Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Titanium and Zirconium Complexes Bearing New Tridentate [OSO]

Bisphenolato-based Ligands: Synthesis, Characterization and Catalytic

Properties for Alkene Polymerization

Tingting Song,^a Jianghao He,^a Liwei Liang,^b Ning Liu,^a Feng Li,^a Xiaobo Tong,^a Xiaoyue Mu^{*a} and Ying Mu^{*a}

^a The State Key Laboratory for Supramolecular Structure and Materials, School of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China

^b Daqing Chemical Research Center, Petrochemical Research Institute of Petrochina, 2 Chengxiang Road, Daqing City 163714, People's Republic of China

Table of Contents

1. NMR spectra for ligands and metal complexes	S2-S16
2. ¹³ C NMR spectra for typical poly(ethylene-co-1-hexene) samples	S17-S23
3. Crystal Data and Structure Refinements	S24

S6

Figure S15 ¹H NMR spectrum of complex 3 (400 MHz, CDCl₃, 25 °C). * and & stand for residual signals of CH₂Cl₂ and hexane, respectively.

Figure S16 ¹H NMR spectrum of complex 4 (400 MHz, CDCl₃, 25 °C).

Figure S18 ¹H NMR spectrum of complex **5** (400 MHz, CDCl₃, 25 °C). *, # and & stand for residual signals of CH₂Cl₂, toluene and hexane, respectively.

Figure S26 ¹H NMR spectrum of complex 9 (400 MHz, CDCl₃, 25 °C).

Figure S28 ¹H NMR spectrum of complexes **10** and **10**·THF (400 MHz, CDCl₃, 25 °C). *, & and # stand for residual signals of CH₂Cl₂, THF and toluene, respectively.

Figure S29 ¹H NMR spectrum of complexes **11** and **11**·THF (400 MHz, CDCl₃, 25 °C). *, & and # stand for residual signals of CH₂Cl₂, THF and toluene, respectively.

Figure S32 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 2, Table 2).

Figure S34 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 4, Table 2).

Figure S40¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 10, Table 2).

Figure S42 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 12, Table 2).

Figure S44¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 14, Table 2).

	4	6 ⋅CH ₂ Cl ₂	10·THF·2CH ₂ Cl ₂
Formula	$C_{60}H_{56}CI_2O_2STi$	$C_{37}H_{62}CI_5NO_2STi$	$C_{46}H_{60}Cl_6O_3SZr$
Mol wt	959.91	810.08	996.92
Cryst system	Triclinic	Monoclinic	Orthorhombic
Space group	рl	P2 ₁ /c	Ibam
a/ Å	10.142(3)	15.5858(11)	14.4804(4)
<i>b/</i> Å	14.635(5)	18.7525(11)	25.1371(7)
c/ Å	17.205(5)	17.3122(12)	29.5376(7)
α/deg	86.535(6)	90.00	90.00
β/deg	89.821(6)	107.126(3)	90.00
γ/deg	77.971(6)	90.00	90.00
<i>V</i> / Å ³	2493.0(14)	4835.5(6)	10751.5(5)
Ζ	2	4	8
$D_{\rm c}/{\rm g~cm^{-3}}$	1.279	1.113	1.232
F(000)	1008	1720	4144
abs coeff/mm⁻¹	0.364	0.524	0.575
No. of obsd reflns	9521	8565	5415
No. of params refnd	601	443	270
GOF	0.987	1.057	1.081
$R_1(l>2\delta)$	0.0769	0.0565	0.0822
$wR_2(I > 2\delta)$	0.1919	0.1187	0.2080