Supporting Information

Spectroscopic Identification of Monomeric Methyl Metaphosphate

Xiaofang Zhao,^{a†} Chao Song,^{a†} Kemiao Hong,^a Xinfang Xu,^a Changyun Chen,^a Xianxu Chu,^a and Xiaoqing Zeng^{a,b*}

 ^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 China. E-mail: xqzeng@suda.edu.cn
^b Department of Chemistry, Fudan University, Shanghai 200433 China. E-mail: xqzeng@fudan.edu.cn

Table of Contents:

Experimental and computational details	S3
Matrix-isolation IR spectra (Figures S1-S2)	S5
Calculated potential energy profile for the oxidation of CH ₃ PO	S7
Computed IR data for cyclic $CH_3P(=O)(O_2)$ and acyclic $CH_3P(=O)OO$	S8
Computed IR data for CH ₃ OPO ₂	S9
Computed vertical transitions for CH ₃ OPO ₂ isomers	S10
References	S11
Computed energies and atomic coordinates for optimized structures	S12

Experimental details

Caution! Covalent azides are potentially hazardous explosive. Although we have not experienced any incident during this work, safety precautions (face shields, leather gloves, and protective leather clothing) are recommended for handling $CH_3P(O)(N_3)_2$.

Sample preparation. Methylphosphoryl diazide^[1] and methyl 2-butenylphosphonate^[2] were prepared and purified according to the published protocols. Ar (\geq 99.999%, Messer), N₂ (\geq 99.999%, Messer), Ne (\geq 99.999%, Messer), Ne (\geq 99.999%, Messer), and O₂ (\geq 99.999%, Messer) gases were used without further purification. For the labeling experiments, ¹⁸O₂ (97 atom %, Aldrich) was used.

Matrix IR spectra

Matrix IR spectra were recorded on a FT-IR spectrometer (Bruker 70V) in a reflectance mode using a transfer optic. A KBr beam splitter and wide band MCT detector were used in the mid-IR region (4000–400 cm⁻¹). For each spectrum, 200 scans at a resolution of 0.5 cm⁻¹ were co-added. The gaseous sample was mixed by passing a flow of dilution gas (N₂, Ar or Ne) through a U-trap (CH₃P(O)(N₃)₂: -17 °C, methyl 2-butenylphosphonate: 60 °C) containing ca. 10 mg of the sample. Then the mixture (diazide : O_2 : inert gas, estimated ratio of 1:50:1000; methyl 2-butenylphosphonate : inert gas, estimated ratio of 1:1000) was passed through an aluminum oxide furnace (o.d. 2.0 mm, i.d. 1.0 mm), which can be heated over a length of ca. 25 mm by a tantalum wire (o.d. 0.4 mm, resistance 0.4 Ω) and immediately deposited (2 mmol h⁻¹) onto the Rh-plated copper block matrix support (N2: 15 K, Ar: 10 K, Ne: 3 K) in a high vacuum $(\sim 10^{-6} \text{ Pa})$. While not directly measured, the expected residence time of the mixture in the pyrolysis tube is about a few milliseconds, and the pressure inside the pyrolysis tube is about 10 mbar. The electric power (voltage/current) used in the pyrolysis experiments was 5.4 V/3.6 A. Photolysis experiments were performed using an ArF excimer laser (Gamlaser EX5/250, 5 mJ, 3Hz), a

Nd³⁺:YAG laser (MPL-F-266, 10 mW), and an UV flashlight (Boyu T648, 30 W).

Quantum chemical calculations

Structures, IR frequencies and energies were calculated using the DFT-B3LYP^[3] method with the 6-311++G(3df,3pd)^[4] basis set. The natural population analysis (NPA) charges were calculated with the NBO 7.0 program.^[5] Structures, IR frequencies, energies and the molecular electrostatic potential maps were performed using Gaussian 09 software package.^[6]

Figure S1. IR spectrum (3200-480 cm⁻¹) of Ar-matrix isolated high-vacuum flash pyrolysis (HVFP, ca. 1000 K) products of methyl 2-butenylphosphonate at 10 K. The IR bands of CH₃OPO₂ (b), 1,3-butadiene (*trans*: c; *gauche*: c'), H₂O (d), P₄O₁₀ (e), H₂CO (h) and unknown species (*) are labeled.

 v / Cm^{-1} **Figure S2**. IR spectrum (3200-480 cm⁻¹) of Ne-matrix isolated high-vacuum flash pyrolysis (HVFP, ca. 1000 K) products of methyl 2-butenylphosphonate at 3 K. The IR bands of CH₃OPO₂ (b), 1,3-butadiene (*trans*: c; *gauche*: c'), H₂O (d), P₄O₁₀ (e) and unknown species (*) are labeled.

Figure S3. Calculated potential energy profile (ΔG in kcal mol⁻¹) for the oxidation of CH₃PO by O₂ at CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(3df,3pd) level. The calculated bond lengths (Å), bond angles (°, italics) at B3LYP/6-311++G(3df,3pd) level and relative energies (bold) are given.

• /	cyclic CH ₃ P(=O)(O ₂)	cis-CH ₃ P(=O)OO	trans-CH ₃ P(=0)00
	3162.3 (< 1)	3169.3 (3)	3170.8 (6)
	3130.9 (< 1)	3125.7 (2)	3121.1 (7)
	3057.3 (< 1)	3052.1 (2)	3050.0 (12)
	1458.1 (2)	1452.1 (3)	1422.6 (1)
	1456.1 (7)	1443.1 (11)	1409.8 (13)
	1371.2 (200)	1369.9 (145)	1357.4 (188)
	1343.5 (27)	1327.7 (1)	1315.2 (10)
	1023.3 (101)	969.8 (14)	1016.0 (53)
	920.1 (5)	900.4 (19)	915.6 (3)
	902.2 (14)	876.1 (3)	851.5 (8)
	773.7 (12)	755.7 (88)	711.0 (29)
	761.6 (45)	709.5 (16)	693.5 (12)
	631.6 (20)	445.9 (29)	384.6 (33)
	410.3 (50)	309.7 (8)	291.0 (1)
	370.1 (19)	272.8 (< 1)	271.7 (9)
	291.1 (< 1)	150.7 (8)	237.1 (22)
	254.9 (< 1)	133.9 (4)	194.9 (10)
	128.3 (< 1)	38.9 (2)	94.8 (5)

Table S1. Computed IR frequencies (cm^{-1}) and intensity $(km mol^{-1})$, in parentheses) of cyclic CH₃P(=O)(O₂) and acyclic CH₃P(=O)OO at the B3LYP/<u>6-311++G(3df,3pd) level.</u>

Vcalcd ^[a]				$\Delta v^{[b]}$	Δ ν ^[c]	Δ ν ^[d]
$CH_3O_{\alpha}P(O_{\beta}O_{\gamma})$	$CH_{3}^{18}O_{\alpha}P(^{18}O_{\beta}O_{\gamma})$	$CH_3^{18}O_{\alpha}P(O_{\beta}^{18}O_{\gamma})$	$CH_{3}O_{\alpha}P(^{18}O_{\beta}^{18}O_{\gamma})$			
3164.0 (1)	3164.0 (1)	3164.0 (1)	3164.0 (1)	0	0	0
3153.2 (8)	3153.2 (8)	3153.2 (8)	3153.2 (8)	0	0	0
3066.0 (29)	3065.9 (29)	3066.0 (29)	3066.0 (29)	< 0.5	0	0
1500.3 (7)	1499.9 (7)	1499.8 (7)	1500.2 (8)	< 0.5	0.5	< 0.5
1499.2 (7)	1499.1 (7)	1499.1 (7)	1499.2 (7)	< 0.5	< 0.5	0
1479.5 (4)	1476.0 (1)	1476.8 (2)	1478.1 (< 1)	3.5	2.7	1.4
1443.3 (191)	1427.4 (190)	1421.8 (183)	1402.2 (186)	15.9	21.5	41.1
1215.5 (119)	1202.1 (49)	1202.2 (54)	1211.5 (72)	13.4	13.3	4.0
1179.6 (< 1)	1177.0 (< 1)	1177.0 (< 1)	1179.6 (< 1)	2.6	2.6	0
1175.9 (122)	1151.9 (175)	1156.6 (180)	1140.6 (236)	24.0	19.3	35.3
1061.6 (173)	1025.4 (171)	1024.6 (165)	1050.8 (108)	36.2	37.0	10.8
787.4 (45)	767.7 (43)	768.6 (44)	779.9 (40)	19.7	18.8	7.5
493.0 (14)	476.7 (11)	480.8 (14)	482.7 (11)	16.3	12.2	10.3
435.7 (50)	429.6 (48)	430.0 (48)	428.1 (47)	6.1	5.7	7.6
419.9 (45)	413.2 (43)	406.7 (42)	404.4 (43)	6.7	13.2	15.5
234.9 (6)	230.0 (6)	232.6 (5)	229.3 (5)	4.9	2.3	5.6
145.1 (1)	141.3 (1)	139.7 (1)	143.3 (1)	3.8	5.4	1.8
20.0 (< 1)	19.3 (< 1)	20.0 (< 1)	19.4 (< 1)	0.7	0	0.6

Table S2. Computed IR data of CH₃OPO₂ at the B3LYP/6-311++G(3df,3pd) level

^[a] Calculated harmonic frequencies and IR intensities (km mol⁻¹, in parentheses) at B3LYP/6-311++G(3df,3pd) level. ^[b] B3LYP/6-311++G(3df,3pd) calculated doubly-¹⁸O-labeled isotopic shifts (cm⁻¹) for CH₃¹⁸O_{α}P(¹⁸O_{β}O_{γ}). ^[c] B3LYP/6-311++G(3df,3pd) calculated doubly-¹⁸O-labeled isotopic shifts (cm⁻¹) for CH₃¹⁸O_{α}P(O_{β}¹⁸O_{γ}). ^[d] B3LYP/6-311++G(3df,3pd) calculated doubly-¹⁸O-labeled isotopic shifts (cm⁻¹) for CH₃¹⁸O_{α}P(O_{β}¹⁸O_{γ}). ^[d] B3LYP/6-311++G(3df,3pd) calculated doubly-¹⁸O-labeled isotopic shifts (cm⁻¹) for CH₃¹⁸O_{α}P(O_{β}¹⁸O_{γ}).

CH ₃ OPC	D ₂	<i>cis</i> -CH₃l	P(=0)00	trans-Cl	H₃P(=O)OO	cyclic Cl	H ₃ P(=O)(O ₂)
energy	oscillator	energy	oscillator	energy	oscillator	energy	oscillator
(nm)	strength (f)	(nm)	strength (f)	(nm)	strength (f)	(nm)	strength (f)
217	0.0039	411	0.0100	456	0.0001	338	0.0009
202	0.0002	398	0.0013	429	0.0200	240	0.0041
188	0.0019	335	0.1255	394	0.0009	175	0.0012
188	0.0031	269	0.0013	347	0.0347	174	0.0023
180	0.0406	268	0.0014	288	0.0015	167	0.0049
165	0.0007	231	0.0006	273	0.0009	164	0.0687
161	0.0001	225	0.0040	213	0.0034	162	0.0006
156	0.0324	209	0.0002	210	0.0006		
153	0.0051	206	0.0046	203	0.0075		
148	0.1402			197	0.0052		

Table S3. Computed vertical transitions for CH_3OPO_2 , acyclic $CH_3P(=O)OO$ and cyclic $CH_3P(=O)(O_2)$ at the TD-B3LYP/6-311++G(3df,3pd) level.

References

- X. X. Chu, Y. Yang, B. Lu, Z. Wu, W. Y. Qian, C. Song, X. F. Xu, M. Abe and X. Q. Zeng, *J. Am. Chem. Soc.*, 2018, **140**, 13604-13608.
- [2] H. L. Zhang, R. Tsukuhara, G. Tigyi and G. D. Prestwich, *J. Org. Chem.*, 2006, **71**, 6061-6066.
- [3] K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, *Chem. Phys. Lett.*, 1989, **157**, 479-483.
- [4] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- [5] E. D. Glendening, C. R. Landis and F. Weinhold, *J. Comput. Chem.*, 2019, **9999**, 1-8.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, A.01*, Gaussian, Inc., Wallingford CT, 2009.

Computed atomic coordinates (in Angstroms) and energies (in Hartrees) for all optimized structures. CH₃OPO₂

B3LYP/6-311+-	⊦G(3df, 3pd)		
0	-0.65626000	-0.84838200	0.00000000
С	0.11000200	-2.08088900	0.00000000
Н	-0.17410900	-2.63366600	0.89071200
Н	-0.17410900	-2.63366600	-0.89071200
Н	1.17490300	-1.86900200	0.00000000
Р	0.00000000	0.57433800	0.00000000
0	1.45822800	0.58496000	0.00000000
0	-0.98780500	1.63924700	0.00000000
Zero-point corr	ection=		0.051199
Thermal correc	tion to Energy=		0.057072
Thermal correc	tion to Enthalpy=		0.058016
Thermal correc	tion to Gibbs Free E	nergy=	0.020268
Sum of electror	nic and zero-point Er	nergies=	-607.079371
Sum of electror	nic and thermal Ener	gies=	-607.073498
Sum of electror	nic and thermal Entha	alpies=	-607.072554
Sum of electror	nic and thermal Free	Energies=	-607.110302
B31 VP/6-311+1	FC(3df 3nd)		
P	-0 32015300	0 18041700	-0 00005000
0	0.02010000	-0 72162500	-0 00004400
0	-0 44095300	1 62928500	0.00004400
0	2 22747600	-0 18510100	0.00005000
C C	-1 76876400	-0.87766900	0.00003900
е Н	-1 45358400	-1 91662400	-0.00031100
Н	-2.36260600	-0.65228900	0.88498300
Н	-2.36306800	-0.65179900	-0.88446500
Zero-point corr	ection=	0100110000	0.046710
Thermal correc	0.053232		
Thermal correc	0.054176		
Thermal correc	0.015560		
Sum of electror	nic and zero-point Er	nergies=	-606.895270
Sum of electror	nic and thermal Ener	gies=	-606.888748
Sum of electror	-606.887804		
Sum of electror	-606.926419		

trans-CH₃P(=0)00

Zero-point correction=

Thermal correction to Energy=

Thermal correction to Enthalpy=

Thermal correction to Gibbs Free Energy=

Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies=

Sum of electronic and thermal Free Energies=

Sum of electronic and thermal Enthalpies=

	·+G(Sul,Spu)		
Р	-0.46664100	-0.10906900	-0.00000300
0	0.77958300	-0.98911700	-0.00001000
0	-1.83182200	-0.61173300	0.00000800
0	1.99023100	-0.14970500	0.00001000
С	-0.09010200	1.63087800	-0.00000200
Н	0.52969600	1.83424600	0.87320900
Н	0.52972300	1.83424000	-0.87319600
Н	-1.02313700	2.18671900	-0.00001600
Zero-point cor	rection=		0.046721
Thermal corre	ction to Energy=		0.052993
Thermal corre	ction to Enthalpy=		0.053937
Thermal corre	nergy=	0.016792	
Sum of electro	-606.901366		
Sum of electro	-606.895095		
Sum of electro	-606.894151		
Sum of electro	-606.931296		
cvclic CH ₃ P(=	=O)(O ₂)		
B3LYP/6-311+	- /(- =/		
	+G(3df,3pd)		
0	+G(3df,3pd) -0.46574000	1.60558600	0.00011100
0 0	+G(3df,3pd) -0.46574000 1.17206900	1.60558600 -0.40060100	0.00011100 -0.78829500
0 0 0	+G(3df,3pd) -0.46574000 1.17206900 1.17196100	1.60558600 -0.40060100 -0.40082200	0.00011100 -0.78829500 0.78826700
0 0 0 P	-+G(3df,3pd) -0.46574000 1.17206900 1.17196100 -0.08753800	1.60558600 -0.40060100 -0.40082200 0.20249600	0.00011100 -0.78829500 0.78826700 -0.00001400
O O O P C	-+G(3df,3pd) -0.46574000 1.17206900 1.17196100 -0.08753800 -1.43010000	1.60558600 -0.40060100 -0.40082200 0.20249600 -0.97743800	0.00011100 -0.78829500 0.78826700 -0.00001400 -0.00006900
O O O P C H	-+G(3df,3pd) -0.46574000 1.17206900 1.17196100 -0.08753800 -1.43010000 -2.04575500	1.60558600 -0.40060100 -0.40082200 0.20249600 -0.97743800 -0.80842900	0.00011100 -0.78829500 0.78826700 -0.00001400 -0.00006900 0.88221200
O O O P C H H	-+G(3df,3pd) -0.46574000 1.17206900 1.17196100 -0.08753800 -1.43010000 -2.04575500 -2.04722800	1.60558600 -0.40060100 -0.40082200 0.20249600 -0.97743800 -0.80842900 -0.80679400	0.00011100 -0.78829500 0.78826700 -0.00001400 -0.00006900 0.88221200 -0.88099000

-606.982149 -606.976598

-606.975654

-607.011068

0.048859

0.054410

0.055354

0.019940

cyclic CH₃OPO₂

B3LYP/6-311++G(3df,3pd)						
Р	0.30915200	0.00022600	0.54135200			
0	-0.91826800	-0.00030500	-0.49980600			
0	1.51286800	-0.76843700	-0.26238800			
0	1.51273700	0.76828000	-0.26292400			
С	-2.27348200	0.00002400	-0.02719000			
Н	-2.31767300	0.00038800	1.06343400			
Н	-2.76870500	0.88919900	-0.41014600			
Н	-2.76870300	-0.88942800	-0.40947900			
Zero-point correction	on=		0.048943			
Thermal correction	to Energy=		0.054978			
Thermal correction	to Enthalpy=		0.055922			
Thermal correction	to Gibbs Free E	nergy=	0.018924			
Sum of electronic a	and zero-point Er	nergies=	-606.949608			
Sum of electronic a	and thermal Ener	gies=	-606.943573			
Sum of electronic a	and thermal Entha	alpies=	-606.942629			
Sum of electronic a	and thermal Free	Energies=	-606.979627			
TS1						
B3LYP/6-311++G(3df.3pd)					
0	-0.23659900	1.60060300	-0.02529300			
0	0.81423700	-0.92622500	-0.21838700			
0	2.03457200	-0.14549100	0.21522000			
Р	-0.23946700	0.15247100	-0.07233000			
С	-1.81964800	-0.67152200	0.12647800			
Н	-1.75707600	-1.67696400	-0.28151600			
Н	-2.03724000	-0.72903100	1.19434400			
Н	-2.59347000	-0.08303900	-0.35906000			
Zero-point correction	0.046432					
Thermal correction	0.052304					
Thermal correction	0.053248					
Thermal correction	0.016632					
Sum of electronic a	-606.891069					
Sum of electronic a	-606.885197					
Sum of electronic a	-606.884253					

Sum of electronic and thermal Enthalpies=-606.884253Sum of electronic and thermal Free Energies=-606.920869

TS2

	df 2nd)			
B3L1P/0-311++G(3	ui,3pu)	0.00504000	0 0044 4500	
P	0.10971000	-0.08524200	-0.33114500	
0	-0.74073600	-1.03230200	0.49863500	
0	1.12258500	0.88891200	0.51325200	
0	1.72509600	-0.31729500	-0.24643700	
C	-1.98471500	0.51186000	-0.12443100	
Н	-2.37250100	0.16564600	-1.06856900	
Н	-2.50616400	0.16635900	0.75291400	
Н	-1.71425200	1.56094200	-0.09418200	
Zero-point correctio	n=		0.046139	
Thermal correction	to Energy=		0.051856	
Thermal correction	to Enthalpy=		0.052800	
Thermal correction	to Gibbs Free E	nergy=	0.016802	
Sum of electronic a	nd zero-point Er	nergies=	-606.861660	
Sum of electronic a	nd thermal Ener	gies=	-606.855943	
Sum of electronic a	nd thermal Enth	alpies=	-606.854999	
Sum of electronic a	nd thermal Free	Energies=	-606.890997	
		Ū		
TS3				
B3LYP/6-311++G(3	df,3pd)			
P	0.39090400	-0.07829800	0.41545000	
0	-0.93870100	0.36208100	-0.37910900	
0	1.36314900	-1.01513500	-0.30952400	
0	1.48762900	0.96622200	-0.12669500	
С	-2.24170500	-0.11053600	0.00435500	
Н	-2.19625800	-0.72245400	0.90526500	
Н	-2.87578200	0.75448100	0.17912300	
Н	-2.63790600	-0.69968100	-0.81964000	
Zero-point correctio	n=		0.047567	
Thermal correction	0.053452			
Thermal correction	0.054397			
Thermal correction	0.017559			
Sum of electronic a	nd zero-point Er	nergies=	-606.910190	
Sum of electronic a	nd thermal Ener	gies=	-606.904305	
Sum of electronic a	-606,903360			
Sum of electronic a	-606.940198			
Sum of electronic and thermal free Energies_				

TS4

B3LYP/6-311++G(3df,3pd)						
0	0.30456500	-1.23110100	0.00666000			
С	2.12223400	-0.00000200	-0.00747000			
Н	2.33732000	-0.92001100	-0.51996400			
Н	2.33734800	0.92027900	-0.51945700			
Н	2.19387900	-0.00030700	1.06629100			
Р	-0.55693400	0.00000200	-0.00117600			
0	0.30453300	1.23112400	0.00665900			
0	-2.01509100	-0.00002000	-0.00887100			
Zero-point correct	0.047970					
Thermal correcti	0.053590					
Thermal correcti	0.054534					
Thermal correcti	0.018375					
Sum of electroni	-606.992839					
Sum of electroni	-606.987218					
Sum of electroni	-606.986274					
Sum of electroni	Sum of electronic and thermal Free Energies= -607.022434					