## Supporting Information

## Two mononuclear Dysprosium(III) complexes with their slow magnetic relaxation behaviors tuned by coordination geometry

Shui Yu,<sup>a</sup> Zilu Chen,<sup>\*,a</sup> Huancheng Hu,<sup>a</sup> Bo Li,<sup>\*,b</sup> Yuning Liang,<sup>a</sup> Dongcheng Liu,<sup>a</sup> Huahong Zou,<sup>a</sup> Di Yao<sup>a</sup> and Fupei Liang<sup>\*,a,c</sup>

<sup>a</sup>State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin

541004, P. R. China. E-mail: zlchen@mailbox.gxnu.edu.cn; fliangoffice@yahoo.com

<sup>b</sup>College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University,

Nanyang 473061, P. R. China. E-mail: libozzu0107@163.com

<sup>c</sup>Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials,

College of Chemistry and Bioengineering, Guilin University of Technology, Guilin,

541004, P. R. China. E-mail: fliangoffice@yahoo.com



Fig. S3 PXRD patterns of 1.









Fig. S6 The structure of 2 with 30 % probability ellipsoid and selected atoms labelled. Hydrogen atoms are omitted for clarity.



**Fig. S7** (a) 1D supramolecular chain of **1** formed through hydrogen bonds of O2-H2A···Cl2 and  $\pi$ ··· $\pi$  stacking interactions between the two naphthalene planes as revealed by a dihedral angle of 5.508(12)° and a ring-to-ring distance of 3.8071(13) Å. (b) 2D supramolecular framework of **1** formed from 1D supramolecular chains through non-classic hydrogen bonds of C-H···Cl (C12-H12B···Cl1(-x+1, -y, -z+1), C14-H14A···Cl1(-x+1, -y, -z+1)).



**Fig. S8** (a) 1D supramolecular chain of **2** formed by hydrogen bonds of O-H···Cl (O2-H2A···Cl3(-x+1,y+1/2,-z+1/2), O5-H5A···Cl3) and  $\pi$ ··· $\pi$  stacking interactions between the two naphthalene planes as revealed by a dihedral angle of 4.655(12)° and a ring-to-ring distance of 3.5743(1) Å. (b) 2D supramolecular framework of **2** formed from 1D supramolecular chains through non-classic hydrogen bonds of C-H···Cl (C12-H12A···Cl2(x-1,y,z)).



**Fig. S9** A stacking diagram of 1D supramolecular chain of **1** seen along the axis b (a) and along the axis c (b).



**Fig. S10** A stacking diagram of 1D supramolecular chain of **2** seen along the axis b (a) and along the axis c (b).



**Fig. S11** Plots of *M vs. H* for complex **1** measured at 1.8, 2,5, 5.0, and 10 K.



**Fig. S12** Plots of *M vs. H* for complex **2** measured at 1.8, 2, 5, 5.0, and 10 K.



**Fig. 13** Plots of *M* vs *H T*<sup>-1</sup> for **1** (a) and **2** (b) measured at 1.8, 2.5, 5.0, and 10 K.



Fig. S14 Plots of Magnetic hysteresis loops for 1 (left) and 2 (right).



Fig. S15 Frequency-dependent in-phase  $(\chi')$  and out-of phase  $(\chi'')$  ac susceptibilities under different dc fields for 1 (a) at 2 K and 2 (b) at 1.8 K.



**Fig. S16** Plots of  $\chi'$  and  $\chi''$  vs T (1.8-10 K) at various frequencies under 1200 dc field for 1.



**Fig. S17**  $\chi'$  and  $\chi''$  vs T(1.8-5 K) plots at various frequencies under 1000 Oe for 2.



Fig. S18 Cole–Cole drawings at different dc fields for 1 (a) and 2 (b) with the best fit to Debye model designated by solid lines.



Fig. S19  $\tau$  versus H curves of 1 (a) and 2 (b) with the fit to the equation  $\tau^{-1} = B_1 / (1 + B_2 H^2) + A_1 H^4 T + A_2 H^2 T$ .

| Dy1-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.224 (3)  | Dy1-O3A      | 2.237 (4)   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------------|--|
| Dy1-O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.224 (3)  | Dy1-Cl1A     | 2.6656 (17) |  |
| Dy1-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.237 (4)  | Dy1-Cl1      | 2.6656 (17) |  |
| 01-Dy1-01A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180.0      | O1A-Dy1-Cl1A | 84.81 (9)   |  |
| O1-Dy1-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.50 (15) | O3-Dy1-CI1A  | 95.49 (10)  |  |
| O1A-Dy1-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.50 (15) | O3A-Dy1-CI1A | 84.51 (10)  |  |
| 01-Dy1-03A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.50 (15) | O1-Dy1-Cl1   | 84.81 (9)   |  |
| 01A-Dy1-03A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.50 (15) | O1A-Dy1-Cl1  | 95.19 (9)   |  |
| O3-Dy1-O3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180.0      | O3-Dy1-Cl1   | 84.51 (10)  |  |
| O1-Dy1-CI1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.19 (9)  | O3A-Dy1-Cl1  | 95.49 (10)  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | CI1A-Dy1-CI1 | 180.0       |  |
| $(\mathbf{x}_{1}, \mathbf{x}_{2}, x$ |            |              |             |  |

Table S1. Selected bond lengths / Å and bond angles /  $^\circ$  for 1.

Symmetry code: A) -x+1, -y+1, -z+1

| Dy(1)-O(4)       | 2.290(5)  | Dy(1)-O(7)        | 2.402(5)   |
|------------------|-----------|-------------------|------------|
| Dy(1)-O(1)       | 2.294(6)  | Dy(1)-Cl(1)       | 2.6628(19) |
| Dy(1)-O(3)       | 2.296(6)  | Dy(1)-Cl(2)       | 2.669(2)   |
| Dy(1)-O(6)       | 2.308(6)  |                   |            |
| O(4)-Dy(1)-O(1)  | 146.9(2)  | O(1)-Dy(1)-Cl(1)  | 84.64(15)  |
| O(4)-Dy(1)-O(3)  | 74.5(2)   | O(3)-Dy(1)-Cl(1)  | 81.68(15)  |
| O(1)-Dy(1)-O(3)  | 73.3(2)   | O(6)-Dy(1)-Cl(1)  | 96.06(16)  |
| O(4)-Dy(1)-O(6)  | 73.3(2)   | O(7)-Dy(1)-Cl(1)  | 89.3(2)    |
| O(1)-Dy(1)-O(6)  | 139.5(2)  | O(4)-Dy(1)-Cl(2)  | 81.55(16)  |
| O(3)-Dy(1)-O(6)  | 147.0(2)  | O(1)-Dy(1)-Cl(2)  | 95.20(15)  |
| O(4)-Dy(1)-O(7)  | 142.6(2)  | O(3)-Dy(1)-Cl(2)  | 97.45(15)  |
| O(1)-Dy(1)-O(7)  | 70.00(19) | O(6)-Dy(1)-Cl(2)  | 84.62(16)  |
| O(3)-Dy(1)-O(7)  | 142.9(2)  | O(7)-Dy(1)-Cl(2)  | 91.4(2)    |
| O(6)-Dy(1)-O(7)  | 69.5(2)   | Cl(1)-Dy(1)-Cl(2) | 179.13(6)  |
| O(4)-Dy(1)-Cl(1) | 98.11(16) |                   |            |

Table S2. Selected bond lengths / Å and bond angles /  $^\circ$  for 2.

Table S3. Hydrogen bonds for 1 (Å and °)

| D-HA                | d(D-H) | d(HA) | d(DA)     | <(DHA) |
|---------------------|--------|-------|-----------|--------|
| O(1)-H(1)N(1)       | 0.85   | 2.02  | 2.659(5)  | 131.0  |
| C(2)-H(2)Cl(1)#1    | 0.93   | 2.90  | 3.721(6)  | 147.6  |
| C(11)-H(11)Cl(2)    | 0.93   | 2.82  | 3.697(5)  | 156.8  |
| C(12)-H(12B)Cl(1)#2 | 0.97   | 2.97  | 3.759(5)  | 138.7  |
| O(2)-H(2A)Cl(2)     | 0.82   | 2.29  | 3.113(4)  | 175.9  |
| C(14)-H(14A)Cl(1)#2 | 0.97   | 2.96  | 3.750(6)  | 138.9  |
| C(15)-H(15)O(4)#3   | 0.93   | 2.49  | 3.384(14) | 162.4  |
| C(24)-H(24)Cl(1)#1  | 0.93   | 2.95  | 3.720(7)  | 140.7  |
| O(3)-H(3A)Cl(1)     | 0.85   | 2.92  | 3.312(4)  | 110.5  |
| O(3)-H(3A)N(2)      | 0.85   | 1.98  | 2.659(5)  | 136.5  |
| O(4)-H(4)O(2)#4     | 0.82   | 2.44  | 2.893(16) | 115.6  |
|                     |        |       |           |        |

Symmetry transformations used to generate equivalent atoms:

Table S4. Hydrogen bonds for 2 (Å and °)

| D-HA                | d(D-H) | d(HA) | d(DA)     | <(DHA) |
|---------------------|--------|-------|-----------|--------|
| C(2)-H(2)Cl(2)      | 0.93   | 2.91  | 3.663(9)  | 139.1  |
| C(12)-H(12A)Cl(2)#1 | 0.97   | 2.86  | 3.626(9)  | 137.1  |
| O(2)-H(2A)Cl(3)#2   | 0.81   | 2.57  | 3.175(7)  | 132.9  |
| C(15)-H(15)Cl(3)#2  | 0.93   | 2.81  | 3.642(9)  | 149.9  |
| C(24)-H(24)Cl(2)    | 0.93   | 2.97  | 3.817(9)  | 151.4  |
| C(27)-H(27)Cl(1)    | 0.93   | 2.96  | 3.807(10) | 151.6  |
| C(36)-H(36)Cl(3)    | 0.93   | 2.92  | 3.780(9)  | 154.7  |
| C(37)-H(37B)Cl(1)#3 | 0.97   | 2.97  | 3.754(9)  | 138.5  |
| O(5)-H(5A)Cl(3)     | 0.81   | 2.44  | 3.154(7)  | 147.1  |
| C(39)-H(39A)Cl(1)#3 | 0.97   | 2.88  | 3.685(8)  | 140.5  |
| C(49)-H(49)Cl(1)    | 0.93   | 2.93  | 3.761(9)  | 149.6  |
| O(7)-H(71)O(8)#4    | 0.73   | 2.38  | 2.763(14) | 114.9  |
| O(7)-H(72)N(5)      | 0.85   | 2.47  | 2.984(9)  | 120.0  |
| C(52)-H(52B)N(6)#5  | 0.96   | 2.57  | 3.52(3)   | 170.7  |
| C(52)-H(52C)O(10)#4 | 0.96   | 2.55  | 3.21(6)   | 125.8  |
| O(8)-H(81)O(7)#6    | 0.79   | 2.37  | 2.763(14) | 111.2  |
| C(53)-H(53A)O(10)   | 0.96   | 2.26  | 3.01(6)   | 134.1  |
| O(9)-H(9)N(6)#1     | 0.82   | 2.23  | 2.80(4)   | 127.4  |
| C(54)-H(54C)O(10)   | 0.96   | 2.06  | 2.61(6)   | 114.7  |
| O(10)-H(101)O(9)    | 0.84   | 2.37  | 2.80(6)   | 112.3  |
| O(10)-H(102)O(8)    | 0.87   | 2.53  | 3.03(5)   | 117.0  |

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x+1,y+1/2,-z+1/2 #3 x+1,y,z #4 -x+1/2,-y+2,z-1/2 #5 -x+3/2,-y+2,z-1/2 #6 -x+1/2,-y+2,z+1/2

| SIM                                                                                                                       | $U_{\rm eff}[\rm K]$ | $\tau_0[s]$                    | local             | dc field | Ref |
|---------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|-------------------|----------|-----|
|                                                                                                                           |                      |                                | symmetry          | [Oe]     |     |
| [Dy <sup>III</sup> (L) <sub>2</sub> (NO <sub>3</sub> )](ClO <sub>4</sub> ) <sub>2</sub>                                   | 44.3                 | 5.17×10-7                      | $C_{2v}$          | 1000     | 1   |
| Dy(Hthd) <sub>3</sub> (MeOH)·2,5-Py                                                                                       | 26.6                 | 2.76×10-6                      | $C_{2\mathrm{v}}$ | 1000     | 2   |
| [Dy(Hthd)₃(Tppo)]                                                                                                         | 35.9                 | <b>1.12</b> ×10 <sup>-6</sup>  | $C_{3\mathrm{v}}$ | 1000     | 2   |
| [Dy(Hthd)₃(PyNO)]                                                                                                         | 42.7                 | 5.53×10-6                      | $C_{3\mathrm{v}}$ | 1000     | 2   |
| [Dy(Hthd) <sub>3</sub> (4-PyNO)]                                                                                          | 55.8                 | 1.58×10-6                      | $C_{3\mathrm{v}}$ | 1000     | 2   |
| [Dy(TFNB) <sub>3</sub> (bpy)]                                                                                             | 23.44                | $5.01 \times 10^{-6}$          | $D_{ m 4d}$       | 1200     | 3   |
| [Dy(TTA) <sub>3</sub> Lz]                                                                                                 | 32                   | $5.55 \times 10^{-5}$          | $D_{ m 4d}$       | 0        | 4   |
| [Dy(acac) <sub>3</sub> Lz]·CH <sub>3</sub> OH·0.5H <sub>2</sub> O                                                         | 162                  | <b>4.38</b> × 10 <sup>-6</sup> | $D_{ m 4d}$       | 0        | 4   |
| [Dy(MQ) <sub>2</sub> Lz <sub>2</sub> ]Br·CH <sub>3</sub> OH                                                               | 80                   | 1.25× 10 <sup>-6</sup>         | $D_{ m 4d}$       | 0        | 4   |
| ( <sup>n</sup> Bu <sub>4</sub> N)[Ga <sup>III</sup> <sub>8</sub> Dy <sup>III</sup> (OH) <sub>4</sub> (shi) <sub>8</sub> ] | 39                   | $2.3(5) \times 10^{-8}$        | $D_{ m 4d}$       | 1000     | 5   |
| [Dy(Phen)(Cl-tcpb) <sub>3</sub> ]                                                                                         | 151.1                | 1.44×10 <sup>-8</sup>          | $D_{ m 4d}$       | 0        | 6   |
| [Dy(Im <sup>Dipp</sup> N)Cl <sub>2</sub> (THF) <sub>3</sub> ]                                                             | 803                  | 1.4×10 <sup>-12</sup>          | $D_{ m 4d}$       | 0        | 7   |
| [Ln(hfac) <sub>3</sub> (NIT-Pyz)] <sub>2</sub>                                                                            | 53                   | 1.85×10-7                      | $D_{ m 4d}$       | 0        | 8   |
| Dy(btfa) <sub>3</sub> ·2H <sub>2</sub> O                                                                                  | 95.4                 | 2.8×10-8                       | $D_{ m 4d}$       | 0        | 9   |
| $\{(H_3O)[Dy(NA)_2] \cdot H_2O\}n$                                                                                        | 75                   | 4.21×10 <sup>-5</sup>          | $D_{5\mathrm{h}}$ |          | 10  |
| $[({}^{t}BuPO(NH^{i}Pr)_{2})_{2}Dy(H_{2}O)_{5}][I]_{3} \cdot L_{2} \cdot (H_{2}O)$                                        | 651.0                | 5.63×10 <sup>-12</sup>         | $D_{5\mathrm{h}}$ | 0        | 11  |
| $[Dy(CyPh_2PO)_2(H_2O)_5]Br_3\cdot 2(CyPh_2PO)\cdot EtOH\cdot$                                                            | 508                  | 8.6×10 <sup>-12</sup>          | $D_{5\mathrm{h}}$ | 0        | 12  |
| 3H <sub>2</sub> O                                                                                                         |                      |                                |                   |          |     |
| [Dy(Bpen)(Cl) <sub>3</sub> ]                                                                                              | 22.4                 | 3.72×10-6                      | $D_{5\mathrm{h}}$ | 800      | 13  |
| [Dy(Bpen)Cl(OPhCl <sub>2</sub> NO <sub>2</sub> ) <sub>2</sub> ]                                                           | 85.8                 | <b>4.65</b> ×10 <sup>-7</sup>  | $D_{5\mathrm{h}}$ | 100      | 13  |
| [Dy(Bpen) (OPhCl <sub>2</sub> NO <sub>2</sub> ) <sub>3</sub> ]                                                            | 34.2                 | <b>2.40</b> ×10 <sup>-6</sup>  | $D_{5\mathrm{h}}$ | 800      | 13  |
| [Dy(Bpen)(OPhNO <sub>2</sub> ) <sub>3</sub> ]                                                                             | 26.8                 | <b>1.12</b> ×10 <sup>-6</sup>  | $D_{5\mathrm{h}}$ | 800      | 13  |
| $[(H_2L)Dy^{III}Cl_2]$                                                                                                    | 70                   | 1.9×10 <sup>-6</sup>           | $D_{5\mathrm{h}}$ | 500      | 14  |
| [Dy(bbpen)Br]                                                                                                             | 1025                 | 4.21×10 <sup>-12</sup>         | $D_{5\mathrm{h}}$ | 2000     | 15  |
| $[Dy(Cy_3PO)_2(H_2O)_5]Br_3\cdot 2(Cy_3PO)\cdot 2H_2O\cdot 2EtOH$                                                         | 543                  | 2.0×10 <sup>-10</sup>          | $D_{5\mathrm{h}}$ | 0        | 16  |
| $[Dy(Cy_3PO)_2(H_2O)_5]Cl_3 \cdot (Cy_3PO) \cdot H_2O \cdot EtOH$                                                         | 472                  | 8.7×10 <sup>-12</sup>          | $D_{5\mathrm{h}}$ | 0        | 16  |
| [Dy(OtBu) <sub>2</sub> (py) <sub>5</sub> ][BPh <sub>4</sub> ]                                                             | 1815                 | 1.170X 10 <sup>-12</sup>       | $D_{5\mathrm{h}}$ | 0        | 17  |
| Dy(bpad)3·CH <sub>3</sub> OH·H <sub>2</sub> O                                                                             | 106.93               | $2.28 	imes 10^{-8}$           | $C_{ m 4v}$       | 1200     | 18  |
| [DyH <sub>4</sub> L <sub>RRRRR</sub> (SCN) <sub>2</sub> ](SCN) <sub>2</sub> ·xCH <sub>3</sub> OH·yH <sub>2</sub> O        | 34.5                 | $1.1 \times 10^{-6}$           | $C_{ m 4V}$       | 200      | 19  |
| [Dy(bbpen)(tpeCOOH)]·2MeOH                                                                                                | 77                   | $5.07 	imes 10^{-6}$           | $D_{2d}$          | 0        | 20  |
| [Dy(dbpy)(tcpb) <sub>3</sub> ]·0.5(1,4-dioxane)                                                                           | 149.87               | 1.42×10 <sup>-15</sup>         | $D_{2d}$          | 0        | 21  |
| [(Cp <sup>iPr5</sup> )Dy(Cp*)] <sup>+</sup>                                                                               | 2217                 | 4.2(6)×10 <sup>-12</sup>       | metallocene       | 0        | 22  |
| $[(Cp^{ttt})_2Dy][B(C_6F_5)_4]$                                                                                           | 1837                 | 8.12×10 <sup>-12</sup>         | metallocene       | 0        | 23  |
| [Dy(bbpen)(tpo) <sub>2</sub> ][BPh <sub>4</sub> ]                                                                         | 944                  | 1.73(9) ×10 <sup>-12</sup>     | $D_{4d}$          | 0        | 24  |
|                                                                                                                           |                      |                                |                   |          |     |

Table S5. A list of some SIMs and their performances

## **References:**

- [1] Q. Q. Su, K. Fan, X. X. Jin, X. Da Huang, S. C. Cheng, L. J. Luo, Y. J. Li, J. Xiang, C. C. Ko, L. M. Zheng, and T. C. Lau, *Inorg. Chem. Front.*, 2019, 6, 1442-1452.
- [2] X. Yao, P. Yan, G. An, Y. Li, W. Li, and G. Li, Dalton Trans., 2018, 47, 3976–3984.

- [3] P. Cen, X. Ma, X. Liu, Y. Q. Zhang, G. Xie, and S. Chen, J. Coord. Chem., 2018, 71, 2209-2224.
- [4] M. Guo, J. Wu, O. Cador, J. Lu, B. Yin, B. Le Guennic, and J. Tang, *Inorg. Chem.*, 2018, 57, 4534–4542.
- [5] A. A. Athanasopoulou, J. J. Baldoví, L. M. Carrella, and E. Rentschler, Dalton Trans., 2019.
- [6] S. Zhang, W. Mo, J. Zhang, H. Wu, M. Li, X. Lü, B. Yin, and D. Yang, *RSC Adv.*, 2018, 8, 29513– 29525.
- [7] B.-C. Liu, N. Ge, Y.-Q. Zhai, T. Zhang, Y.-S. Ding, and Y.-Z. Zheng, Chem. Commun., 2019, 55, 9355–9358.
- [8] P. Y. Chen, M. Z. Wu, Z. Y. Liu, L. Tian, and Y. Q. Zhang, Dalton Trans., 2019, 2, 558–565.
- [9] X. L. Li, C. Zhu, Q. Rong, J. Wei, R. Li, and C. M. Liu, New J. Chem., 2018, 42, 10906–10911.
- [10] B. Na, X.-J. Zhang, W. Shi, Y.-Q. Zhang, B.-W. Wang, C. Gao, S. Gao, and P. Cheng, *Chem. Eur. J.*, 2014, **20**, 15975–15980.
- [11] S. K. Gupta, T. Rajeshkumar, G. Rajaraman, and R. Murugavel, Chem. Sci., 2016, 7, 5181–5191.
- [12] Y. C. Chen, J. L. Liu, Y. Lan, Z. Q. Zhong, A. Mansikkamäki, L. Ungur, Q. W. Li, J. H. Jia, L. F. Chibotaru, J. B. Han, W. Wernsdorfer, X. M. Chen, and M. L. Tong, *Chem. Eur. J.*, 2017, 23, 5630.
- [13] M. Li, H. Wu, Q. Yang, H. Ke, B. Yin, Q. Shi, W. Wang, Q. Wei, G. Xie, and S. Chen, *Chem. Eur. J.*, 2017, 23, 17775-17787.
- [14] A. K. Bar, P. Kalita, J. P. Sutter, and V. Chandrasekhar, Inorg. Chem., 2018, 57, 2398-2401.
- [15] J. Liu, Y. C. Chen, J. L. Liu, V. Vieru, L. Ungur, J. H. Jia, L. F. Chibotaru, Y. Lan, W. Wernsdorfer, S. Gao, X. M. Chen, and M. L. Tong, J. Am. Chem. Soc., 2016, 138, 5441–5450.
- [16] Y. C. Chen, J. L. Liu, L. Ungur, J. Liu, Q. W. Li, L. F. Wang, Z. P. Ni, L. F. Chibotaru, X. M. Chen, and M. L. Tong, J. Am. Chem. Soc., 2016, 138, 2829–2837.
- [17] Y. S. Ding, N. F. Chilton, R. E. P. Winpenny, and Y. Z. Zheng, Angew. Chem. Int. Ed., 2016, 55, 16071–16074.
- [18] X. G. Liu, X. F. Ma, W. Z. Yuan, Y. Q. Zhang, G. Xie, S. Chen, and E. Pardo, *Inorg. Chem.*, 2018, 57, 14843–14851.
- [19] S. Lin, C. Wang, L. Zhao, and J. Tang, Dalton Trans., 2015, 44, 223-229.
- [20] S. K. Gupta, T. Rajeshkumar, G. Rajaraman, and R. Murugavel, Chem. Sci., 2016, 7, 5181–5191.
- [21] S. Zhang, W. Mo, B. Yin, G. Zhang, D. Yang, X. Lü, and S. Chen, *Dalton Trans.*, 2018, **47**, 12393-12405.
- [22] F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki and R. A. Layfield, *Science*, 2018, 362, 1400-1403.
- [23] F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki and R. A. Layfield, *Angew*. *Chem. Int. Ed.*, 2017, **56**, 11445-11449.
- [24] F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki and R. A. Layfield, *Angew. Chem. Int. Ed.*, 2017, **56**, 11445-11449.