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Scheme S1. Calculated Relative Stabilities (AG*®, kcal mol™) of stereoisomers A-D of complexes 4-Pd.
NHC = 1,3-dimethylimidazol-2-ylidene.
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Figure S1. AE energy profiles (kcal mol™) for the Ph—NHC coupling of stereoisomers A-D of complexes
4-Pd-Py calculated at the PBE1PBE/6-311+G(d)&SDD level. NHC = 1,3-dimethylimidazol-2-ylidene. The
isomer D isomerizes into the isomer C or isomer A in the course of the reaction (indicated by downward

arrows).
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Figure S2. AG energy profiles (kcal mol™) for the Ph—NHC coupling of stereoisomers A-D of complexes
4-Pd-Py calculated at the PBE1PBE/6-311+G(d)&SDD level. NHC = 1,3-dimethylimidazol-2-ylidene. The
isomer D isomerizes into the isomer C or isomer A in the course of the reaction (indicated by downward
arrows).
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Figure S3. AE energy profiles (kcal mol™) for the Ph—NHC coupling of stereoisomers A-C of complexes
4-Pd-NHC calculated at the PBE1PBE/6-311+G(d)&SDD level. NHC = 1,3-dimethylimidazol-2-ylidene.
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Figure S4. AG energy profiles (kcal mol™) for the Ph—NHC coupling of stereoisomers A-C of complexes
4-Pd-NHC calculated at the PBE1PBE/6-311+G(d)&SDD level. NHC = 1,3-dimethylimidazol-2-ylidene.
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Figure S5. Optimized geometries for different stereoisomers of complexes 4 calculated at the PBE1PBE/6-
311+G(d)&SDD level. Selected bond distances (A) are shown in purple.



Table S1. Activation total energies (AE?), activation enthalpies (AH?), reaction energies (AE) and reaction
enthalpies (AH) for the R-NHC coupling of complexes 1 (M =Ni, Pd, Pt) at 298 K*

RN 6-TS RN
L-MI—¢ ] : L-MO Jl/j
B N R-NHC coupling - N
/ Br

1 7
rel. energy,
kcal-mol™ M = Ni M = Pd M = Pt
R=Me, L =Py
AE7 615 24.7 26.5 46.2
AE,_; 30.3 13.9 32.4
AH" | 615 23.4 25.2 44.3
AH_; 31.2 14.3 32.9
R=Ph, L = Py
AE" 615 22.9 24.7 44.9
AE1_; 13.6 12.5 33.9
AH? | 615 21.5 23.4 43.3
AH_; 13.8 12.7 33.9
R=Vinyl, L = Py
AE" 615 20.6 20.8 40.6
AE;_; -14.4 -12.5 3.9
AH? 1 61s 19.3 19.5 39.0
AH;_; -13.5 -11.6 4.7
R=Ethynyl, L = Py
AE" 615 32.2 25.4 50.1
AE,_; 2.8 0.5 12.9
AH*_g1s 30.4 23.7 48.1
AH,_; 2.4 0.8 13.2
R=Me, L = NHC?
AE" 615 28.2 31.8 50.3
AE1_; 28.0 11.0 22.9
AH? 615 26.9 30.4 48.3
AH,_; 28.7 11.7 23.4
R=Ph, L = NHC®
AE" 615 28.5 30.8 49.6
AE,_; 13.6 14.0 315
AH? 615 26.9 29.9 47.8
AH;_; 13.7 14.8 315
R=Vinyl, L = NHC*
AE" | 615 26.0 24.5 45.1
AE,_,; -14.6 -12.5 0.4
AH* | 615 24.6 23.6 43.4
AH;_; -13.8 -11.7 1.2
R=Ethynyl, L = NHC*
AE" | 615 36.9 31.8 53.8
AEy_; -1.9 1.1 10.5
AH* | 615 35.0 30.1 51.6
AH_; -1.5 1.4 10.8

®NHC = 1,3-dimethylimidazol-2-ylidene
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Figure S6. Optimized molecular structures of complexes 1, 7 and transition states (6-TS) in the Me—NHC coupling reaction. Selected bond distances (A) are shown
in purple. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.
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Structures for M=Ni, L=Py, R=Vin Structures for M=Ni, L=NHC, R=Vin

245

257 i

1.89
200
1.88
2.38 o
>

(6-TS)-Ni-NHC 7-Ni-NHC

4

1-Ni-Py (6-TS)-Ni-Py 7-Ni-Py 1-Ni-NHC

Structures for M=Pd, L=Py, R=Vin Structures for M=Pd, L=NHC, R=Vin

864 é 171i

4gf 238

1-Pd-Py (6-TS)-Pd-Py 7-Pd-Py 1-Pd-NHC (6-TS)-Pd-NHC 7-Pd-NHC

Structures for M=Pt, L=Py, R=Vin Structures for M=Pt, L=NHC, R=Vin

2837

1-Pt-Py (6-TS)-Pt-Py 7-Pt-Py 1-Pt-NHC (6-TS)-Pt-NHC 7-Pt-NHC
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in purple. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.
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Table S2. Activation total energies (AE?), activation enthalpies (AH?), reaction energies (AE) and reaction
enthalpies (AH) for the R-NHC coupling of complexes 4 (M =Ni, Pd, Pt) at 298 K*

B R N 8-TS Br -+
L=V ] - L—M—Br [N\>—R
B Br N R-NHC coupling | N
/ Br \
4 9
rel. energy,
keal-mol™ M = Ni M =Pd M = Pt
R=Me, L =Py
AE7, g1s 16.8 35.3 49.1
AE, o -60.9 -43.0 -17.4
AH", g1 15.7 34.2 47.2
AH4_o -60.0 -42.1 -16.8
R=Ph, L =Py
AE? 4 g5 12.7 25.6 45.6
AE, o -65.4 -44.9 -17.3
AH", g1 11.6 24.4 44.1
AHy g -64.5 -44.0 -16.7
R=Vinyl, L = Py
AE?, g5 7.0 19.3 36.8
AE4 o -62.7 -44.5 -17.6
AH", g1 6.4 18.2 35.3
AHy g -61.5 -435 -16.8
R=Ethynyl, L = Py
AE?, g1 7.2 18.9 37.6
AE4 g -56.3 -39.1 9.6
AH", g1 6.2 17.6 35.7
AH4_o -55.6 -38.5 9.2
R=Me, L = NHC?
AE? 4 g5 3.4 19.3 40.1
AE4 o -76.0 -58.0 -35.2
AH", g1 2.4 18.1 38.4
AHy g -75.2 -57.2 -34.9
R=Ph, L = NHC?
AE?, g5 5.7 20.2 40.3
AE4 o -74.3 -56.2 -31.2
AH", g1 4.7 19.0 38.7
AHy o -735 -55.5 -30.8
R=Vinyl, L = NHC?
AE?, g5 0.1 14.1 32.0
AE4 o -72.6 -55.1 -30.5
AH", g1 0.7 13.1 30.6
AHg4 o 714 -54.2 -30.0
R=Ethynyl, L = NHC*
AE? 4 g1s 2.3 12.7 29.5
AE4 o -62.4 -49.8 -22.8
AH", g1 1.4 115 27.9
AHy g -61.8 -49.3 -22.6

®NHC = 1,3-dimethylimidazol-2-ylidene
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Structures for M=Ni, L=Py, R=Me Structures for M=Ni, L=NHC, R=Me
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Figure S9. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Me—NHC coupling reaction. Selected bond distances (A) are shown
in purple. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.
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Figure S10. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Vin—NHC coupling reaction. Selected bond distances (A) are
shown in purple. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.
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Figure S11. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Eth—-NHC coupling reaction. Selected bond distances (A) are
shown in purple. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.
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Table S3. Influence of NHC ligands on the activation total energies (AE”), activation enthalpies (AH?), Gibbs free
energies of activation (AG?, kcal/mol) and reaction energies (AE) and reaction enthalpies (AH), reaction Gibbs free
energies (AG, kcal/mol) for the Ph—NHC coupling reaction of complexes 4 (M =Ni, Pd, Pt) at 298 K.

t

NHC: Py .
~N N~ N/\N
\—/ \—/
IMe

A Gl
NHC—NM—Py IMes
4\ @
cl’ ¢l
- B cl
NHC—MDEIPy 8-S CI=M~Py T AL — A
c G Ph-NHC coupling NHC Cl N\:/N N\_/N
4 9 ICy SIPr
rel. energy;,
kcal'mol™ M = Ni M =Pd M = Pt
NHC = IMe
AE? 4 g5 13.8 28.2 48.3
AE4_g -60.6 -40.7 -11.8
AH", g1 12.8 26.8 46.8
JAY IR -59.8 -39.9 -11.1
AG”4 g1 12.9 26.7 46.8
AGy_,g -65.7 -44.5 -11.8
NHC = IMes
AE?, 515 9.1 22.2 42.3
AE4 g -69.8 -49.3 -20.7
AH? 415 7.3 20.8 40.6
AH4 g -68.7 -48.9 -20.5
AG”4_g1s 8.4 21.7 41.0
AGy_,9 -74.9 -51.7 -23.5
NHC = SIPr
AE?y_g1s 11.1 23.5 41.2
AE4 g -83.5 -62.9 -24.2
AH", g1 10.4 22.5 39.8
AH4 g -81.9 -61.5 -23.4
AG”4 g1 10.8 23.8 41.2
AGy_,9 -86.8 -66.4 -29.0
NHC = ICy
AE?y_g1s — 30.0 —
AE4 g — -74.5 —
AH", g1 — 28.6 —
AH4 g — -73.8 —
AG¢4‘,8 TS — 278 —
AGy_,g — -78.6 —
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Figure S12. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Ph—NHC
coupling reaction (NHC=IMes). Selected bond distances (A) are shown in purple.
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Figure S13. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Ph—NHC
coupling reaction (NHC=SIPr). Selected bond distances (A) are shown in purple.
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Figure S14. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Ph—NHC
coupling reaction (NHC=ICy). Selected bond distances (A) are shown in purple.
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Table S4. Influence of halogen ligands X (X = CI, I) on the activation total energies (AE?), activation

enthalpies (AH?), reaction energies (AE) and reaction enthalpies (AH) for the Ph—NHC coupling reaction of
complexes 4 (M =Ni, Pd, Pt) at 298 K*

’

|
N\ SN
[ P 4M\_L ®
’T‘ X X o
| B X
N X .
[ S M—L 8T N== X-P:d—L
N X X Ph-NHC coupling SUUN X
4 9
rel. energy,
kcal-mol™ M = Ni M = Pd M = Pt
X =Cl, L="Py
AE74 515 13.8 28.2 48.3
AE4 o -60.6 -40.7 -11.8
AH", g1 12.8 26.8 46.8
AHy o -59.8 -39.9 -11.1
X =1 L=Py
AE?, g5 11.3 22.2 42.1
AE4 o -63.2 -45.9 -18.3
AH", g1 10.3 20.9 40.5
AHy o -62.2 -45.1 -175
X =Cl, L=NHC?
AE?, g5 9.2 24.5 44.6
AE4 o -68.2 -49.6 -23.7
AH", g1 8.3 23.4 43.1
AHy g -67.6 -49.0 -23.3
X =1,L=NHC?
AE? 4 g1s 1.8 14.2 33.3
AE4 o -78.0 -62.0 -36.7
AH", g1 0.7 13.1 32.2
AHy g -77.3 -61.3 -36.1

®NHC = 1,3-dimethylimidazol-2-ylidene
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Structures for M=Ni, L=Py, X=ClI Structures for M=Ni, L=NHC, X=CI

265
e
2.21

: 1.47

. 2201194
| o
N '

2.22 ?
®
)

(8-TS)-Ni-Py 9-Ni-Py 4-Ni-NHC (8-TS)-Ni-NHC 9-Ni-NHC

227

204/ 2.05 295
2.02

Structures for M=Pd, L=Py, X=ClI Structures for M=Pd, L=NHC, X=CI

319

233
2.07,

234

4-Pd-Py (8-TS)-Pd-Py 9- Pd-Py 4-Pd-NHC (8-TS)-Pd-NHC 9-Pd-NHC

Structures for M=Pt, L=Py, X=CI Structures for M=Pt, L=NHC, X=CI

2.35\ 49

B
# =712 36
@

- ? : -]
(8-TS)-Pt-Py 9-Pt-Py 4-Pt-NHC (8-TS)-Pt-NHC 9-Pt-NHC

Figure S15. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Ph—NHC coupling reaction. Selected bond distances (A) are shown
in purple. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.
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Structures for M=Ni, L=NHC, X=I

(8-TS)-Ni-Py 4-Ni-NHC (8-TS)-Ni-NHC 9-Ni-NHC

Structures for M=Pd, L=Py, X=I Structures for M=Pd, L=NHC, X=I

324

4-Pd-NHC (8-TS)-Pd-NHC 9-Pd-NHC

Structures for M=Pt, L=NHC, X=I

4-Pt-NHC (8-TS)-Pt-NHC 9-Pt-NHC

Figure S16. Optimized molecular structures of complexes 4, 9 and transition states (8-TS) in the Ph—NHC coupling reaction. Selected bond distances (A) are shown
in purple. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

(8-TS)-Pt-Py
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Table S5. Reaction energies (AE), reaction enthalpies (AH) and reaction Gibbs free energies (AG) for the

Br—NHC coupling of complexes 1 (M =Ni, Pd, Pt) at 298 K?

\ /
PhoN H-NS _Br
R
Br N L—M_
/ Ph
1 13
rel. energy,
kecal'mol™ M = Ni M =Pd M = Pt
L=Py
AE; 13 98.3 89.0 94.1
AH{_ 13 96.5 87.3 92.6
AGi_ 13 95.9 86.8 92.2
L =NHC?
AE; 13 100.2 90.5 95.0
AH{_ 13 98.1 89.2 93.4
AGi_13 97.6 87.4 93.5

®NHC = 1,3-dimethylimidazol-2-ylidene

Structures for L=Py

13-Pd-Py

Structures for L=NHC

13-Ni-NHC 13-Pd-NHC 13-Pt-NHC

Figure S17. Optimized molecular structures of complexes 13 calculated at the PBE1PBE/6-311+G(d)&SDD
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Table S6. Activation total energies (AE?), activation enthalpies (AH?), reaction energies (AE) and reaction
enthalpies (AH) for the Br—NHC coupling of complexes 4 (M =Ni, Pd, Pt) at 298 K*

t

Br \
Ph /N N
L—MmV— < ]
B Br N
\ / |
Ph. BN 10-TS Ph N>
L— ¢ = —pg- N\
BrM‘Br_<f\|j Br-NHC coupling L_'Yl —Br---&-N}BF
/ Br \
4 11
rel. energy,
kcal-mol™ M = Ni M = Pd M = Pt
L=Py
AE7y_10.1s 19.8 28.9 44.1
AE,4_ 11 -8.9 4.9 28.0
AH 4 _101s 17.9 27.1 42.9
AH,_11 -9.5 4.4 27.4
L = NHC?
AE74_10.1s 17.3 30.7 47.8
AE4_ 11 -15.2 -1.9 17.6
AH 4 _101s 155 28.8 45.9
AH,; 1 -16.1 -2.8 16.6

®NHC = 1,3-dimethylimidazol-2-ylidene
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Structures for L=Py

(10-TS)-Ni-Py

Structures for L=Py

; 2.14 2.86

(10-TS)-Pd-Py 11-Pd-Py

Structures for L=Py

275 355

1.8

(10-TS)-Pt-Py 11-Pt-Py

Structures for L=NHC

1.83

(9

(10-TS)-Ni-NHC 11-Ni-NHC

Structures for L=NHC

2.09 3.01

(10-TS)-Pd-NHC 11-Pd-NHC

Structures for L=NHC

1.83

(10-TS)-Pt-NHC 11-Pt-NHC

Figure S18. Optimized geometries of complexes 10-TS and 11 in the Br—NHC coupling reaction calculated at the PBE1PBE/6-311+G(d)&SDD. Selected bond
distances (A) are shown in purple.
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Table S7. Activation total energies (AE?), activation enthalpies (AH?), reaction energies (AE) and reaction
enthalpies (AH) for the Br—Br reductive elimination from complexes 4 (M =Ni, Pd, Pt) at 298 K?
$

/ Br--Br
N Br Ph
/
N Br Ph 12-TS N Ph
[ >—M L [ )—M-L + Br
N B Br N\ Br
4 1
rel. energy;, M = Ni M = Pd M = Pt
kcal-mol™
L =Py
AE 4 1515 28.5 34.8 58.9
AE4 . q.er) 17 15.4 29.2
AH 4 1018 27.5 33.9 57.8
AHywer) 0.0 13.7 27.4
L =NHC?
AE 4 1515 28.4 39.9 53.7
AE4 q1e8r2) -2.2 11.8 235
AH 41275 27.2 38.6 52.5
AHs 182 43 9.1 21.3

®NHC = 1,3-dimethylimidazol-2-ylidene

Structures for L=Py

(12-TS)-Pd-Py

Structures for L=NHC

9
(12-TS)-Ni-NHC (12-TS)-Pd-NHC (12-TS)-Pt-NHC
Figure S19. Optimized geometries of transition states (12-TS) calculated at the PBE1PBE/6-311+G(d)&SDD
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Table S8. Equilibrium potentials E, for oxidation of Ni?*, Pd®* and Pt** ions in aqueous solutions to give
corresponding metal oxides*”

Reaction Eo (V)

Ni**@aq) + 2H20 = NiOg+ 4H" + 2¢° Eo = 1.593 — 0.1182pH — 0.0295l0g[Ni*]
Pd**aq) + 2H20 = NiOo+ 4H" + 2¢ Eo = 1.194 — 0.1182pH — 0.0295log[Pd**]
Pt**aq) + 2H,0 = NiOy+ 4H" + 2¢° Eo = 0.837 — 0.1182pH — 0.0295log[Pt*]

8The presented data were taken from: Atlas of Electrochemical Equilibria in Aqueous Solutions, ed. M. Pourbaix, National
Association of Corrosion Engineers, Houston, Texas, USA, 1974, 644 p.

®The E, reflect thermodynamic proneness of cations M?* to oxidation: than the E, value is lower than the equilibrium is significantly
shifted to the right.
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