Electronic Supplementary Information

Complexation of $UO_2(CO_3)_3^{4-}$ with Mg^{2+} at Varying Temperatures and

Its Effect on U(VI) Speciation in Groundwater and Seawater

Yongheum Jo⁺, Hee-Kyung Kim[#], Jong-Il Yun^{*,+}

[†]Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu,

Daejeon 34141, Republic of Korea

^INuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-

daero 989 beon-gil, Yuseong-gu, Daejeon 34057, Republic of Korea

*Corresponding Author : Jong-Il Yun (e-mail: jiyun@kaist.ac.kr)

Number of pages: 4 Number of tables: 2

Details in U(VI) speciation

U(VI) speciation in Mg²⁺-rich groundwater condition at 25 °C and 70 °C

Geochemical calculation was conducted by Phreeqc version 3¹ with NEA thermodynamic database² for Phreeqc (version 1 released in November 2018, <u>https://www.oecd-nea.org/dbtdb/tdbdata/</u>). Analytical expressions based on isoelectric reactions³ for ternary Ca-UO₂-CO₃ U(VI) species and carbonato U(VI) species were added or revised to obtain temperature-dependent formation constants for the calculation. The analytical expression for magnesite (MgCO₃) was taken from Phreeqc database 'sit.dat' based on ThermoChimie TDB⁴ (www.thermochimie-tdb.com). The coefficients are listed in Table S1.

$$\log K(T) = A_1 + A_2 \cdot T + \frac{A_3}{T} + A_4 \cdot \log T + \frac{A_5}{T^2}$$

Analytical expression:

$x \cdot Mg^{2+} + y \cdot UO_2^2 + z \cdot CO_3^2 \leftrightarrow Mg_x(UO_2)_y(CO_3)^{2x+2y-2z}$						
(xyz)	A ₁	A ₂	A ₃	A ₄	A ₅	
(011)	444.5811999	8.39388E-02	-28047.08816	-1.57793E+02	2.20870E+06	
(012)	453.6162869	8.39388E-02	-28752.23886	-1.57793E+02	2.20870E+06	
(013)	448.7377297	8.39388E-02	-25738.37253	-1.57793E+02	2.20870E+06	
(113)	887.5214104	1.67878E-01	-53780.23735	-3.15586E+02	4.41739E+06	
Magnesit						
е	-1.31654E+1	0	1.26875E+3	0	0	
(nat)						

Table S1. Analytical expression for temperature-dependent formation constant

Simulation of U(VI) extraction from seawater

Simulation of U(VI) complexations with glutarimidedioxime⁵ and glutardiamidoxime⁶ in seawater was calculated by Visual MINTEQ ver $3.1.^7$ Chemical thermodynamic data except for ternary Mg/Ca-UO₂-CO₃ and U(VI)-ligands complexations were obtained from NEA TDB.² Formation constants of most U(VI) species at 0.5 M NaCl was calculated based on specific ion theory (SIT).⁸ Ion interaction coefficients for SIT were taken from NEA TDB², preferentially.

Ion interaction coefficients for Mg/Ca-UO₂-CO₃ was taken from PSI Nagra TDB⁹ as described in this work. For the minor U(VI) species whose coefficients were not selected in TDB, Davies equation¹⁰ was applied to obtain the formation constants at 0.5 M ionic strength. The data of U(VI)-ligands were used as determined at 0.5 M NaCl in previous works. Complexations of glutarimidedioxime with Mg²⁺ and Ca²⁺ were also considered in this simulation based on the data in previous work.¹¹

The temperature effect on ion interaction coefficients was assumed to be negligible. In case seven U(VI) species $(UO_2CO_3(aq), UO_2(CO_3)_2^{2^-}, UO_2(CO_3)_3^{4^-}, (UO_2)_3(CO_3)_6^{6^-}, CaUO_2(CO_3)_3^{2^-}, Ca_2UO_2(CO_3)_3(aq), and MgUO_2(CO_3)_3^{2^-}), the temperature-dependent formation constants were obtained based on isoelectric reactions³ as suggested in previous¹² and this work. The corrected formation constants are summarized in Table S2.$

Poaction	log β' @ I = 0.5 M NaCl		
Reaction	25 °C	10 °C	40 °C
$UO_2^{2+} + CO_3^{2-} \leftrightarrow UO_2(CO_3)(aq)$	8.60	8.62	8.63
$UO_2^{2+} + 2CO_3^{2-} \leftrightarrow UO_2(CO_3)_3^{2-}$	15.24	15.14	15.39
$UO_2^{2+} + 3CO_3^{2-} \leftrightarrow UO_2(CO_3)_3^{4-}$	21.83	22.23	21.53
$3UO_2^{2+} + 6CO_3^{2-} \leftrightarrow (UO_2)_3(CO_3)_6^{6-}$	53.89	54.59	53.46
$Ca^{2+} + UO_2^{2+} + 3CO_3^{2-} \leftrightarrow$	24.31	24.83	23.96
CaUO ₂ (CO ₃) ₃ ²⁻			
$2Ca^{2+} + UO_2^{2+} + 3CO_3^{2-} \leftrightarrow$	26.42	26.51	26.05
$Ca_2UO_2(CO_3)_3(aq)$			
$Mg^{2+} + UO_2^{2+} + 3CO_3^{2-} \leftrightarrow$	23.33	23.79	23.02
MgUO ₂ (CO ₃) ₃ ²⁻			

Table S2. Formation constants at 10, 25, and 40 C for U(VI) simulation.

Using the default setting of MINTEQ,⁷ van't Hoff equation was applied to obtain formation constants of the U(VI) species whose molar reaction enthalpy has been selected in NEA TDB.² For the minor U(VI) species whose enthalpy data has not been reported yet, the temperature effect was assumed to be negligible.

- 1. D. L. Parkhurst and C. Appelo, *Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations*, Report 2328-7055, US Geological Survey, Denver, 2013.
- R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck , D. A. Palmer and M. H. Rand, *Chemical Thermodynamics vol. 5, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium*, Elsevier, Amsterdam, 2003.
- 3. I. Puigdomenech, J. A. Rard, A. V. Plyasunov and I. Grenthe, *Modelling in aquatic chemistry, Chapter X Temperature Corrections to Thermodynamic data and Enthalpy Calculations*, OECD Publishing, Paris, 1997.
- 4. E. Giffaut, M. Grivé, Ph. Blanc, Ph. Vieillard, E. Colàs, H. Gailhanou, S. Gaboreau, N. Marty, B. Madé and L. Duro, *Applied Geochemistry*, 2014, **49**, 225-236.
- 5. G. Tian, S. J. Teat, Z. Zhang and L. Rao, *Dalton Transactions*, 2012, **41**, 11579-11586.
- 6. G. Tian, S. J. Teat and L. Rao, *Dalton Transactions*, 2013, **42**, 5690-5696.
- 7. J. P. Gustafsson, *Visual MINTEQ version 3.1*, Stokholm, 2014.
- 8. L. Ciavatta, *Annali di Chimica (Rome)*, 1980, **70**, 551-567.
- 9. T. Thoenen, W. Hummel, U. Berner and E. Curti, *The PSI/Nagra Chemical Thermodynamic Database 12/07*, Paul Scherrer Institut, Villigen, 2014.
- 10. C. W. Davies, *Ion association*, Butterworths, Washington D.C., 1962.
- 11. C. J. Leggett and L. Rao, *Polyhedron*, 2015, **95**, 54-59.
- 12. Y. Jo, A. Kirishima, S. Kimuro, H.-K. Kim and J.-I. Yun, *Dalton Transactions*, 2019, **48**, 6942-6950.

References