Supporting Information

Sandwich double-decker Er(III) and Yb(III) complexes, containing naphthalocyanine moiety: synthesis and investigation of effect of a paramagnetic metal center

Tatiana V. Dubinina,^{a,b} Elizaveta F. Petrusevich,^a Anton D. Kosov,^a Nataliya E. Borisova,^{a,c} Alexander L. Trigub,^d George V. Mamin,^e Ildar F. Gilmutdinov,^e Artem A. Masitov,^f Sergey V. Tokarev,^f Victor E. Pushkarev^b and Larisa G. Tomilova^{a,b}

^{b.} Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation

- ^{c.} N.A. Nesmeyanov Institute of Organoelement Compounds, 28 Vavilov Str. 119334 Moscow, Russian Federation
- ^{d.} National Research Center "Kurchatov Institute", pl. Akad. Kurchatova, dom 1, 123098 Moscow, Russia
- ^{e.} Kazan Federal University, Institute of Physics, 18 Kremlyovskaya Str., 420008 Kazan, Russian Federation
- ^{f.} Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Academician Semenov avenue, 142432 Chernogolovka, Moscow Region, Russian Federation

^{a.} Chemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russian Federation. Fax: +7 495 939 0290; E-mail: <u>dubinina.t.vid@gmail.com</u>

Contents list

 Table S1. High-resolution mass spectrometry MALDI TOF/TOF data.

Figs. S1–S4. MALDI-TOF mass spectra of **3b-3d** and **4b**, isotopic patterns for the molecular ion and simulated MS patterns of the molecular ion.

Figs. S5–S9. Spectral changes during reduction of complex **3a-3d** and **4b** with $N_2H_4 \times H_2O$ in THF solution.

Fig. S10. ¹H NMR spectra of complexes **3c**, **3b** and **4b**.

Fig. S11. Fitted EXAFS spectrum for 4b in R- and k-spaces.

Fig. S12. Zeeman energy levels, allowed transitions, and theoretical ESR spectrum of Yb³⁺ ion in quartet state (S = 3/2) with zero-field slitting parameters $|D_{Yb}| = 1.46 \text{ cm}^{-1}$, $E = 0.385 \text{ cm}^{-1}$, $g_{iso_Yb} = 2.34$.

Fig. S13. Angular dependency diagram for the quartet state (S = 3/2) with zero-field splitting parameters $|D_{Yb}| = 1.46 \text{ cm}^{-1}$, $E = 0.385 \text{ cm}^{-1}$, $g_{iso Yb} = 2.34$.

Fig. S14. A low-field (left) and a high-field (right) parts of the experimental W-band EPR spectrum of $[4b]^-$ in THF solution at T = 25 K.

Fig. S15. Calculated *M*-*H* curves for Yb³⁺ ion (experimental curve is marked in blue).

Table S2. Magnetic parameters of calculated *M*-*H* curves (see Fig. S15) for Yb³⁺ ion without f- π interaction.

Fig. S16. Calculated *M*-*H* curves considering f- π interaction of Yb³⁺ and unpaired π -electron at the Nc-decks (curve numbers correspond to the numbers in Table S3).

Table S3. Magnetic parameters of calculated *M*-*H* curves (see Fig. S16) considering f- π interaction of the Yb³⁺ ion *f*-shell and the unpaired π -electron at the Nc-decks.

Table S4. Crystal field splitting parameters and spin-orbital coupling constant (λ) for **4b**, [**4b**]⁻ and [Pc₂Yb]⁻TBA⁺.

Fig. S17. Experimental and theoretical χ_m T curves for [Pc₂Yb]⁻TBA⁺.

Fig. S18. Schematic representation of the crystal filed splitting for $[Pc_2Yb]^{-}TBA^{+}$, $[4b]^{-}$ and 4b.

Fig. S19. Thermogram (A) and results of evolved gas analysis by mass-spectrometry (B) for complex 4b.

Compound	Mass found	Monoisotopic mass calculated
(Molecular formula)		
3a (C ₁₂₈ H ₇₃ ErN ₁₆)	1999.8943	1999.5507
3b (C ₁₂₈ H ₇₃ N ₁₆ Yb)	2007.2751	2007.5593
3c (C ₁₂₈ H ₇₃ ErN ₁₆ O ₈)	2127.7750	2127.5100
3d (C ₁₇₆ H ₁₀₅ ErN ₁₆ O ₁₆)	2863.8754	2863.7197
4b (C ₁₉₂ H ₁₁₃ N ₁₆ Yb)	2815.8752	2815.8723

Table S1. High-resolution mass spectrometry MALDI TOF/TOF data.

Fig. S1. MALDI-TOF mass spectrum of **3b**, isotopic pattern for the molecular ion (inset A) and simulated MS pattern of the molecular ion (inset B).

Fig. S2. MALDI-TOF mass spectrum of **3c**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Fig. S3. MALDI-TOF mass spectrum of **3d**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Fig. S4. MALDI-TOF mass spectrum of **4b**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Fig. S5. Spectral changes during reduction of complex **3a** with $N_2H_4 \times H_2O$ in THF solution (solid line – initial forms, dashed lines – reduced form).

Fig. S6. Spectral changes during reduction of complex **3b** with $N_2H_4 \times H_2O$ in THF solution (solid line – initial forms, dashed lines – reduced form).

Fig. S7. Spectral changes during reduction of complex **3c** with $N_2H_4 \times H_2O$ in THF solution (solid line – initial forms, dashed lines – reduced form).

Fig. S8. Spectral changes during reduction of complex **3d** with $N_2H_4 \times H_2O$ in THF solution (solid line – initial forms, dashed lines – reduced form).

Fig. S9. Spectral changes during reduction of complex **4b** with $N_2H_4 \times H_2O$ in THF solution (solid line – initial forms, dashed lines – reduced form).

Fig. S10. ¹H NMR spectra of complexes **3a-d** (A-D respectively) and **4b** (E) in the presence of $N_2H_4 \times H_2O$.

Fig. S11. Fitted EXAFS spectrum for 4b in R- and k-spaces.

Fig. S12. Zeeman energy levels, allowed transitions, and theoretical ESR spectrum of Yb³⁺ ion in quartet state (S = 3/2) with zero-field slitting parameters $|D_{Yb}| = 1.46 \text{ cm}^{-1}$, $E = 0.385 \text{ cm}^{-1}$, $g_{iso_Yb} = 2.34$. "A" denotes the "extra" line.

Fig. S13. Angular dependency diagram for the quartet state (S = 3/2) with zero-field splitting parameters $|D_{Yb}| = 1.46 \text{ cm}^{-1}$, $E = 0.385 \text{ cm}^{-1}$, $g_{iso_Yb} = 2.34$.

Fig. S14. A low-field (left) and a high-field (right) parts of the experimental W-band EPR spectrum of $[4b]^-$ in THF solution at T = 25 K. The low-field part reveals g_{\perp} line, and the high-field part shows the hyperfine structure for Yb³⁺ ion (I_{Yb} = 5/2) with a constant of hyperfine interaction a_{Yb} = 10 mT.

Fig. S15. Calculated *M*-*H* curves for Yb^{3+} ion (experimental curve is marked in blue).

Table S2. Magnetic parameters of calculated *M*-*H* curves (see Fig. S15) for Yb³⁺ ion without *f*- π interaction. For *S*_{Yb} = 1/2, 3/2, 5/2 and 7/2, the cases with *R* \leq 2 μ _B are given. For *S*_{Yb} = 9/2, 11/2 and 13/2, the cases with minimal *R* values are given.

S _{Yb}	L _{Yb}	J _{Yb}	<i>R,</i> μ _B
1/2	3	5/2	0.19
1/2	3	7/2	1.66
3/2	3	3/2	1.52
3/2	3	5/2	0.32
3/2	3	7/2	1.99
5/2	3	1/2	1.64
5/2	3	3/2	0.58
5/2	3	5/2	1.02
7/2	3	1/2	0.10
7/2	3	3/2	0.85
7/2	3	5/2	2.03
9/2	3	3/2	2.67
11/2	3	5/2	4.90
13/2	3	7/2	7.01

Fig. S16. Calculated *M*-*H* curves considering f- π interaction of Yb³⁺ and unpaired π -electron at the Nc-decks (curve numbers correspond to the numbers in Table S3).

Table S3. Magnetic parameters of calculated *M*-*H* curves (see Fig. S16) considering f- π interaction of the Yb³⁺ ion *f*-shell and the unpaired π -electron at the Nc-decks. In the cases of $S_{\rm Yb}$ = 7/2, 9/2, 11/2 and 13/2, the value of $R > 1.7 \mu_{\rm B}$.

Curve	S _{Yb}	L _{Yb}	S _{Nc}	L _{Nc}	$J_{\rm total}$	Interaction	<i>R,</i> μ _в
number						type	
1	1/2	3	1/2	1	2	Antiferro-	0.26
2	1/2	3	1/2	1	3	Ferro-	0.15
3	3/2	3	1/2	0	2	Antiferro-	0.90
4	3/2	3	1/2	0	2	Ferro-	0.26
5	3/2	3	1/2	1	2	Antiferro-	0.15
6	3/2	3	1/2	1	1	Ferro-	0.10
7	5/2	3	1/2	0	2	Antiferro-	0.26
8	5/2	3	1/2	0	1	Ferro-	0.60
9	5/2	3	1/2	1	3	Antiferro-	0.60
10	5/2	3	1/2	1	1	Ferro-	0.58

Sample	Energy, cm ⁻¹				
	$E_1 = E(I_z = -1) - $	$E_2 = E(I_z = 3) -$	$E_3 = E(I_z = 2) - $	$E_4 = E(I_z = 1) -$	
	$E(I_z = 3)$	$E(I_z=2)$	$E(I_z=1)$	$E(I_z=0)$	
[Pc ₂ Yb] ⁻ TBA ⁺	46	255	5	100	-126.5
[4b] [−]	410	1355	80	1500	-68.5
4b	325	1355	70	1500	-57.2

Table S4. Crystal field splitting parameters and spin-orbital coupling constant (λ) for **4b**, [**4b**]⁻ and [Pc₂Yb]⁻TBA⁺.

Fig. S17. Experimental and theoretical χ_m T curves for $[Pc_2Yb]^-TBA^+$. The experimental curve was reconstructed in the Origin 7.0 program according to the earlier published data.³⁶ The theoretical curve was obtained based on the Van Vleck equation using parameters given in Table S4 for the case (b), when $E_{crystal field} > E_{SOC}$.

Fig. S18. Schematic representation of the crystal filed splitting for $[Pc_2Yb]^{-}TBA^{+}$, $[4b]^{-}$ and 4b. Sublevels marked with the same color have the same I_z value.

Fig. S19. Thermogram (A) and results of evolved gas analysis by mass-spectrometry (B) for complex4b.