Electronic supporting information for

Hollow structural metal-organic frameworks exhibit high drug

loading capacity, targeted delivery and magnetic resonance/optical

multimodal imaging

Xuechuan Gao^a, Ruixue Cui^b, Lijun Song^b, Zhiliang Liu^{b*}

a College of Chemical Engineering, Inner Mongolia University of Technology,

Hohhot, 010051, PR China.

b College of Chemistry and Chemical Engineering, Inner Mongolia University,

Hohhot, 010021, P. R. China. E-mail: cezlliu@imu.edu.cn

Supplementary Information:

Table 1 Comparison table of drug loading capabilities of MOFs-based drug delivery systems.

Figure S1 The calibration curve of 5-FU

Figure S2 The calibration curve of FA

Figure S3 The calibration curve of 5-FAM

Figure S4 N_2 adsorption-desorption isotherms and pore size distribution (the insert) of hollow Fe-MOF-5-NH₂. The adsorption branch is shown in black color (A) and the desorption branch in red color (B)

Figure S5 XRD parttens of Fe-MOF-5-NH₂(A) and Fe-MOF-5-NH₂-FA-

5-FAM/5-FU (B)

Figure S6 TGA curves of Fe-MOF-5-NH₂(A) and Fe-MOF-5-NH₂-FA-

5-FAM/5-FU (B)

Figure S7 The excitation spectra and emission spectra of 5-FAM (A, B); The excitation spectra and emission spectra of Fe-MOF-5-NH₂-FA-5-FAM/5-FU (C, D)

Figure S8 (a) Viabilities of HL-7702 cells cultured with Fe-MOF-5-NH₂-FA-5-FAM (A), Fe-MOF-5-NH₂-FA-5-FAM/5-FU (B) and 5-FU (C), evaluated by MTT; (b) Viabilities of HePG-2 cells cultured with Fe-MOF-5-NH₂-FA-5-FAM (A), Fe-MOF-5-NH₂-FA-5-FAM/5-FU (B) and 5-FU (C), evaluated by MTT.

Figure S9 XRD parttens of Fe-MOF-5-NH₂-FA-5-FAM/5-FU after drug release in pH 4 (A), pH 5 (B), pH 6 (C), pH 7.4 (D) and in pH 8 (E)

Table 1 Comparison table of drug loading capabilities of MOFs-based drug delivery

systems.

MOFs-based drug carrier	Drug	Loading efficiency [wt%]	Ref
UiO-AZB	5-FU	15	S1
	CUR	7.7	
MOF-5	SUL	22.4	S2
	TAT	34.0	
PEG-RGD-β-CD-SS-MIL-101	DOX	13.4	S3
UiO-66	Caffeine	21.2 ± 0.7	S4
MIL-53	Caffeine	29.2 ± 1.5	S4
$Zn_2(1,4-bdc)_2(dabco)$	IBU	15	S5
MIL-100 (Fe)	DOX	9	S6
Zn-TATAT	5-FU	33.3	S7
bMOF-4/102	Etilefrine hydrochloride	10.9 ± 0.9	S8
Fe ₃ O ₄ @UIO-66-NH ₂ /graphdiyn	DOX	43.8	S9
Hollow Fe-MOF-5	5-FU	35	This work

Figure S1 The calibration curve of 5-FU

Figure S2 The calibration curve of FA

Figure S3 The calibration curve of 5-FAM

Figure S4. N₂ adsorption-desorption isotherms and pore size distribution (the insert) of hollow Fe-MOF-5-NH₂. The adsorption branch is shown in black color (A) and the desorption branch in red color (B)

Figure S5 XRD parttens of Fe-MOF-5-NH $_2$ (A) and Fe-MOF-5-NH $_2$ -FA-5-FAM/5-

FU (B)

Figure S6 TGA curves of Fe-MOF-5-NH₂(A) and Fe-MOF-5-NH₂-FA-5-FAM/5-FU

Figure S7 The excitation spectra and emission spectra of 5-FAM (A, B); The excitation spectra and emission spectra of Fe-MOF-5-NH₂-FA-5-FAM/5-FU (C, D)

Figure S8 (a) Viabilities of HL-7702 cells cultured with Fe-MOF-5-NH₂-FA-5-FAM (A), Fe-MOF-5-NH₂-FA-5-FAM/5-FU (B) and 5-FU (C), evaluated by MTT; (b) Viabilities of HePG-2 cells cultured with Fe-MOF-5-NH₂-FA-5-FAM (A), Fe-MOF-

5-NH₂-FA-5-FAM/5-FU (B) and 5-FU (C), evaluated by MTT.

Figure S9 XRD parttens of Fe-MOF-5-NH₂-FA-5-FAM/5-FU after drug release in pH 4 (A), pH 5 (B), pH 6 (C), pH 7.4 (D) and in pH 8 (E)

References

[S1] K. R. Stefaniak, C. C. Epley, J. J. Novak, M. L. McAndrew, H. D. Cornell, J.

Zhu, D. K. McDaniel, J. L. Davis, I. C. Allen, A. J. Morris and T. Z. Grove, *Chem.Commun.*, 2018, **54**, 7617-7620.

[S2] K. Suresh and A. J. Matzger, Angew. Chem. Int. Ed., 2019, 58, 1-6.

[S3] X. G. Wang, Z. Y. Dong, H. Cheng, S. S. Wan, W. H. Chen, M. Z. Zou, J. W.

Huo, H. X. Deng and X. Z. Zhang, Nanoscale, 2015, 7, 16061–16070.

[S4] D. Cunha, M. B. Yahia, S. Hall, S. R. Miller, H. Chevreau, E. Elkaïm, Guillaume Maurin, P. Horcajada and C. Serre, *Chem. Mater.*, 2013, **25**, 2767–2776

[S5] N. M. Kazemi, S. A. Shojaosadati and A. Morsali, *Microporous Mesoporous Mater.*, 2014, 186, 73-79.

[S6] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D.

Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories,

L. Cynober, S. Gil, G. Ferey, P. Couvreur and R. Gref, Nat. Mater., 2010, 9, 172-178.

- [S7] C. Y. Sun, C. Qin, C. G. Wang, Z. M. Su, S. Wang, X. L. Wang, G. S. Yang, K.
- Z. Shao, Y. Q. Lan and E. B. Wang, Adv. Mater., 2011, 23, 5629-5632.
- [S8] H. Oh, T. Li and J. An, Chem.-Eur. J., 2015, 21, 17010-17015.
- [S9] Z. B. Xue, M. Y. Zhu, Y. Z. Dong, T. Feng, Z. Z. Chen, Y. Q. Feng, Z. Q. Shan,
- J. L. Xu and S. X. Meng, *Nanoscale*, 2019, **11**,11709–11718.