadings of MOF-199. a) 8 wt% MOF; b) 16 wt% MOF; c) 24 wt% MOF. Note, that for some EDX images copper is detected outside of the membrane cross section, due to reflections from the sample holder which is made of brass.

Maxwell model^{1,2,3,4}

The Maxwell model requires no assumption and leads to no conclusion about the gas selectivity of the MMMs. The Maxwell model is solely based on permeability (P) and filler volume fraction (ϕ with weight percentage and density) as given in eq. (S1)-(S3). With the Maxwell model it is possible to predict gas permeation through a dense composite membrane. For spherical particles the permeability of the composite membrane P_{eff} can be estimated as follows:

$$P_{eff} = P_c \times \frac{P_d + 2P_c - 2\phi_d \times (P_c - P_d)}{P_d + 2P_c + \phi_d \times (P_c - P_d)}$$
(S1)

Where, P_c is the continuous phase permeability, P_d is the dispersed phase permeability and ϕ_d is the volume fraction of the filler.

With equation S2 one can calculate the filler volume fraction in the dispersed phase:

$$\phi_d = \frac{w_d / \rho_d}{\frac{w_c}{\rho_c} + \frac{w_d}{\rho_d}}$$
(S2)

With w_d and w_c as the weight percentages, ρ_d and ρ_c as the densities of the filler and the polymer.

In cases where the filler exhibits a distinctly higher permeability than the continuous phase ($P_d >> P_c$) equation (S1) can be simplified as follows, which then corresponds to "Maxwell model ∞ ":

$$P_d >> P_c; \quad \frac{P_{eff}}{P_c} = \frac{1 + 2\phi_d}{1 - \phi_d}$$
(S3)

This limiting equation (S3) is also given as equation (1) in the main manuscript.

For MOF-199 (HKUST-1) pure MOF membranes were already fabricated and measured several times for their CO_2 and CH_4 permeance.⁵

The experimental \overline{CO}_2 permeance of roughly 2000x10⁻¹⁰ mol m⁻² s⁻¹ Pa⁻¹ with a membrane thickness of about 10 µm translates into a CO₂ permeability of about 6000 Barrer = P_d in eq. (S1).

For CH₄ a permeability of about 1000 was measured (permeance $\approx 300 \times 10^{-10} \text{ mol m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$).

 CO_2 permeability of pure 6FDA-mPD, $P_c = 10$ Barrer.

For MIL-101(Cr), to our best knowledge, no pure MOF membrane was ever produced. But considering that the pore sizes of MIL-101(Cr) are even larger than those of MOF-199 we would expect a similar result.

Table S2 CO₂/CH₄ (50/50 mixture) permeation results on Mixed MIL-101(Cr)@6FDA-mPD membranes.

Memb	orane	_		
MIL-101(Cr) loading [wt%]	Membrane thickness [µm]	P (CO ₂) [Barrer]	P (CH ₄) [Barrer]	α (CO ₂ /CH ₄)
0	44 - 110	$9.9\pm0.4^{\text{b}}$	$0.19\pm0.01^{\text{b}}$	54 ± 6
8	47 – 55	13.8 ± 0.1^{a}	$0.26\pm0.00^{\rm a}$	53 ± 1
16	61 - 74	29 ± 1^{b}	$0.51\pm0.04^{\text{b}}$	54 ± 7
24	81 - 85	$49.6\pm0.2^{\rm a}$	$1.00\pm0.02^{\text{a}}$	50 ± 1

at least two different membrane samples.

^a experiments performed at 35 °C and $\Delta P = 2$ bar total feed pressure; ^b experiments performed at 25 °C and $\Delta P = 3$ bar total feed pressure.

Table S3	CO ₂ /CH ₄	(50/50 1	mixture)	permeation	results on	MOF-199	9@6FDA-	mPD r	nembranes.
I abit 55	002/0114	(30,301)	mature	permeation	results off	101 17.			nemoranes.

Memb	orane				ues
MOF-199 loading [wt%]	Membrane thickness [µm]	P (CO ₂) [Barrer]	P (CH ₄) [Barrer]	α (CO ₂ /CH ₄)	are the aver
0	44 - 110	$9.9\pm0.4^{\text{b}}$	$0.19\pm0.01^{\text{b}}$	54 ± 6	age
8	77 – 82	11.4 ± 0.3^{b}	$0.17\pm0.01^{\text{b}}$	67 ± 6	stan
16	99 - 102	$20.2\pm0.9^{\text{b}}$	$0.27\pm0.01^{\text{b}}$	73 ± 6	dard devi
 24	80 - 87	$28.3\pm0.4^{\rm a}$	$0.32\pm0.01^{\text{a}}$	89 ± 4	atio n of

at least two different membrane samples. ^a experiments performed at 35 °C and $\Delta P=2$ bar total feed pressure; ^b experiments performed at 25 °C and $\Delta P=3$ bar total feed pressure.

Table S4 Glass transition temperatures (T_g) for pure 6FDA-mPD and different weight percentages of MIL-101Cr and MOF-199@6FDA-mPD MMMs.

Material	T _g [K]		
6FDA-mPD	300	± 2	
8wt% MIL-101Cr@6FDA-mPD MMM	303	± 2	
16wt% MIL-101Cr@6FDA-mPD MMM	299	± 4	
24wt% MIL-101Cr@6FDA-mPD MMM	302	± 1	
8wt% MOF-199@6FDA-mPD MMM	297	± 2	
16wt% MOF-199@6FDA-mPD MMM	292	± 1	
24wt% MOF-199@6FDA-mPD MMM	294	± 2	

Val

Table S5 Gas (CO ₂ /CH ₄) permeation data of mixed	d-matrix membranes with MOFs from literature.
---	---

Polymer ^a	MOF	MOF (wt%)	P (CO ₂) ^b [Barrer]	P (CH ₄) ^b [Barrer]	S ^c (CO ₂ /CH ₄)	Ref.
		0	9	0.22	41.7	
		10	11.1	0.22	51	6
Matrimid 5218	MOF-5	20	13.8	0.34	40.5	
		30	20.2	0.45	44.7	
		0	6.5	0.3	17	
PSF	Cu-BTC	5	7.7	0.3	22	7
-		10	7.9	1.3	7	
		0	7.29	0.21	34.7	
		10	7.81	0.24	31.9	
Matrimid 5218	Cu-BPY-HFS	20	9.88	0.36	27.6	8
		30	10.36	0.38	25.4	
		40	15.06	0.59	25.6	
		0	9.52	0.24	39.8	
		20	9.03	0.18	51.1	
Matrimid 5218	7IE 9	30	14.23	0.38	38.2	0
Maulinia 3218	Ζ1Γ-0	40	24.55	0.89	27.8	9
		50	4.72	0.05	124.9	
		60	8.08	0.1	80.8	
Matrimid	7IE 00	0	7.8	—	35.5	
Mauminu	211-90	15	12.5	-	35.6	
GEDA DAM		0	400	-	17	10
OF DA-DAM	Z1F-90B	15	680	_	26	
6FDA-DAM	ZIF-90A	15	800	_	27	
PSF	ZIF-8	16	12.1	_	19.8*	
PSF	ZIF-8/S1C	16	8.5	-	19.6*	
PSF	HKUST-1	16	8.8	_	15.7*	11
PSF	HKUST-1/S1C	16	8.9	_	22.4*	
PSF	S1C	16	9.6	_	20.9*	
		0	4.7	0.2	23.5*	
		8	4.7	0.13	29.3*	
PSF	NH_2-MIL-	16	5	0.13	33.0*	12
	55(AI)	25	5.4	0.1	46.0*	
		40	10.3	0.64	16.7*	
		0	14.4	0.33	44.1	
6FDA-ODA	U1 O- 66	25	50.4	1.1	46.1	
6FDA-ODA	NH ₂ -UiO-66	25	13.7	0.27	51.6	13
6FDA-ODA	MOF-199	25	21.8	0.43	51.2	
6FDA-ODA	NH ₂ -MOF-199	25	26.6	0.45	59.6	

Polymer ^a	MOF	MOF (wt%)	P (CO ₂) ^b [Barrer]	P (CH ₄) ^b [Barrer]	S ^c (CO ₂ /CH ₄)	Ref.
6FDA-ODA	UiO-67	25	20.8	1.4	15	12
	MIL 52	0	6.2	0.2	28.5*	
Matrimid 5218	MIL-53	15	6.7	0.71	8.5*	
	MIL-53-NH ₂	15	9.2	4.4	2.1*	
Ultem 1000	MIL 52	0	1.46	0.037	31.6*	
	WIIL-33	15	1.77	0.041	42.8*	
	MIL-53-NH ₂	15	3	0.083	36.1*	
	MIL 52	0	54.1	2.3	23.6	
	MIL-53	20	61.5	4.8	13	14
6FDA/ODA- DAM (1·1)		10	51.2	1.8	31.8	11
Di ini (1.1)	MIL-53-NH ₂	20	52.6	3.4	13.1	
		22	50	4.8	12.5	
	MIL 52	0	130	6.4	23.6	
	MIL-33	25	123	6.9	19.1	
6FDA/ODA- DAM (1·4)	MIL-53-NH ₂	10	112	4.5	23.5	
DAM (1.+)		15	113	4	28.5	
		20	115	8.2	14.3	
		0	5.6	0.33	16.9	15
	MIL-101(Cr)	7.5	15.2	0.64	23.9	
PSF		14	22.3	0.93	24	
		19	32	1.26	25.3	
		24	36.2	1.64	22.2	
PFS	C15A1	0.25	3.01	0.16	18.72	16
1 L5	C15A2	0.25	9.77	0.29	33.49	10
РРО	Cu-BTC	40	113.7	3.49	33.5	17
Matrimid	Fe-BTC	30	13.5	0.45	30	18
Pebax-2553	ZIF-8	35	1287	143	9	19
6FDA-durene	ZIF-8	33.5	1552	140	11.06	20
Matrimid	SMBA@CNT	10	4.1	0.043	97	21
Cellulose acetate		23	3.78	-	30.3*	
Matrimid		23	9.31	_	29.5*	
6FDA-DAT		15	63.9	-	51.9*	22
6FDA- DAM:DAT	Ni ₂ (dobdc)	18	220	_	30.5*	
6FDA-DAM		23	715	_	14.5*	
6FDA-durene		21	1035	_	12.3*	

Polymer ^a MOF	MOF (wt-%)	P (CO ₂) ^b [Barrer]	P (CH ₄) ^b [Barrer]	S ^c (CO ₂ /CH ₄)	Ref.
--------------------------	---------------	---	---	---	------

		0	20.6	-	32.7	
6FDA-DAM	715 11	10	109.7	-	31.3	22
	ΖΙΓ-ΙΙ	20	257.5	-	31.0	25
		30	73.1	-	30.4	
		0	540	-	25.5	
6FDA-DAM	3D-COF	10	850	-	29.0	24
		15	1280	-	27.1	
Pebax-1657	Fe-BTC	30	402.7	-	21.5	25
Doboy 1657	Ni ₂ (L-asp) ₂ bipy	20	120.2	-	37.1	26
Pedax-1037	Ni ₂ (L-asp) ₂ pz	20	89.7	-	23.1	20
		0	0.915	0.043	21.3	
PVDF	Cu-BTC	5	1.067	0.043	24.8	27
I VDI		10	2.002	0.048	41.7	
		15	3.206	0.080	40.1	
		0	76.1	5.0	15.2	
PMP		5	88.3	5.2	17.1	28
	Cu-BTC	10	102.5	5.3	19.2	
		15	124.4	5.5	22.7	
		20	143.8	5.9	24.3	

^a PVAC: poly(vinylacetate); PSF: polysulfone; 6FDA: 6FDA: 2,2-bis(3,4-carboxyphenyl) hexafluoropropane dianhydride, DAM: diaminomesitylene, ODA: 4,4'-oxydianiline; DAT: diamino toluene; PVDF: poly(vinylidene fluoride)

^b gas permeability

 $^{\rm c}$ all are ideal selectivities except those marked with (*) which correspond to 50/50 % CO_2/CH_4 mixed gas selectivities

MOF-199 = Cu-BTC

References

- 2 S. Rafiq, A. Maulud, Z. Man, M. I. A. Mutalib, F. Ahmad, A. U. Khan, A. L. Khan, M. Ghauri and N. Muhammad, Modelling in mixed matrix membranes for gas separation. *Can. J. Chem. Eng.*, 2015, **93**, 88-95.
- 3 Z. Sadeghi, M. Omidkhah, M. E. Masoumi and R. Abedini, Modification of existing permeation models of mixed matrix membranes filled with porous particles for gas separation. *Can. J. Chem. Eng.*, 2016, **94**, 547-555.
- 4 H. B. Tanh Jeazet, T. Koschine, C. Staudt, K. Raetzke and C. Janiak, Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)-Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS). *Membranes* (Basel), 2013, 3, 331-353.
- 5 M. N. Shah, M. A. Gonzalez, M. C. McCarthy and H.-K. Jeong, An Unconventional Rapid Synthesis of High Performance Metal–Organic Framework Membranes. *Langmuir*, 2013, **29**, 7896-7902.
- 6 E. V. Perez, K. J. Balkus Jr., J. P. Ferraris and I. H. Musselman, J. Membr. Sci., 2009, 328, 165-173.
- 7 A. Car, C. Stropnik and K. V. Peinemann, Desalination, 2006, 200, 424-426.

¹ Y. Shen and A. C. Lua, Theoretical and experimental studies on the gas transport properties of mixed matrix membranes based on polyvinylidene fluoride. *AIChE Journal*, 2013, **59**, 4715-4726.

- 8 Y. Zhang, I. H. Musselman, J. P. Ferraris and K. J. Balkus Jr., J. Membr. Sci., 2008, 313, 170-181.
- 9 M. J. C. Ordonez, K. J. Balkus Jr., J. P. Ferraris and I. H. Musselman, J. Membr. Sci., 2010, 361, 28-37.
- 10 T.-H. Bae, J. S. Lee, W. Qju, W. J. Koros, C. W. Jones and S. Nair, *Angew. Chem., Int. Ed.*, 2010, **49**, 9863–9866.
- 11 B. Zornoza, B. Seoane, J. M. Zamaro, C. Tellez and J. Coronas, ChemPhysChem., 2011, 12, 2781–2785.
- 12 Zornoza, B.; Martinez-Joaristi, A.; Serra-Crespo, P.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Chem. Commun., 2011, 47, 9522–9524.
- 13 Nik, O.G.; Chen, X.Y.; Kaliaguine, S. J. Membr. Sci., 2012, 413-414, 48-61.
- 14 X. Y. Chen, H. Vinh-Thang, D. Rodrigue and S. Kaliaguine, RSC Adv., 2013, 3, 24266–24279.
- 15 H. B. Tanh Jeazet, T. Koschine, C. Staudt, K. Raetzke and C. Janiak, Membranes, 2013, 3, 331–353.
- 16 N.M. Ismail, A. F. Ismail, A. Mustaffa, Jurnal Teknologi, 2014, 69, 83-87.
- 17 L. Ge, W. Zhou, V. Rudolph, Z. H. Zhu, J. Mater. Chem. A, 2013, 1, 6350-6358.
- 18 S. Shahid, K. Nijmeijer, J. Membr. Sci., 2014, 459, 33-44.
- 19 V. Nafisi, M.-B. Hägg, J. Membr. Sci., 2014, 459, 244-255.
- 20 S. N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C. N. Nguyen, S. Goel, K. J. Balkus, I. H. Musselman, J. P. Ferraris, *Ind. Eng. Chem. Res.*, 2013, **52**, 6991–7001.
- 21 Y. Liu, D. Peng, G. He, S. Wang, Y. Li, H. Wu, Z. Jiang, ACS Appl. Mater. Inter., 2014, 6, 13051-13060.
- 22 J. E. Bachman, J. R. Long, Energy Environ. Sci., 2016, 9, 2031–2036.
- 23 M. S. Boroglu, A. B. Yumru, Sep. Purif. Technol., 2016, 173, 269-279.
- 24 Y. Yang, K. Goh, P. Weerachanchai, T-H. Bae, J. Membr. Sci., 2019, 574, 235-242.
- 25 F. Dorosti, A. Alizadehdakhel, Chem. Eng. Res. Des., 2018, 136, 119-128.
- 26 L. Fan, Z. Kang, Y. Shen, S. Wang, H. Zhao, H. Sun, X. Hu, H. Sun, R. Wang, S. Sun, Cryst. Growth. Des., 2018, 18, 4365–4371.
- 27 E. A. Fejani, H. Mahdavi and A. Tavasoli, Chem. Eng. Res. Des., 2015, 96, 87-102.
- 28 R. Abedini, A. Mosayebi and M. Mokhtari, Process. Saf. Environ., 2018, 114, 229-239.