Electronic Supplementary Information

Phase transition in the extreme: a cubic-to-triclinic symmetry change in dielectrically switchable cyanide perovskites

Monika Trzebiatowska^a*, Anna Gągor^a, Lucyna Macalik^a, Paulina Peksa^b, Adam Sieradzki^b

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wrocław 2, Poland

^bFaculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland

*corresponding author; e-mail: m.trzebiatowska@intibs.pl

FA₂KCo(CN) ₆ 330 K			
Co1—C3 x 6	1.874 (4)	K2—N1 x 6	2.794 (4)
C-Co-C _{trans}	180.0	N—K—N	180.0
C-Co-C _{cis}	90.000 (1)	N—K—N	90.0
$FA_2 KCO(CN)_6 290 K$	1 000 (2)		2 0 2 2 (2)
C01—C6	1.898 (2)	K2—N5*	2.832 (2)
Co1—C6 ⁱ	1.898 (2)	K2—N3 ^{VII}	2.847 (2)
Co1—C8'	1.899 (2)	K2—N3 [™]	2.847 (2)
Co1—C8	1.899 (2)	N7—C8	1.145 (3)
Co1-C4	1.896 (2)	N9—C11	1.277 (4)
Co1-C4 ⁱ	1.896 (2)	N3—C6	1.148 (3)
K2—N7 ⁱⁱ	2.831 (2)	C4—N5	1.143 (3)
K2—N7 ⁱⁱⁱ	2.831 (2)	N10-C11	1.274 (4)
K2—N5 ^{iv}	2.832 (2)		
C6—Co1—C6 ⁱ	180.00 (10)	N7 ⁱⁱⁱ —K2—N5 ^v	79.16 (8)
C6—Co1—C8 ⁱ	89.85 (10)	N5 ^{iv} —K2—N5 ^v	180.0
C6 ⁱ —Co1—C8 ⁱ	90.15 (10)	N7 ⁱⁱ —K2—N3 ^{vi}	90.55 (7)
C6-C01-C8	90.15 (10)	N7 ⁱⁱⁱ —K2—N3 ^{vi}	89.45 (7)
C6 ⁱ —Co1—C8	89.85 (10)	N5 ^{iv} —K2—N3 ^{vi}	87.62 (8)
C8 ⁱ —Co1—C8	180.0	N5 ^v —K2—N3 ^{vi}	92.38 (8)
C6-C01-C4	91.14 (11)	N7 ⁱⁱ —K2—N3 ^{vii}	89.45 (7)
C6 ⁱ —Co1—C4	88.86 (11)	N7 ⁱⁱⁱ —K2—N3 ^{vii}	90.55 (7)
C8 ⁱ —Co1—C4	90.72 (10)	N5 ^{iv} —K2—N3 ^{vii}	92.38 (8)
C8-C01-C4	89.28 (10)	N5 ^v —K2—N3 ^{vii}	87.62 (8)
C6–Co1–C4 ⁱ	88.86 (11)	N3 ^{vi} —K2—N3 ^{vii}	180.00 (17)
C6 ⁱ —Co1—C4 ⁱ	91.14 (11)	C6—N3—K2 ^{viiii}	163.3 (2)
C8 ⁱ —Co1—C4 ⁱ	89.28 (10)	N5-C4-Co1	176.8 (2)
$C8 - Co1 - C4^{i}$	90.72 (10)	C4—N5—K2 ^{ix}	146.0 (2)

Table S1. The selected geometric parameters of FA₂KM(CN)₆, where M=Co, Fe (Å, °).

C4-Co1-C4 ⁱ	180.0	N3-C6-Co1	178.7 (2)
N7 ⁱⁱ —K2—N7 ⁱⁱⁱ	180.00 (17)	C8—N7—K2 [×]	160.7 (2)
N7 ⁱⁱ —K2—N5 ^{iv}	79.16 (8)	N7-C8-Co1	177.9 (2)
N7 ⁱⁱⁱ —K2—N5 ^{iv}	100.84 (8)	N10-C11-N9	124.6 (3)
N7 ⁱⁱ —K2—N5 ^v	100.84 (8)		
FA₂KFe(CN)₀ 330 K			
Fe1—C3	1.917 (5) x 6	K2—N1 ^{xv}	2.783 (5) x6
C—Fe—C	90.0	N-K-N	90.0
C—Fe—C ⁱ	180.0	N-K-N	180.0
FA ₂ KFe(CN) ₆ 290 K			
Fe1—C4	1.938 (2)	K2—N7 ⁱⁱⁱ	2.8298 (18)
Fe1—C4 ⁱ	1.938 (2)	K2—N3 ^{vii}	2.8441 (17)
Fe1—C8	1.938 (2)	K2—N3 ^{vi}	2.8441 (17)
Fe1—C8 ⁱ	1.938 (2)	N3—C6	1.143 (2)
Fe1—C6	1.9425 (19)	C4—N5	1.144 (3)
Fe1—C6 ⁱ	1.9425 (19)	N7—C8	1.147 (2)
K2—N5 ^{iv}	2.824 (2)	N9-C11	1.269 (3)
K2—N5 ^v	2.824 (2)	N10-C11	1.279 (3)
K2—N7 ⁱⁱ	2.8298 (18)		
	ζ, γ		
C4—Fe1—C4 ⁱ	180.0	N5 ^v —K2—N7 ⁱⁱⁱ	79.96 (6)
C4—Fe1—C8	88.75 (8)	N7 ⁱⁱ —K2—N7 ⁱⁱⁱ	180.00 (7)
C4 ⁱ —Fe1—C8	91.25 (8)	N5 ^{iv} —K2—N3 ^{vii}	92.61 (6)
C4—Fe1—C8 ⁱ	91.25 (8)	N5 ^v —K2—N3 ^{vii}	87.39 (6)
C4 ⁱ —Fe1—C8 ⁱ	88.75 (8)	N7 ⁱⁱ —K2—N3 ^{vii}	89.71 (5)
C8—Fe1—C8 ⁱ	180.0	N7 ⁱⁱⁱ —K2—N3 ^{vii}	90.29 (5)
C4—Fe1—C6	92.05 (8)	N5 ^{iv} —K2—N3 ^{vi}	87.39 (6)
C4 ⁱ —Fe1—C6	87.95 (8)	N5 ^v —K2—N3 ^{vi}	92.61 (6)
C8—Fe1—C6	89.82 (8)	N7 ⁱⁱ —K2—N3 ^{vi}	90.29 (5)
C8 ⁱ —Fe1—C6	90.18 (8)	N7 ⁱⁱⁱ —K2—N3 ^{vi}	89.71 (5)
C4—Fe1—C6 ⁱ	87.95 (8)	N3 ^{vii} —K2—N3 ^{vi}	180.0
C4 ⁱ —Fe1—C6 ⁱ	92.05 (8)	C6—N3—K2 ^{viii}	161.73 (19)
C8—Fe1—C6 ⁱ	90.18 (8)	N5—C4—Fe1	177.03 (19)
C8 ⁱ —Fe1—C6 ⁱ	89.82 (8)	C4—N5—K2 ^{ix}	145.63 (18)
C6—Fe1—C6 ⁱ	180.0	N3—C6—Fe1	178.83 (19)
N5 ^{iv} —K2—N5 ^v	180.00 (13)	C8—N7—K2 [×]	160.71 (18)
N5 ^{iv} —K2—N7 ⁱⁱ	79.96 (6)	N7—C8—Fe1	177.97 (19)
N5 ^v —K2—N7 ⁱⁱ	100.04 (6)	N9-C11-N10	125.0 (3)
N5 ^{iv} —K2—N7 ⁱⁱⁱ	100.04 (6)		
	• •		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*+1, -*z*; (v) *x*-1, *y*-1, *z*; (vi) *x*, *y*-1, *z*-1; (vii) -*x*, -*y*+1, -*z*+1; (viii) *x*, *y*+1, *z*+1; (ix) *x*+1, *y*+1, *z*; (x) *x*, *y*+1, *z*; (xi) -*y*+1/2, -*z*+1, -*x*+1/2; (xii) *y*-1/2, *z*, *x*+1/2; (xiii) *z*-1/2, *x*+1/2, *y*; (xiv) -*z*+1/2, -*x*+1/2, -*y*+1; (xv) -*y*+1, -*z*+1, -*x*+1; (xvi) *z*, *x*, *y*; (xvii) -*z*+1, -*x*+1, -*y*+1; (xviii) *y*, *z*, *x*.

FA₂KCo(CN) ₆			Atomic Displ	acements		
WP		Atom	ux	uy	uz	u
1h	(1/2,1/2,1/2)	Co1	0.0000	0.0000	0.0000	0.0000
1a	(0,0,0)	К2	0.0000	0.0000	0.0000	0.0000
2i	(x,y,z)	C6	0.0263	0.0260	-0.0247	0.3037
2i	(x,y,z)	C8	-0.0264	-0.0208	0.0228	0.2749
2i	(x,y,z)	C4	0.0627	-0.0549	0.0128	0.5037
2i	(x,y,z)	N3	0.0390	0.0404	-0.0379	0.4610
2i	(x,y,z)	N7	-0.0484	-0.0336	0.0402	0.4797
2i	(x,y,z)	N5	0.1046	-0.0950	0.0167	0.8396

Table S2. The atomic displacements from HT to LT positions calculated in Amplimodes for FA₂KCo(CN)₆.

ux, uy and uz are given in relative units. |u| is the absolute distance given in Å; Maximum atomic displacement in the distortion, Δ : 0.8396 Å; Total distortion amplitude: 1.7715 Å

Table S3. The atomic displacements from HT to LT positions calculated in Amplimodes for FA₂KFe(CN)₆.

FA ₂ KFe(CN) ₆			Atomic Displ	acements		
WP		Atom	ux	uy	uz	u
1h	(1/2,1/2,1/2)	Fe1	0.0000	0.0000	0.0000	0.0000
1a	(0,0,0)	К2	0.0000	0.0000	0.0000	0.0000
2i	(x,y,z)	C6	0.0270	0.0289	-0.0267	0.3264
2i	(x,y,z)	C8	-0.0268	-0.0210	0.0224	0.2802
2i	(x,y,z)	C4	0.0633	-0.0566	0.0085	0.5058
2i	(x,y,z)	N3	0.0405	0.0449	-0.0424	0.4986
2i	(x,y,z)	N7	-0.0483	-0.0337	0.0394	0.4824
2i	(x,y,z)	N5	0.1050	-0.0975	0.0112	0.8457

ux, uy and uz are given in relative units. |u| is the absolute distance given in Å. Maximum atomic displacement in the distortion, Δ : 0.8457 Å; Total distortion amplitude: 1.8096 Å

Table S4. The factor group analysis for $FA_2KM(CN)_6$ (M=Co, Fe) in the LT and HT phase. The data in the parentheses correspond to the HT phase. Note, that the formamidinium cation in the HT phase is highly disordered and therefore its analysis is not given here. The IR-active modes are marked in red, the Raman-active - in blue, the modes active in **both IR and Raman** spectra are in **black** and the silent ones - in green.

lon	Vibration	Free ion symmetry	Site symmetry	Factor group symmetry
		C _{∞v}	C ₁ (C _{4v})	C _i (O _h)
	ν	A ₁	A (A ₁)	A _g +A _u (2A _{1g} +2E _g)
CN⁻	T'	$A_1 + E_1$	3A (A ₁ +E)	$3A_g + 3A_u (2F_{2g} + 4F_{1u})$
	L	$A_{2}+E_{1}^{*}$	2A (A ₂ +E)*	2A _g +2A _u (2F _{1g} +2F _{2u})
		C _{2v}	C ₁	Ci
	$\nu_s NH_2$	$A_1 + B_1$	2A	2A _g +2A _u
	$\nu_{as} NH_2$	$A_1 + B_1$	2A	2A _g +2A _u
ΓΛ+	δNH_2	$A_1 + B_1$	2A	2A _g +2A _u
FA⁺	ρNH₂	$A_1 + B_1$	2A	$2A_g + 2A_u$
	ωNH₂	$A_2 + B_2$	2A	$2A_g + 2A_u$
	τNH_2	$A_2 + B_2$	2A	$2A_g + 2A_u$
	v _s NCN	A ₁	А	A _g +A _u

	$v_{as}NCN$	B ₁	А	A _g +A _u
	δΝϹΝ	A_1	А	A _g +A _u
	vCH	A ₁	А	A _g +A _u
	δCH	B ₁	А	A _g +A _u
	γCΗ	B ₂	А	A _g +A _u
	T'	$A_1 + B_1 + B_2$	3A	3A _g +3A _u
	L	$A_2+B_1+B_2$	3A	3A _g +3A _u
N/13+			C _i (O _h)	C _i (O _h)
IVI			3A _u (F _{1u})	3A _u (F _{1u})
V +			C _i (O _h)	C _i (O _h)
K.			3 <mark>A</mark> u (F _{1u})	3A _u (F _{1u})
*one L	is subtracted	1		

Table S5. The observed Raman and IR modes (in cm^{-1}) of $\text{FA}_2\text{KM}(\text{CN})_6$ (M=Co, Fe) and their proposed assignment.

FA ₂ KCo(CN) ₆			FA₂KF	Assignment		
I	IR		nan	I	R	
80 K	350 K	80 K	350 K	80 K	350 K	
3441s	3442s	3437w	3440w	3442s	3444s	$v_{as}NH_2 2x\delta NH_2$
3423s	3379s			3423s		$v_{as}NH_{2}$
3372s				3372m	3382m	combination
3344s			3345m	3342m		$\nu_{as} NH_2$
3306s		3307m		3306m		$v_{as}NH_2 v_sNH_2$
3291s	3284s	3291w		3291m	3287s	combination
3264s		3264m	3250m	3261s		$v_s NH_2$
3236s		3229m		3236s		$v_s NH_2$
3188s	3192s			3188m	3193m	combination
3156s				3157m		combination
		3097m	3096w	3121sh		combination
3025sh		3038w	3031w	3025w	3034w	ν CH
2834w	2828vw			2835w	2823vw	combination
2785w				2786vw		combination
2755w				2757w	2747w	combination
2739w	2744w			2739w		combination
2705vw				2656vw		combination
2658w	2657vw			2628vw		$2x\rho NH_2$
2624w				2586vw		2xρNH₂
2588w				2511vw		2xρNH₂
2551w				2459vw		combination
2544w	2538vw					combination
		2153vs	2148vs	2118s	2114s	νCN
2129vs	2125vs	2138vs	2135s			νCN
1716vs	1722vs			1716vs	1723vs	δNH₂
1625m	1636w	1622vw		1623w	1640vw	δNH₂

1582vw			1568vw			δNH_2
1557w	1556vw	1552vw				$\nu_{\text{as}}\text{NCN}$
1400m	1397m	1403w	1396m	1401m	1402m	δCH
1342m	1341m	1346vw		1342m	1343m	ρNH₂
1270m	1260m			1268m	1245w	ρNH_2
1219w				1219w		ρNH₂
1125w	1116vw	1123w	1115w	1125w	1111vw	$\nu_s NCN$
1055m	1065w	1055w		1055m	1065w	ωNH_2
1041m	1029vw			1042w		ωNH_2
896w	893vw			876vw	874vw	combination
				828vw	825vw	combination
771w				772w		γCH
				747vw	741vw	combination
668m	667m	654vw	666vw	675m	639m	$\delta NCN \tau NH_2$
628s	641s			627m		τNH_2
586m						τNH_2
565m						T′CN⁻
		532vw	528vw			T′CN⁻
		415m	411m			T′CN⁻
		342vw				T′CN⁻
		331vw				T'FA⁺
		209w				LCN ⁻ T'M ³⁺
		179m				LCN ⁻ T'M ³⁺ T'FA ⁺
		140w	147m			T'M ³⁺
		114w				LM ³⁺ LFA ⁺
		106w				LM ³⁺ LFA ⁺

Key: s-very strong, s-strong, m-medium, w-weak, vw-very weak, sh-shoulder; v_s -symmetric stretching, v_{as} -asymmetric stretching, δ -in-plane bending (scissoring), ρ -rocking, ω -wagging, τ -twisting (torsion), γ -out-of-plane bending, T-translation, L-libration.

Figure S1. The crystal structure of $FA_2KFe(CN)_6$ at 330 K in the cubic phase. The anisotropic displacement parameters are drawn at 50% probability level.

Figure S2. The powder X-ray diffraction patterns: of $FA_2KCo(CN)_6$ (red), $FA_2KFe(CN)_6$ (blue) referred against a **calculated** pattern based on the crystal structure of Co-sample (**black**).

Figure S3. DSC traces for the $FA_2KCo(CN)_6$ (red) and $FA_2KFe(CN)_6$ (blue) samples in heating and cooling modes at constant sweeping rate 5 K/min.

Figure S4. The heat capacity of $FA_2KFe(CN)_6$ measured in a heating mode. The insets show the change in Cp and S related to the phase transition.

Figure S5. The temperature dependence of real part of dielectric permittivity (a) and dielectric loss (b) and the compilation of the data for the AC conductivity below (c) and above (d) the phase transition temperature of a polycrystalline pellet $FA_2KFe(CN)_6$.

Figure S6. The experimental data fitted according to H-N (a) (b) and a relaxation map as a function of 1000/T (red) and the compilation of the data for the DC conductivity (blue) (c) of polycrystalline pellet $FA_2KFe(CN)_6$.

Figure S7. The temperature-dependent IR spectra in the full wavenumber range of FA₂KCo(CN)₆.

Figure S8. The temperature-dependent Raman spectra in the full wavenumber range of FA₂KCo(CN)₆.

Figure S9. The temperature-dependent IR spectra in the full wavenumber range of FA₂KFe(CN)₆.

Figure S10. The details of the temperature-dependent IR spectra of FA₂KFe(CN)₆.

Figure S11. The plots of the wavenumber and FWHM *vs*. T of the selected IR modes: (a) $v_{as}NH_2$, (b) vCN^- and (c) τNH_2 in FA₂KCo(CN)₆.

Figure S12. The plots of the wavenumber and FWHM *vs*. T of the selected Raman modes: (a) δ CH, (b) v_s NCN, (c) T'CN and (d) lattice modes in FA₂KCo(CN)₆.

Figure S13. The plots of the wavenumber and FWHM *vs*. T of the selected IR modes: (a) $v_{as}NH_2$, (b) vCN^2 , (c) δNH_2 , (d) ωNH_2 and (e) ρNH_2 in FA₂KFe(CN)₆.