ELECTRONIC SUPPLEMENTARY INFORMATION

Fluorination as tool to improve bioanalytical sensitivity and COX-2-selective antitumor activity of cobalt alkyne complexes

Daniel Baecker,^a Victoria Obermoser,^a Elisabeth Anna Kirchner,^a Andrea Hupfauf,^a Brigitte Kircher^{b,c} and Ronald Gust^{*a}

- ^{c.} Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- * E-mail: <u>ronald.gust@uibk.ac.at;</u> Tel: +43-512-507-58200

^{a.} Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI – Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB – Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria

b. Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Anichstraße 35, 6020 Innsbruck, Austria

Table of contents

Synthesis and characterization of intermediate products	•	•	•		S3
Table S1: Graphite furnace time-temperature program for Co a	analysis	s by HR (CS AAS	•	S4
Table S2: Graphite furnace time-temperature program for F ar	nalysis l	by HR CS	S MAS		S4
Table S3: Inhibition of COX-1/2		•	•		S5
Supporting Figure S1: IR spectrum of propargyI-3F-ASS .		•	•		S6
Supporting Figure S2: IR spectrum of propargyI-4F-ASS .		•	•		S6
Supporting Figure S3: IR spectrum of propargyI-5F-ASS .		•	•		S7
Supporting Figure S4: IR spectrum of propargyl-6F-ASS .					S7
Supporting Figure S5: ¹ H NMR spectrum of propargyl-3F-ASS		•	•		S8
Supporting Figure S6: ¹ H NMR spectrum of propargyl-4F-ASS		•	•		S9
Supporting Figure S7: ¹ H NMR spectrum of propargyl-5F-ASS		•	•		S10
Supporting Figure S8: ¹ H NMR spectrum of propargyl-6F-ASS		•	•		S11
Supporting Figure S9: IR spectrum of 3F-Co-ASS .					S12
Supporting Figure S10: IR spectrum of 4F-Co-ASS .					S12
Supporting Figure S11: IR spectrum of 5F-Co-ASS .					S13
Supporting Figure S12: IR spectrum of 6F-Co-ASS .					S13
Supporting Figure S13: 1 H NMR spectrum of 3F-Co-ASS $$.					S14
Supporting Figure S14: 1 H NMR spectrum of 4F-Co-ASS $$.					S15
Supporting Figure S15: 1 H NMR spectrum of 5F-Co-ASS $$.					S16
Supporting Figure S16: ¹ H NMR spectrum of 6F-Co-ASS .					S17

Synthesis and characterization of intermediate products

6-Fluorosalicylic acid (6F-SS)

From 5.00 g of 2,6-difluorobenzoic acid (31.6 mmol), 5.06 g of NaOH (127 mmol) and 62.9 ml of anhydrous DMSO as solvent (4 h, 130 °C). DMSO was removed under reduced pressure. The residue was dissolved in 250 ml of HCl solution (3%) and stirred at room temperature for 15 min. The product was obtained by filtration and washed with water, followed by drying in a desiccator.

Off-white powder; yield: 1.99 g (12.75 mmol, 40%); mp: 162 °C.

¹H NMR (200 MHz, d6-DMSO): δ 6.71-6.83 (m, 2H, ArH), 7.37-7.49 (m, 1H, ArH); IR (\overline{v} cm⁻¹): 3026-2537 w (COOH), 1651 s (C=O), 1619 s (C=C), 1448 s, 1199 s, 1020 s, 810 s.

General procedure for the synthesis of the fluoroacetylsalicylic acids

2.0 g of fluorosalicylic acid (12.8 mmol) were dissolved in 10 ml of THF and added dropwise under cooling to a mixture of 10 ml of THF, 128 mmol acetic anhydride and 25.6 mmol of TEA. The mixture was stirred at room temperature for about 24 h. 40 ml of water was added and the reaction mixture was acidified with 1M HCl, then extracted three times with diethyl ether. The collected ether phases were washed with water and brine and were dried over sodium sulfate. The solvent was removed under reduced pressure. The product was recrystallized from toluene.

3-Fluoroacetylsalicylic acid (3F-ASS)

Reaction time: 26 h; colorless powder; yield: 1.81 g (9.14 mmol, 71%); mp: 124 °C.

¹H NMR (200 MHz, CDCl₃): δ 2.39 (s, 3H, CH₃), 7.25-7.48 (m, 2H, ArH-4, ArH-5), 7.88 (dd, ³J = 7.8 Hz, ⁴J = 1.0 Hz, 1H, ArH-6); IR (\overline{v} cm⁻¹): 2968-2528 w (COOH), 1780 s (C=O), 1691 s (C=O), 1586 m (C=C), 1146 s, 900 s, 758 s.

4-Fluoroacetylsalicylic acid (4F-ASS)

Reaction time: 25.5 h; colorless powder; yield: 1.86 g (9.39 mmol, 73%); mp: 123 °C.

¹H NMR (200 MHz, CDCl₃): δ 2.35 (s, 3H, CH₃), 6.89 (dd, ³J_(H-F) = 8.8 Hz, ⁴J = 2.4 Hz, 1H, ArH-3), 7.02-7.12 (m, 1H, ArH-5), 8.16 (ddd, ³J_(H-F) = 8.8 Hz, ³J = 6.8 Hz, ⁴J = 2.4 Hz, 1H, ArH-6); IR (\overline{v} cm⁻¹): 3106-2647 w (COOH), 1763 s (C=O), 1690 s (C=O), 1605 m (C=C), 1207 s, 1082 s, 898 s, 857 s.

5-Fluoroacetylsalicylic acid (5F-ASS)

Reaction time: 22 h; colorless powder; yield: 1.91 g (9.64 mmol, 75%); mp: 135 °C.

¹H NMR (200 MHz, CDCl₃): δ 2.34 (s, 3H, CH₃), 7.21 (ddd, ³J_(H-F) = 8.8 Hz, ³J = 4.8 Hz, ⁴J = 3.2 Hz, 1H, ArH-4), 7. 82-7.38 (m, 1H, ArH-3), 7.80 (dd, ³J_(H-F) = 8.8 Hz, ⁴J = 3.2 Hz, 1H, ArH-6); IR (\overline{v} cm⁻¹): 2998-2648 w (COOH), 1753 s (C=O), 1692 s (C=O), 1584 m (C=C), 1120 s, 891 s, 843 s.

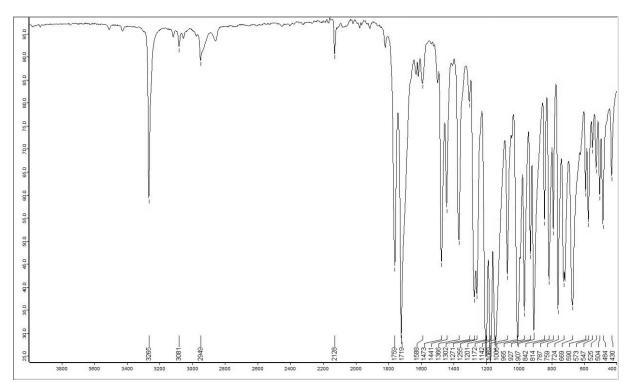
6-Fluoroacetylsalicylic acid (6F-ASS)

Reaction time: 26.5 h; colorless powder; yield: 1.40 g (7.07 mmol, 55%); mp: 106 °C.

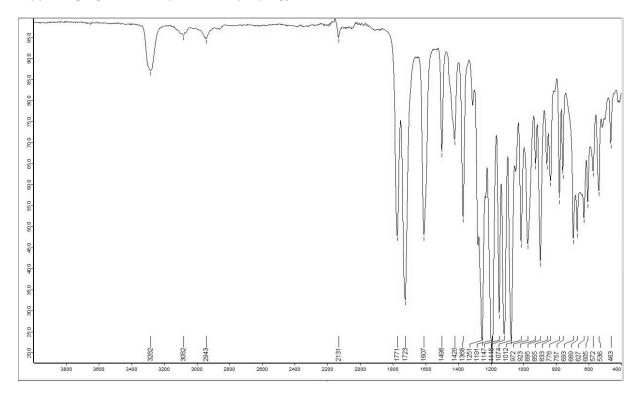
¹H NMR (200 MHz, CDCl₃): δ 2.32 (s, 3H, CH₃), 6.95-7.12 (m, 2H, ArH-3, ArH-5), 7.49-7.60 (m, 1H, ArH-4); IR (\overline{v} cm⁻¹): 2937-2501 w (COOH), 1769 m (C=O), 1712 s (C=O), 1618 m (C=C), 1197 s, 1025 s, 871 s, 779 s.

Step	Operation	Temperature	Heating rate	Hold time	Argon flow
1	Drying	80 °C	10 °C/s	10 s	Maximal
2	Drying	100 °C	10 °C/s	25 s	Maximal
3	Drying	120 °C	15 °C/s	10 s	Maximal
4	Pyrolysis	1100 °C	200 °C/s	20 s	Maximal
5	Auto-zero	1100 °C	0 °C/s	5 s	Stop
6	Atomization	2300 °C	1500 °C/s	5 s	Stop
7	Cleaning	2600 °C	500 °C/s	4 s	Maximal

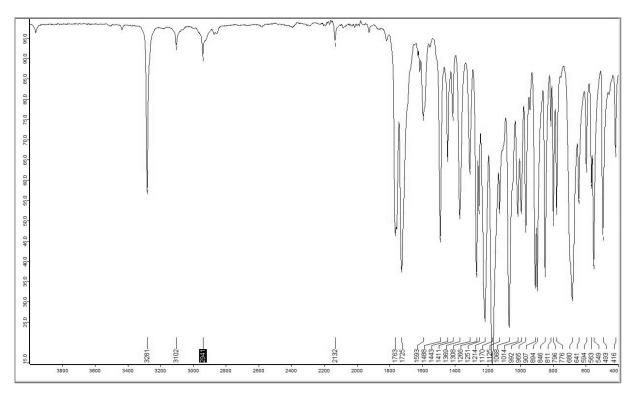
Table S1: Graphite furnace time-temperature program for Co analysis by HR CS AAS

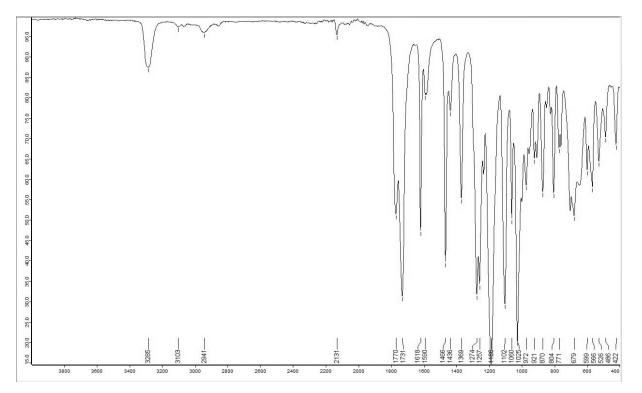

Table S2: Graphite furnace time-temperature program for F analysis by HR CS MAS

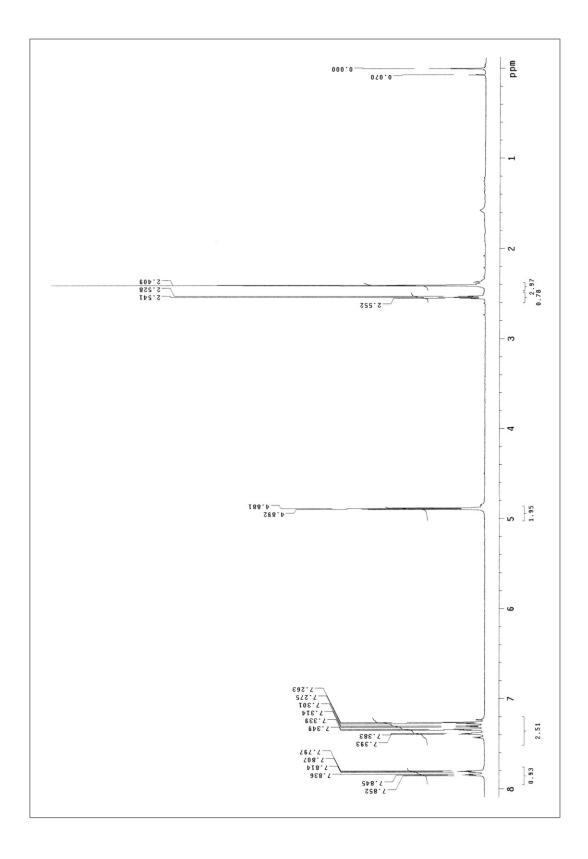
Step	Operation	Temperature	Heating rate	Hold time	Argon flow
1	Drying	120 °C	30 °C/s	5 s	Maximal
2	Cooling	100 °C	0 °C/s	1 s	Maximal
3	Drying	120 °C	2 °C/s	30 s	Maximal
4	Drying	300 °C	20 °C/s	3 s	Maximal
5	Pyrolysis	520 °C	200 °C/s	10 s	Maximal
6	Auto-zero	520 °C	0 °C/s	5 s	Stop
7	Vaporization	1400 °C	800 °C/s	7 s	Stop
8	Cleaning	2400 °C	1000 °C/s	4 s	Maximal

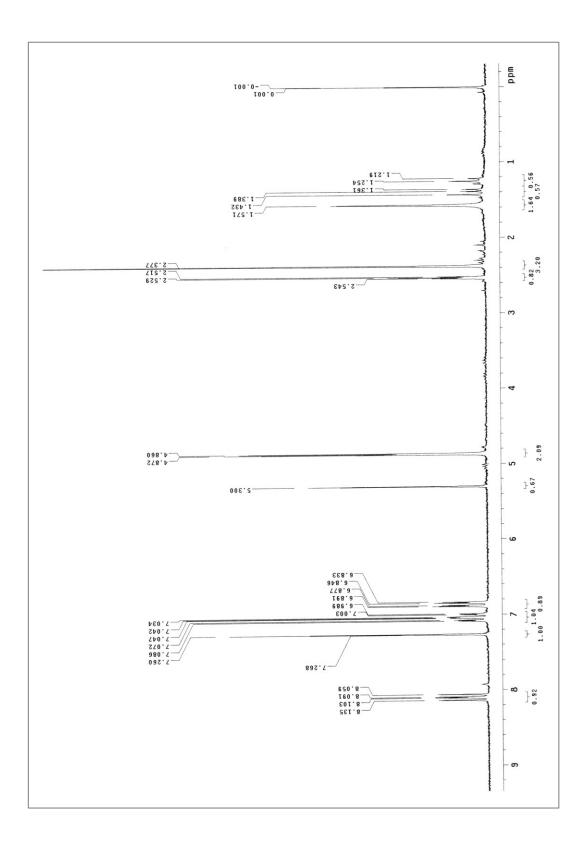

Table S3: Inhibition of COX-1/2

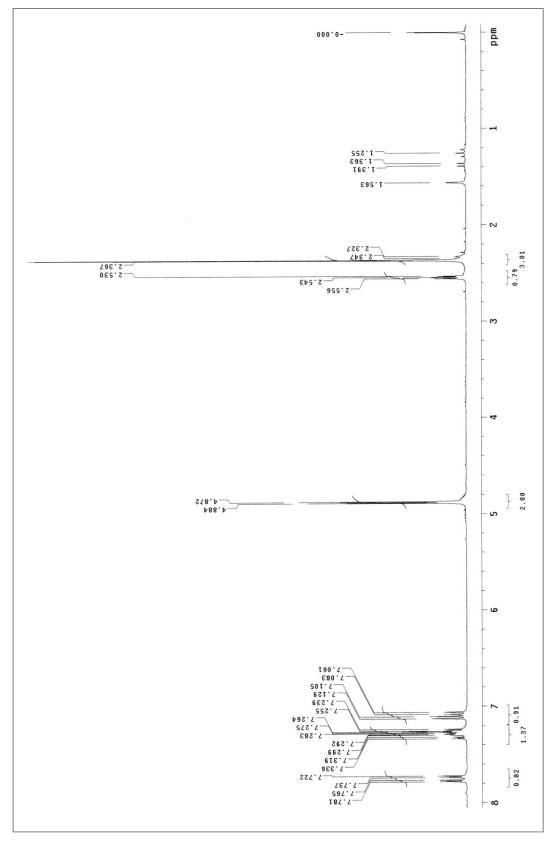
Compound	Concentration [µM]	Inhibition COX-1 [%]	Inhibition COX-2 [%]
ASS	10	28.80 ± 3.70	0.60 ± 2.80
ASS	100	73.30 ± 8.70	59.40 ± 8.70
3F-ASS	100	1.61 ± 1.53	47.42 ± 8.01
4F-ASS	100	85.42 ± 2.75	48.91 ± 1.14
5F-ASS	100	50.40 ± 1.33	42.95 ± 2.20
6F-ASS	100	40.49 ± 0.51	51.42 ± 1.34
Propargyl-ASS	100	25.41 ± 4.44	34.49 ± 4.21
Propargyl-3F-ASS	100	15.41 ± 4.06	44.75 ± 0.81
Propargyl-4F-ASS	100	30.35 ± 2.80	45.09 ± 0.84
PropargyI-5F-ASS	100	20.28 ± 3.34	50.19 ± 1.24
Propargyl-6F-ASS	100	25.41 ± 6.68	44.15 ± 0.78
Co-ASS	10	82.70 ± 3.20	78.50 ± 6.10
3F-Co-ASS	10	45.30 ± 3.90	67.70 ± 3.50
4F-Co-ASS	10	45.00 ± 5.40	73.90 ± 1.80
5F-Co-ASS	10	38.10 ± 4.90	68.00 ± 5.70
6F-Co-ASS	10	44.30 ± 3.10	66.80 ± 1.90

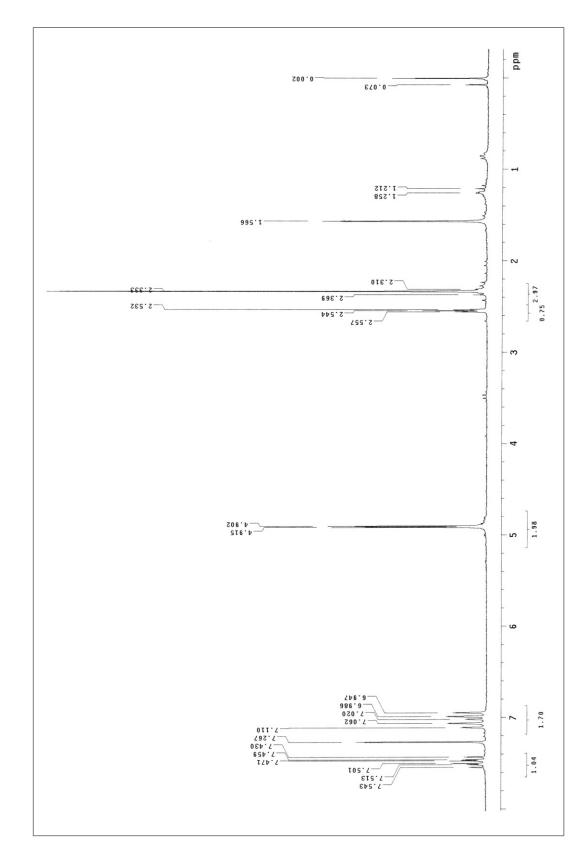

Supporting Figure S1: IR spectrum of propargyI-3F-ASS


Supporting Figure S2: IR spectrum of propargyI-4F-ASS

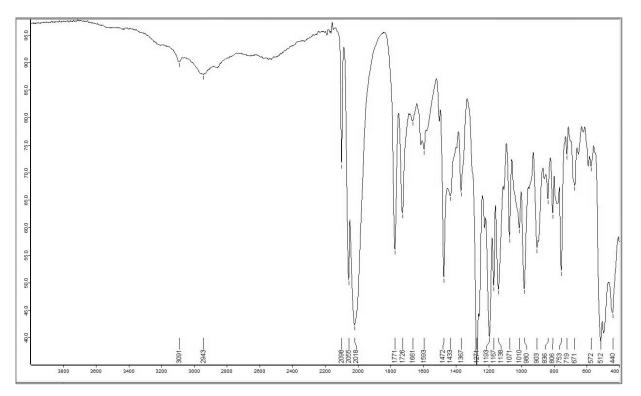

Supporting Figure S3: IR spectrum of propargyI-5F-ASS

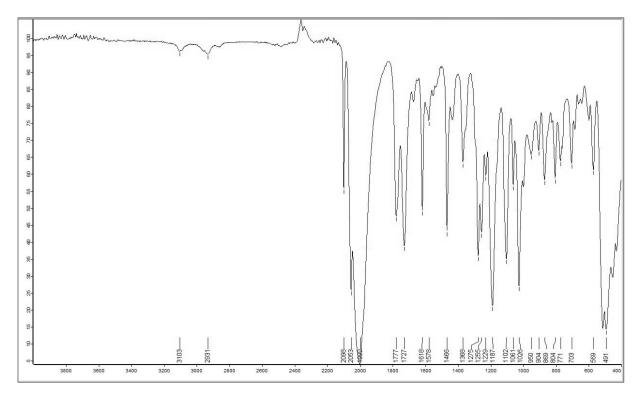

Supporting Figure S4: IR spectrum of propargyI-6F-ASS


Supporting Figure S5: ¹H NMR spectrum of propargyI-3F-ASS

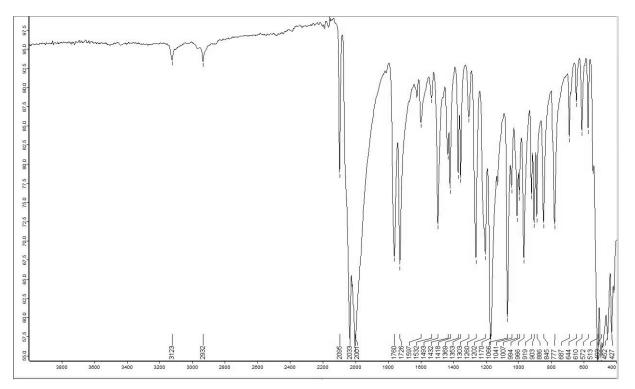


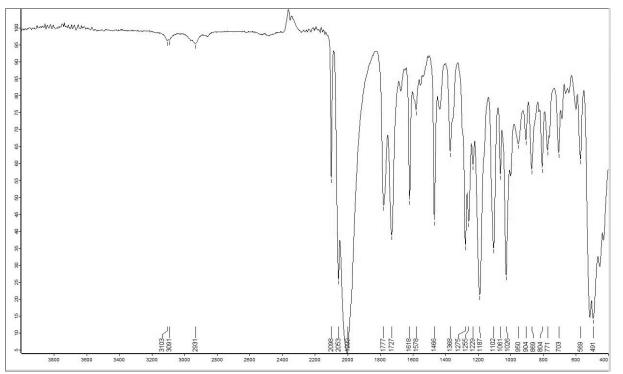
Supporting Figure S6: ¹H NMR spectrum of propargyl-4F-ASS

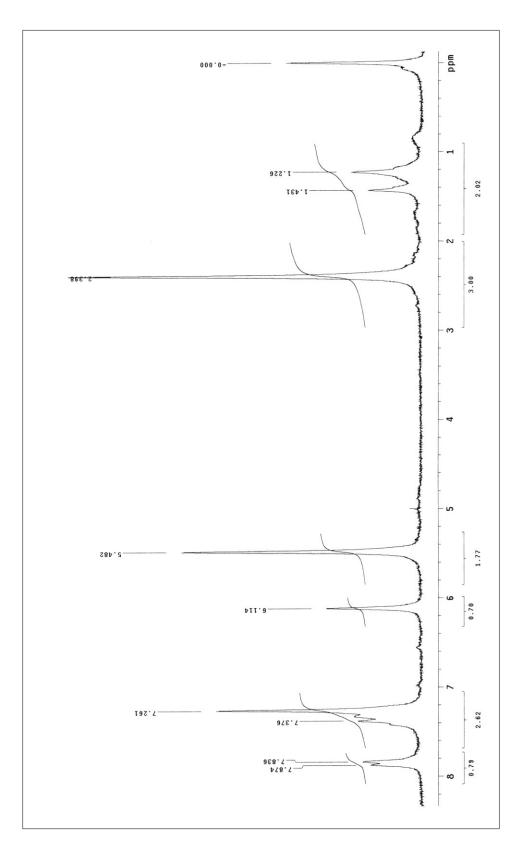

Supporting Figure S7: ¹H NMR spectrum of propargyI-5F-ASS



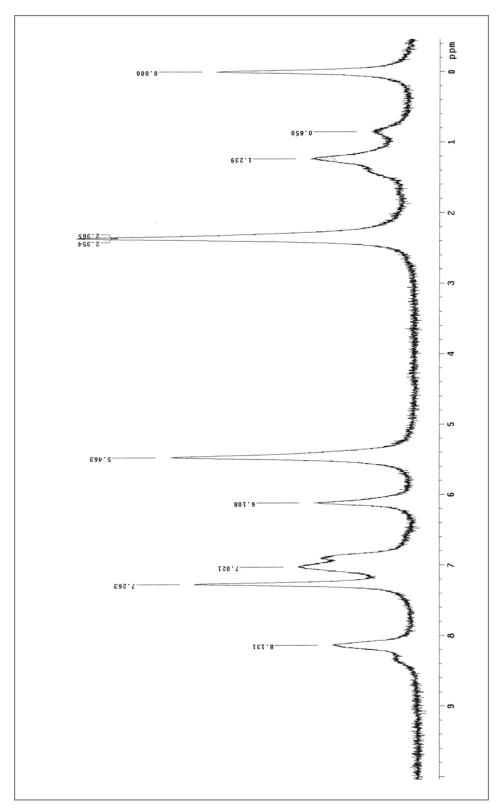
Supporting Figure S8: ¹H NMR spectrum of propargyl-6F-ASS


Supporting Figure S9: IR spectrum of 3F-Co-ASS

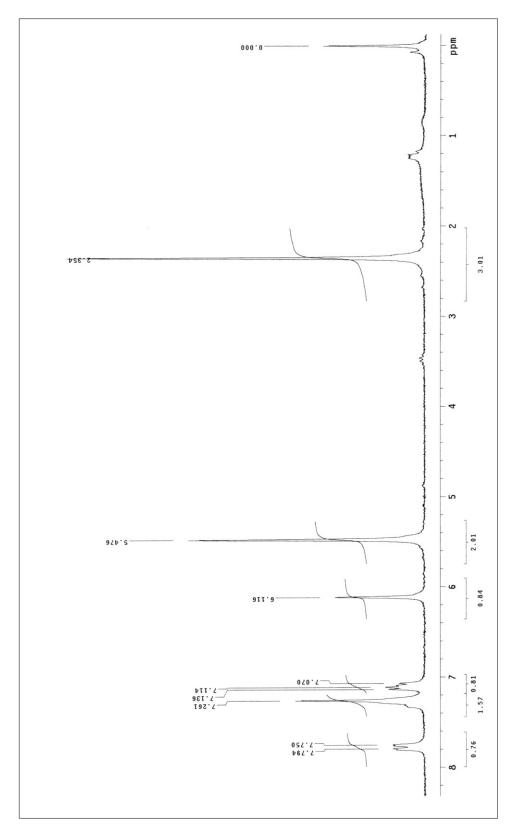

Supporting Figure S10: IR spectrum of 4F-Co-ASS

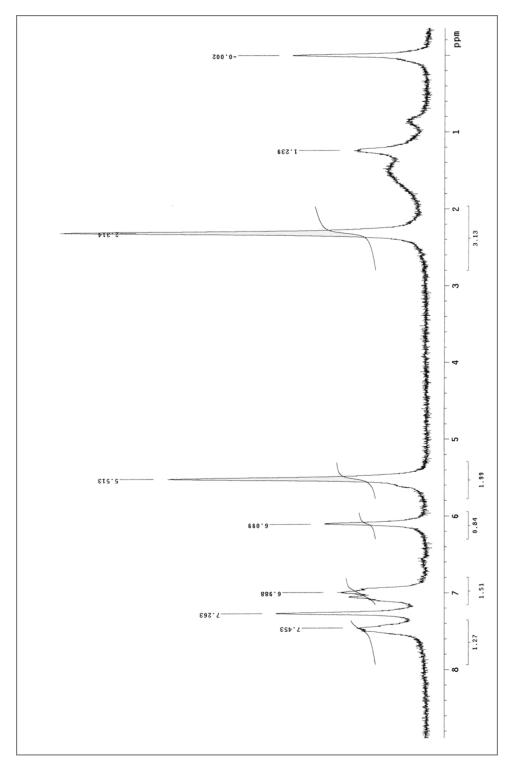


Supporting Figure S11: IR spectrum of 5F-Co-ASS



Supporting Figure S12: IR spectrum of 6F-Co-ASS




Supporting Figure S13: ¹H-NMR spectrum of 3F-Co-ASS

Supporting Figure S14: ¹H NMR spectrum of 4F-Co-ASS

Supporting Figure S15: ¹H NMR spectrum of 5F-Co-ASS

Supporting Figure S16: ¹H NMR spectrum of 6F-Co-ASS