SUPPLEMENTARY INFORMATION

The Layered Uranyl Silicate Mineral Uranophane-β: Crystal

Structure, Mechanical Properties, Raman Spectrum and

Comparison with the α -Polymorph

Francisco Colmenero,^{a*} Jakub Plášil,^b Jiří Sejkora^c

^aInstituto de Estructura de la Materia (IEM-CSIC). C/ Serrano, 113. 28006 – Madrid, Spain.

^bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21, Praha 8, Czech Republic.

^cMineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9, Czech Republic.

Fig. S.1. Computed crystal structure of uranophane- α :¹ (A) View of two uranyl silicate layers and the corresponding interlayer space from [100]; (B) View of a uranyl silicate layer from [001]. Color code: U-Blue, Si-Brown, O-Red, H-White, Ca-Yellow.

Bond	Exp. ²	Calc.	Bond	Exp. ²	Calc.			
Uranyl-Silicate sheet: U-O								
U1-010	1.807(4)	1.829	U2-011	1.803(3)	1.819			
U1-09	1.807(4)	1.830	U2-08	1.808(4)	1.836			
U1-01	2.241(4)	2.237	U2-06	2.252(3)	2.223			
U1-04	2.291(3)	2.301	U2-02	2.322(3)	2.305			
U1-05	2.293(4)	2.303	U2-O3	2.341(3)	2.296			
U1-O3	2.432(3)	2.415	U2-05	2.436(4)	2.443			
U1-02	2.497(3)	2.470	U2-04	2.445(4)	2.485			
	Uranyl-Silicate sheet; Si-O							
Si1-01	1.612(4)	1.613	Si2-04	1.610(4)	1.644			
Si1-02	1.630(3)	1.638	Si2-06	1.612(4)	1.620			
Si1-O3	1.642(4)	1.639	Si2-05	1.618(4)	1.641			
Si1-O12h	1.643(4)	1.676	Si2-O7h	1.629(5)	1.657			
	Uran	yl-Silicat	e sheet; O-I	1				
O12h-H12	1.00(4)	0.968	O7h-H7	1.00(2)	0.999			
	Interlayer space: Ca-O							
Ca-O16w	2.387(5)	2.303	Ca-O14w	2.420(4)	2.491			
Ca-O15w	2.398(5)	2.450	Ca-O13w	2.466(4)	2.529			
Ca-09	2.408(4)	2.418	Ca-O10	2.597(4)	2.458			

Table S.1. Interatomic distances in uranophane- β (in Å). The experimental and theoretical values correspond to room temperature and 0 K, respectively.

Figure. S.2. Experimental X-ray diffraction powder patterns of uranophane- α and β minerals; (A) Uranophane- α : natural mineral sample from Wolsendorf deposit, Upper Palatinate, Bavaria, Germany - taken from the record R070584 of the RRUFF database;³ (B) Uranophane- β : natural mineral sample from Teofilo Otoni, Minas Gerais, Brazil - taken from the record R060962 of the RRUFF database.²

Figure S.3. The atomic motions associated to some Raman active vibrational normal modes of uranophane- β . Color code: U-Blue, Si-Brown, O-Red, H-White, Ca-Yellow.

• Mode $v = 3621 \text{ cm}^{-1} - v(0H) - 0H$ bond stretching.

• Mode $v = 3362 \text{ cm}^{-1} - v(\overline{\text{OH}}) - \text{OH}$ bond stretching.

• Mode $v = 3307 \text{ cm}^{-1} - v(\overline{\text{OH}}) - \text{OH}$ bond stretching.

• Mode $v = 3195 \text{ cm}^{-1} - v(\underline{OH}) - OH$ bond stretching.

• Mode $v = 3160 \text{ cm}^{-1} - v(\overline{\text{OH}}) - \overline{\text{OH}}$ bond stretching.

• Mode $v = 3090 \text{ cm}^{-1} - v(\overline{\text{OH}}) - \text{OH}$ bond stretching.

• Mode $v = 2797 \text{ cm}^{-1} - v(OH) - OH$ bond stretching.

• Mode $\nu = 1705 \text{ cm}^{-1} - \delta(HOH) - HOH$ bending.

• Mode $v = 1671 \text{ cm}^{-1} - \delta(HOH) - HOH$ bending.

• Mode $v = 1190 \text{ cm}^{-1} - \delta(\text{fr} - \text{SiOH}) - \text{SiOH}$ bending (where the hydroxyl ion is free, i.e., that is, does not belong to the calcium atom coordination polyhedra).

• Mode $v = 1057 \text{ cm}^{-1} - \delta(\text{co} - \text{SiOH}) - \text{SiOH}$ bending (where the hydroxyl ion belongs to the calcium atom coordination polyhedra).

• Mode $v = 947 \text{ cm}^{-1} - \delta(\text{SiOH}) + l(\text{H}_2\text{O}) - \text{SiOH}$ bending and water librations.

• Mode $\nu = 928 \text{ cm}^{-1} - \delta(\text{SiOH}) + \nu(\text{SiO}) + l(H_2O) - \text{SiOH}$ bending, SiO bond stretching and water librations.

• Mode $v = 906 \text{ cm}^{-1} - v(UO_2^{2+}) + \delta(\text{SiOH}) + v(\text{SiO}) + l(H_2O) - Uranyl UO stretching, SiOH bending, SiO bond stretching and water librations.$

• Mode $v = 897 \text{ cm}^{-1} - v(\overline{UO_2^{2+}}) + l(H_2O) - Uranyl UO stretching and water librations.$

• Mode $v = 895 \text{ cm}^{-1} - \delta(\text{SiOH}) + l(\text{H}_2\text{O}) - \text{SiOH}$ bending and water librations.

• Mode $v = 859 \text{ cm}^{-1} - \delta(\text{SiOH}) + v(\text{SiO}) + l(H_2O) - \text{SiOH}$ bending, SiO bond stretching and water librations.

• Mode $v = 795 \text{ cm}^{-1} - v(\overline{UO_2^{2+}}) + \delta(SiOH) + v(SiO) + l(H_2O) - Uranyl UO stretching, SiOH bending, SiO bond stretching and water librations.$

• Mode $v = 793 \text{ cm}^{-1} - v(U0_2^{2+}) + \delta(\text{SiOH}) + l(H_20) - \text{Uranyl UO stretching, SiOH bending, and water librations.}$

• Mode $v = 764 \text{ cm}^{-1} - v(UO_2^{2+}) + \delta(\text{SiOH}) + l(H_2O) - Uranyl UO stretching, SiOH bending, and water librations.$

• Mode $v = 732 \text{ cm}^{-1} - \delta(\overline{\text{SiOH}}) + l(\text{H}_2\text{O}) - \text{SiOH}$ bending and water librations.

• Mode $v = 648 \text{ cm}^{-1} - l(H_2 0)$ – Water librations.

• Mode $v = 597 \text{ cm}^{-1} - \delta(SiOH) + l(H_2O) - SiOH$ bending and water librations.

• Mode $v = 544 \text{ cm}^{-1} - l(H_2 0) - Water librations.$

• Mode $v = 514 \text{ cm}^{-1} - \delta(\text{OSiO}) + \delta(\text{SiOH}) + l(H_2O) - \text{OSiO}$ and SiOH bending and water librations.

• Mode $v = 455 \text{ cm}^{-1} - v(\text{SiO}) + \delta(\text{SiOH}) + \text{Um}(\text{SiO}_4^{4-}) + l(\text{H}_2\text{O}) - \text{SiO}$ bond stretching, SiOH bending, silicate umbrella deformation and water librations.

• Mode $v = 391 \text{ cm}^{-1} - \delta(\text{SiO4}^{-}) + \delta(\text{SiOH}) + T(\text{st} - \text{H}_2\text{O}) + l(\text{fr} - \text{H}_2\text{O}) - \text{Silicate bending,}$ SiOH bending, structural water molecule translations and free water librations.

• Mode $v = 369 \text{ cm}^{-1} - \delta(\text{SiOH}) + l(\text{H}_2\text{O}) - \text{SiOH}$ bending and water librations.

• Mode $v = 306 \text{ cm}^{-1} - \rho(UO_2^{2^+}) + \gamma(SiO_4^{4^-}) + \delta(SiOH) + l(H_2O) - Uranyl rotations, silicate deformation, SiOH bending and water librations.$

• Mode $\nu = 280 \text{ cm}^{-1} - \delta(UO_2^{2+}) + \gamma(SiO_4^{4-}) + \delta(SiOH) + l(H_2O)$ – Uranyl bending, silicate deformation, SiOH bending and water librations.

• Mode $\nu = 267 \text{ cm}^{-1} - \gamma(UO_2^{2+}) + \gamma(SiO_4^{4-}) + \delta(SiOH) + l(H_2O)$ – Uranyl and silicate deformations, SiOH bending and water librations.

• Mode $\nu = 240 \text{ cm}^{-1} - \gamma(UO_2^{2+}) + \delta(\text{SiOH}) + T(H_2O) - Uranyl deformations, SiOH bending and water translations.$

• Mode $v = 225 \text{ cm}^{-1} - \gamma(UO_2^{2+}) + \gamma(SiO_4^{4-}) + \delta(SiOH) + l(H_2O)$ – Uranyl and silicate deformations, SiOH bending and water librations.

• Mode $\nu = 214 \text{ cm}^{-1} - \rho(UO_2^{2+}) + \gamma(SiO_4^{4-}) + \delta(SiOH) + l(H_2O)$ – Uranyl rotations, silicate deformation, SiOH bending and water librations.

• Mode $v = 166 \text{ cm}^{-1} - \rho(U\overline{O_2^{2+}}) + \gamma(SiO_4^{4-}) + \delta(SiOH) + l(H_2O)$ – Uranyl rotations, silicate deformation, SiOH bending and water librations.

• Mode $\nu = 135 \text{ cm}^{-1} - \gamma(UO_2^{2+}) + \gamma(SiO_4^{4-}) + \delta(SiOH) + T(H_2O)$ – Uranyl and silicate deformations, SiOH bending and water translations.

• Mode $v = 128 \text{ cm}^{-1} - \gamma(UO_2^{2+}) + \delta^{op}(UO_{eq}) + T(OH^-) + T(H_2O)$ – Uranyl deformations, equatorial out of plane UO bending, hydroxyl and water translations.

• Mode $\nu = 90 \text{ cm}^{-1} - T(UO_2^{2+}) + \gamma(SiO_4^{4-}) + \delta(SiOH) + T(H_2O)$ – Uranyl translations, silicate deformations, SiOH bending and water translations.

Figure S.4. Resolution of the composite bands in the experimental Raman spectrum of uranophane- β into single band contributions (A) Region: 2900-3600 cm⁻¹; (B) Region: 900-1000 cm⁻¹; (C) Region: 700-900 cm⁻¹; (D) Region: 500-600 cm⁻¹; (E) Region: 440-500 cm⁻¹; (F) Region: 360-420 cm⁻¹; (G) Region: 250-290 cm⁻¹; (H) Region: 170-250 cm⁻¹; (I) Region: 100-150 cm⁻¹.

Figure S.5. Experimental Raman spectra of uranophane- α and β minerals; (A) Uranophane- α : natural mineral sample from Grafton County, New Hampshire, USA - taken from the record R050380 of the RRUFF database;³ (B) Uranophane- β : natural mineral sample from Teofilo Otoni, Minas Gerais, Brazil - taken from the record R060962 of the RRUFF database.²

	Uranophane- $meta$	Uranophane- <i>a</i>						
Band	This work –	Freet et al 4		Frost <i>et al.</i> ⁵ –	Frost <i>et al.</i> ⁵ –			
Name	Pegmatite Perus	Frost <i>et al.</i> " – Shaha (Zaira)	Frost et al." – Shaha (Zairo)	Poisson Canyon	Eagle Pass			
	(Brazil)	Shaba (Zalie)	Shaba (Zaire)	(USA)	(USA)			
OH stretching region								
а	-							
b	3523.9	-	-	3533.0	3533.7			
	3477.1	3492.0	3493.8	3492.5	-			
	3457.7	3462.6	3437.3	3435.6	3434.3			
С	3378.7	3358.2	3382.5	3381.6	3381.4			
	3339.8	-	3326.1	3324.0	3321.9			
	-	-	3310.2	-	-			
d	3229.6	3215.6	-	3216.2	3223.6			
е	3177.3	-	-	3142.5	3141.7			
f	3087.3	-	-	-	-			
		-	-	-	-			
q	2978.5	2899.7	-	-	-			
h	2758.7	2728.6	-	-	-			
i	2302.0	2476.8	-	-	-			
i	2128.4	2136.8	-	-	-			
k k	2041.6	-	1904.9	1905.0	1904.9			
		НО	H bending region					
1	1672.4	-	-	-	-			
m	1643.6	_	-	_	-			
	101010	-	-	-	-			
n	1633 4	-	-	-	-			
10	-	_	-	_	1499 0			
	_	_	1370 7	1370 9	1314 4			
	-	_	1272 5	1271.8	-			
		Fundamental <i>UO</i>	$\frac{1272.5}{2^+and}$ SiO ⁴⁻ vibrat	tions region				
0	1209.6	-	1169.0	1169.4	1164.3			
n	1042.2	1005.2	-	-	995.3			
a	979.0	-	-	-	-			
9	970.4	_	-	-	-			
	961 7	963 9	964 9	965 3	966.4			
	501.7	960.5	-	-	964.2			
	942 4	950.5	953.8	955 6	955.0			
r	880.7	885.6	885.6	888.4	886.3			
r C	846 0	830 N	-	838 R	821 7			
5 +	795 Q	796.9	700 6	799 5	800 5			
ι	795.8	790.9	799.0	799.5	700.5			
	791.0	792.3 786 A	705.0	103.0	760.0			
	770.0	700.4	716 0	712 /	700.9			
	122.2	/11.4	/10.2	/13.4	/ 14.0			
U	034.8	-	-	-	-			
	oz4.Z	-	027.5	-	02ð.b			
	554.0	Low-V	wavenumber region	E 47 0				
x	554.8	544.6	546.6	547.3	547.1			
У	539.4	-	525.0	-	521.8			
Ζ	472.8	469.5	469.5	471.1	470.9			

Table S.2. Comparison of experimental Raman band wavenumbers (cm⁻¹) of uranophane- β and uranophane- α .

	Uranophane- $meta$	Uranophane- <i>a</i>				
Band Name	This work – Pegmatite Perus (Brazil)	Frost <i>et al.</i> ⁴ – Shaba (Zaire)	Frost <i>et al.⁵ –</i> Shaba (Zaire)	Frost <i>et al.⁵ –</i> Poisson Canyon (USA)	Frost <i>et al.⁵</i> – Eagle Pass (USA)	
	441.0	-	-	444.2	444.1	
α	406.2	-	402.4	404.8	406.4	
	389.9	398.9	397.1	397.3	398.3	
		376.5	382.4	-	-	
	-	347.3	335.1	330.6	334.0	
	-	324.9	323.3	-	323.2	
β	313.0	306.5	307.0	304.4	307.3	
	-	-	296.0	-	295.8	
	-	-	295.9	-	-	
	280.9	288.9	286.1	286.7	286.1	
γ	275.2	280.5	-	283.3	284.7	
	-	-	-	-	268.5	
	258.8	250.3	257.1	255.1	256.5	
δ	231.8	-	234.9	-	-	
		-	224.8	221.2	225.4	
ε	215.4	213.7	211.9	212.3	215.0	
		-	-	-	212.1	
	193.2	205.2	196.1	197.9	195.3	
η	175.8	166.7	166.7 (298 K)	166.7 (298 K)	-	
θ	146.9	139.3	137.3 (298 K)	138.3 (298 K)	-	
		137.4	-	-	-	
λ	122.8	122.1	-	-	-	
		112.4	111.7 (298 K)	111.1 (298 K)	-	
μ	86.43	-	-	-	-	

REFERENCES

- 1 F. Colmenero, L. J. Bonales, J. Cobos, V. Timón, *Clay Miner.*, 2018, **53**, 377–392.
- 2 J. Plášil, *Eur. J. Mineral.*, 2018, **30**, 253–257.
- 3 B. Lafuente, R. T. Downs, H. Yang, N. Stone, in *Highlights in Mineralogical Crystallography*, ed. T. Armbruster, R. M. Danisi, W. De Gruyter, Berlin, Germany, 2015; pp.1-30; RRUFF database, http://rruff.info/.
- 4 R. L. Frost, J. Čejka, M. L. Weier, W. Martens, J. *Raman Spectrosc.*, 2006, **37**, 538–551.
- 5 R. L. Frost, J. Čejka, M. L. Weier, W. Martens, J. Mol. Struct., 2006, 788, 115–125.