Electronic Supporting Information

Scheme S1 Molecular structures of (ppy)₂(DBM) (left) and Ir(ppy)₂(SB) (right).

Scheme S2 Molecular structure of [Ir(ppy)₂(qnx)].

Scheme S3 Hydrogen bond CH₃O-H···O=CH- between complex 1 and CH₃OH molecule.

	1·CHCl ₃
Formula	$C_{39}H_{33}N_7O_2F_{12}P_2ClIr$
M	1149.31
Crystal system	Triclinic
Space group	Pī
<i>T</i> /K	296
a /Å	11.5379(7)
b /Å	13.6588(9)
c /Å	15.6212(10)
lpha / °	86.7990(10)
$\beta/^{\circ}$	69.2010(10)
γ/\circ	69.0300(10)
$V/\text{\AA}^3$	2141.8(2)
Ζ	2
D_c /g cm ⁻³	1.782
<i>F</i> (000)	1128
GooF on F^2	1.037
$R_1, WR_2 [I > 2\sigma(I)]^a$	0.0530, 0.1301
R_1 , w R_2 (all data) ^{<i>a</i>}	0.0728, 0.1472
$(\Delta \rho)_{\text{max}}, (\Delta \rho)_{\text{min}} (e \text{ Å}^{-3})$	1.386, -1.353

Table S1 Crystallographic data and refinement of complex 1. CHCl3.

^{<i>a</i>} $R_1 = \Sigma F_0 - F_c / \Sigma F_0 .$	$wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w]$	$(F_0^2)^2$] ^{1/2} .
--	--	--------------------------------

	8 ()	e	1
Ir1-N1	2.121(6)	Ir1-C24	2.019(7)
Ir1-N2	2.142(5)	Ir1-C31	2.045(6)
Ir1-N3	2.043(6)	O1-C13	1.209(10)
Ir1-N4	2.047(6)		
N1-Ir1-N2	78.0(2)	C24-Ir1-N2	98.1(2)
N3-Ir1-N2	87.5(2)	C31-Ir1-N2	174.7(2)
N4-Ir1-N2	96.9(2)	C24-Ir1-N3	81.4(3)
N4-Ir1-N1	85.3(2)	C31-Ir1-N3	95.2(3)
N3-Ir1-N1	99.5(2)	C24-Ir1-N4	94.1(3)
N3-Ir1-N4	174.1(2)	C31-Ir1-N4	80.7(3)
C24-Ir1-N1	175.9(2)	C24-Ir1-C31	86.9(2)
C31-Ir1-N1	97.0(2)		

Table S2 Selected bond lengths (Å) and bond angles (°) for complex $1 \cdot CHCl_{3.}$

Table S3 The UV-vis absorption data of complex 1 in CH_2Cl_2 and in CH_3OH at room temperature.

Complex 1	absorption bands (nm)
in CH ₂ Cl ₂	260, 290, 362, 382 and 500 nm
in CH ₃ OH	260, 269 and 362 nm, and an absorption tail towards 488 nm

Table S4 Luminescecne data of 2 in solution at room temperature.

medium	$\lambda_{em}(nm)$	guantum yield
CH_2Cl_2	500	12.6%
EA	506	4.5%
THF	507	7.2%
CHCl ₃	500	10.4%
CH ₃ CN	507	4.5%
CH ₃ OH	507	5.9%

Fig. S1 ¹H NMR spectrum of complex 1 (400 MHz, CDCl₃, using sample 1^R).

Fig. S3 ¹H NMR spectrum of complex 1 (400 MHz, CD₃OD, using sample 1^R).

Fig. S4 The ¹H NMR signal of –CHO proton in complex **1** measured in CD₂Cl₂, CDCl₃ or CD₃OD.

Fig. S5 ¹H NMR spectrum of complex 2 (400 MHz, CDCl₃).

Fig. S6 Experimental XRD patterns of 1^{R} and 1^{Y} , and simulated XRD patterns of 1^{Y} .

Fig. S7 The packing structure of 1^{Y} . Only the H atoms in CHCl₃ molecules are kept.

Fig. S8 The changes of luminescence spectra of complex 1 in CH₂Cl₂ (2.5 mL, $c = 1 \times 10^{-4}$ M) upon adding CH₃OH (10, 20, 30 uL).

Fig. S9 The luminescence spectra of complex 1 in CH₂Cl₂ and in CH₃OH at 77 K.

Fig. S10 The UV-vis absorption spectra of complex 1 in CH_2Cl_2 and in CH_3OH . Inset: the photographs of 1 in CH_3OH and in CH_2Cl_2 under room light.

Fig. S11 Luminescence spectra of 2 in different solvents (EA = CH₃COOC₂H₅, $c = 1 \times 10^{-4}$ M, $\lambda_{ex} = 368$ nm).

Fig. S12 Electrospray mass spectrometry (ES-MS) of 1 in CH₃CN solution.

Fig. S13 Electrospray mass spectrometry (ES-MS) of 2 in CH₃CN solution.

Fig. S14 Luminescence change of complex 1 upon adding in H₂O into its THF solution (2.5 mL, $c = 1 \times 10^{-4}$ M) at room temperature.

Fig. S15 Electrospray mass spectrometry (ES-MS, using CH₃OH as mobile phase) of complex 1 in CH₃CN-H₂O mixture (v/v = 3/1).

Fig. S16 Influence of $CHCl_3/CH_2Cl_2$ vapor on the emission colors of solids 1^R and 1^Y .

Fig. S17 The photographs of samples 1^{Y} and 1^{Y} -p under 365 nm light (Pressing experiment of 1^{Y} was performed on a device which can make KBr disks for measuring IR spectra. Sample 1^{Y} was sandwiched between two steel plates, with more 1^{Y} at the center of the plate. The applied pressure was 7 tons.).

Fig. S18 Solid-state emission spectra of 1^{Y} , 1^{Y} -p and " 1^{Y} -p + CHCl₃".

Fig. S19 The XRD patterns of 1^{Y} , 1^{Y} -p and " 1^{Y} -p + CHCl₃".