Supplementary Information

Synthesis of Ge₄Se₉ nano plates and its Reduced Graphene Oxide Composite for Electrochemical Energy Storage Application

Jiban K. Das, ^{a,b,‡} Aneeya K. Samantara, ^{a,b,‡} Sree Raj K. A.,^c Chandra Sekhar Rout^c and J. N. Behera^{* a,b}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India
^bHomi Bhabha National Institute, Mumbai, India
^cCentre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagaram, Bangalore 562112, India
E-mail: jnbehera@niser.ac.in

Fig. S 1 Fourier Transform Infrared spectrum for graphene oxide and Ge4Se9/RG1 composite.

In this work, the effective reduction of graphene oxide (GO) to reduced graphene oxide (RG) in the composite has been confirmed from the above FTIR spectrum. It has been clearly observed that in case of the GO, there are four high intense reflectance peaks at 3500, 1720, 1223 and 1051 cm⁻¹ assigned to the stretching vibration of –OH (hydroxyl/adsorbed water etc.), C=O (carbonyl group of aldehyde/ketone/carboxylic acid) and C-O (epoxy/alcoholic). ^{1, 2 3} After the hydrothermal reduction, in case of the composite, the peaks at 1050, 1223 and 1720 cm⁻¹ are observed to be vanished signifying the reduction of the corresponding oxygen functional groups. But another peak at around 1650 cm⁻¹ (attributed to the conjugated C=C linkage) has been raised in RG demonstrating the retention of π -conjugation.

Fig. S 2 Powder X-ray diffraction pattern for Ge₄Se₉/RG2 composite.

Fig. S 1 Raman spectrum for GO, rGO and $Ge_4Se_9/RG1$ composite showing the I_D and I_G bands of Graphene.

Fig. S 2 Elemental mapping and EDAX spectrum for $Ge_4Se_9/RG1$ composite. The Table showing the weight percentage and atomic percentage of C, Ge and Se in the $Ge_4Se_9/RG1$ composite

Fig. S 3 Thermogravimetric analysis of Ge₄Se₉, Ge₄Se₉/RG1 and Ge₄Se₉/RG2 composite

Fig. S4 Cyclic voltammogram and Galvanostatic charge-discharge profiles for Ge₄Se₉ and Ge₄Se₉/RG2 composite.

Table S1. Table showing the comparison of the electrochemical energy storage performance of Ge₄Se₉/RG1 composite with the reported literatures.

Electrode material	Specific capacitance [F g ⁻¹]	Energy density [W h kg ⁻¹]	Power density [k W kg ⁻¹]	Cyclic stability	References
MnMoO ₄ /GR	364	202.2	8	1000	Dalton Trans. 2014, 43, 11067–11076.
3D-GeSe ₂	300			2000	Adv. Mater. 2013, 25, 1479–1486
MoSe ₂ /rGO	211			10000	Dalton Trans., 2016, 45, 9646–9653
SnSe ₂ Nano disk	168			1000	ACS Nano, 2014, 8, 3761-3770
SnSe NSs	228			1000	
MoS ₂ /Gr	243	73.5	19.8	1000	International Journal of Hydrogen energy, 2013, 38 14027-14034

WSe ₂ /GR	389	34.5	400 Wkg ⁻¹	3000	Materials Letters, 2018, 223, 57–60
α-MnSe	96.76 (0.1mA/cm ²)	8.60	47.05 Wk ⁻¹	2000	Electrochimica Acta,
VSe ₂ -RGO	680	212	3.3	10000	Chem. Commun., 2017, 53, 228-231
Ge ₄ Se ₉	100.8	5.04	3.56		
Ge ₄ Se ₉ /RG1	220 F g ⁻¹	12	4.6	10000	This work
Ge ₄ Se ₉ /RG2	120 F g ⁻¹	6.0	3.59		

References

- J. K. Das, A. K. Samantara, A. K. Nayak, D. Pradhan and J. N. Behera, *Dalton Trans.*, 2018, 47, 13792–13799.
- A. K. Samantara, S. Chandra Sahu, A. Ghosh and B. K. Jena, J. Mater. Chem. A, 2015, 3, 16961–16970.
- 3. H. Li, T. Lu, L. Pan, Y. Zhang and Z. Sun, *Journal of Materials Chemistry*, 2009, 19, 6773-6779.