Effect of Anion Substitution on the Structural and Transport Properties of Argyrodites Cu₇PSe_{6-x}S_x

Friederike Reissig^{+ a), b)}, Barbara Heep^{+ a)}, Martin Panthöfer^{a)}, Max Wood^{b)}, Shashwat Anand^{b)}, G. Jeffrey Snyder^{b)} and Wolfgang Tremel^{a)}*

⁺ Authors contributed equally

^{a)} Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität Duesbergweg 10-14, D-55099 Mainz, Germany

^{b)} Dept. Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA

Supporting Information

Figure S1. Rietveld refinement of Cu ₇ PSe _{5.82} S _{0.18}	S2
Figure S2. Rietveld refinement of Cu ₇ PSe _{5.7} S _{0.3} .	S3
Figure S3. Rietveld refinement of Cu ₇ PSe _{5.4} S _{0.6} .	S4
Figure S4. Rietveld refinement of Cu ₇ PSe _{4.8} S _{1.2} .	S5
Figure S5. Rietveld refinement of Cu ₇ PSe _{4.5} S _{1.5} .	S6
Figure S6. Rietveld refinement of Cu ₇ PSe _{4.2} S _{1.8} .	S7
Figure S7. Rietveld refinement of Cu ₇ PSe _{3.9} S _{2.1} .	S8
Figure S8. Rietveld refinement of Cu ₇ PSe _{3.48} S _{2.52}	S9
Figure S9. Rietveld refinement of Cu ₇ PSe _{3.3} S _{2.7} .	S10
Figure S10. Rietveld refinement of Cu ₇ PSe _{3.0} S _{3.0} .	S11
Figure S11. Rietveld refinement of Cu ₇ PSe _{2.7} S _{3.3} .	S12
Figure S12. Rietveld refinement of Cu ₇ PSe _{2.4} S _{3.6} .	S13
Figure S13. Rietveld refinement of Cu ₇ PSe _{2.1} S _{3.9} .	S14
Figure S14. Rietveld refinement of Cu ₇ PSe _{2.1} S _{3.9} .	S15
Figure S15. Rietveld refinement of Cu ₇ PSe _{1.8} S _{4.2} .	S16
Figure S16. Rietveld refinement of Cu ₇ PSe _{1.2} S _{4.8} .	S17
Figure S17. Rietveld refinement of Cu ₇ PSe _{0.6} S _{5.4} .	S18
Figure S18. Rietveld refinement of Cu ₇ PS ₆ .	S19

Figure S1. Rietveld refinement of Cu₇PSe_{5.82}S_{0.18}.

Figure S2. Rietveld refinement of $Cu_7PSe_{5.7}S_{0.3}$.

Figure S3. Rietveld refinement of Cu₇PSe_{5.4}S_{0.6}.

Figure S4. Rietveld refinement of Cu₇PSe_{4.8}S_{1.2}.

Figure S5. Rietveld refinement of Cu₇PSe_{4.5}S_{1.5}.

Figure S6. Rietveld refinement of Cu₇PSe_{4.2}S_{1.8}.

Figure S7. Rietveld refinement of Cu₇PSe_{3.9}S_{2.1}.

Figure S8. Rietveld refinement of Cu₇PSe_{3.48}S_{2.52}.

Figure S9. Rietveld refinement of Cu₇PSe_{3.3}S_{2.7}.

Figure S10. Rietveld refinement of Cu₇PSe_{3.0}S_{3.0}.

Figure S11. Rietveld refinement of Cu₇PSe_{2.7}S_{3.3}.

Figure S12. Rietveld refinement of Cu₇PSe_{2.4}S_{3.6}.

Figure S13. Rietveld refinement of Cu₇PSe_{2.1}S_{3.9}.

Figure S14. Rietveld refinement of Cu₇PSe_{2.1}S_{3.9}.

Figure S15. Rietveld refinement of Cu₇PSe_{1.8}S_{4.2}.

Figure S16. Rietveld refinement of Cu₇PSe_{1.2}S_{4.8}.

Figure S17. Rietveld refinement of Cu₇PSe_{0.6}S_{5.4}.

Figure S18. Rietveld refinement of Cu₇PS₆.

X _{nom.}	x _{real}	S %	SG	Cu ₇ PSe _{6-x} S _x	Cu ₃ PSe _{4-x} S _x	Cu ₂ Se _{1-x} S _x
0.18	0.20	3 %	P2 ₁ 3	100%	-	-
0.30	0.30	5%	P2 ₁ 3	92.13%	7.36%	0.51%
0.60	0.50	10%	F43m	100%	-	-
1.20	1.20	20%	F43m	100%	-	-
1.50	1.50	25%	F43m	100%	-	-
1.80	1.83	30%	F43m	95.19%	4.42%	0.39%
2.10	2.13	35%	F43m	96.16%	2.93%	0.91%
2.52	2.57	42%	F43m	90.64%	6.46%	2.90%
2.70	2.71	45%	F43m	100%	-	-
3.00	3.00	50%	F43m	100%	-	-
3.30	3.34	55%	F43m	100%	-	-
3.60	3.62	60%	F43m	100%	-	-
3.90	3.86	65%	P2 ₁ 3	94.94%	4.08%	0.98%
4.20	4.19	70%	P2 ₁ 3	97.20%	2.80%	-
4.80	4.79	80%	P213	93.06%	6.57%	0.37%
5.40	5.26	90%	P2 ₁ 3	91.57%	8.43%	-
6.00	5.99	100%	P213	86.26%	12.49%	1.25%

 Table S1. Refined compositions of the synthesized samples and minor contaminants.