Electronic Supplementary Information

Reactions of BICAAC with hydroboranes: propensity for Lewis adduct formation and carbene insertion into B-H bond

Krishna K. Manar, Vishal Kumar Porwal, Rohit S. Kamte, Manu Adhikari,

Sandeep Kumar Thakur, Deependra Bawari, Angshuman Roy Choudhury and Sanjay Singh*

*Corresponding Author: sanjaysingh@iisermohali.ac.in

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.

Contents:

1		Experimental Section	3
	1.1	General methods	3
	1.2	Syntheses and characterization of BICAAC-borane compounds 1-8	3
	1.3	Heteronuclear NMR and HRMS spectra of adducts (1-6) and carbene B-H insertion products (7 and 8)	8
	1.4	Single crystal X-ray characterization of compounds 1-8	24
2		Computational Results	28
	2.1	Optimized geometry of BICAAC and molecules 1-3 and 5-8	28
	2.2	Calculation of free energy for the interaction of BICAAC with various boranes	56
	2.3	Results of IRC calculations for the transition states (1TS-3TS, 7TS and 8TS)	58
	2.4	Plausible mechanism for Lewis adduct formation and B-H bond activation	61
	2.5	Molecular orbitals during Lewis adduct formation and B-H bond activation	63
	2.6	Electrostatic potentials (ESPs) during Lewis adduct formation and B-H bond activation	n 69
	2.7	Calculation of free energy of bond dissociation (ΔG_{FBD})	71
3		References	75

1 Experimental Section

1.1 General methods

All the reactions were performed under argon/nitrogen atmosphere using glove box and standard Schlenk line techniques. Deuterated and other solvents were dried by storage over Na/K alloy, CaH_2 and molecular sieves under an argon atmosphere. All the chemicals were procured from Sigma-Aldrich and used without further purification. The bicyclic (alkyl)(amino) carbene (BICAAC) was synthesized as per the literature procedure [1]. FT-IR spectra were recorded in the range 4000-400 cm⁻¹ on a Perkin-Elmer Lambda 35spectrophotometer. The NMR spectra were recorded using Bruker 400 NMR spectrometer (¹H: 400 MHz, ¹³C{¹H}: 100 MHz, ¹¹B: 128 MHz) at room temperature with TMS as an external standard and chemical shifts are given in ppm. High-resolution mass spectrometry (HRMS) measurement were recorded on a Waters SYNAPT G2-S. Compounds 1-5 were synthesized under argon atmosphere using standard Schlenk line technique in a ventilated fume-hood. Representative reaction procedure and work-up details have been given for compound 1. Compounds 6-8 were prepared inside a glove box and the reaction work-up and isolation of the products were done using standard Schlenk technique in a ventilated fume-hood. Representative reaction procedure and work-up details have been given for compound 6. A standard -30 °C refrigerator was used to grow crystals of all compounds from their dichloromethane (DCM) solution.

1.2 Syntheses and characterization of BICAAC-borane compounds 1-8

$[BICAAC \cdot BH_3]$ (1)

In a Schlenk flask, BICAAC (0.31 g, 1.00 mmol) was dissolved in toluene (10 mL) and was cooled to -40 °C. BH₃·SMe₂(0.09 mL, 1.00 mmol) was added to it and the mixture was allowed to warm to room temperature and stirred for 2h followed by the evaporation of all volatiles under vacuum. The residue obtained was washed with hexane (15 mL) and dried under vacuum. The resulting white solid was crystallized from dichloromethane (DCM) at -30 °C that afforded colorless crystals of adduct 1. Yield: 0.27 g, 82.0 %. Mp: 153-155 °C. FT-IR (nujol mull, cm⁻¹) v: 2954, 2924, 2854, 2726, 2384, 2280, 2254, 1463, 1377, 1252, 1152, 848, 808, 756, 722. ¹H NMR (400 MHz, C₆D₆): δ = 7.34 (t, 1H, *p*Ar-H, ³*J*_{H-H} = 8 Hz), 7.20 (broad d, 2H, *m*Ar-H), 2.83 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.52 (sept, 1H,

 $CH(CH_3)_2$, ${}^{3}J_{H-H} = 8$ Hz), 2.12-2.04 (m, 1H), 2.02-1.94 (m, 1H), 1.85-1.72 (m, 3H, BH₃), 1.59-1.50 (m, 5H), 1.29 (d, 3H, 8 Hz), 1.25-1.21 (m, 11H), 1.03-1.01 (d, 3H, ${}^{3}J_{H-H} = 8$ Hz), 0.94 (s, 4H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, C_6D_6): $\delta = 144.0$, 143.6, 139.0, 128.7, 124.4, 124.1, 62.3, 46.8, 43.8, 36.7, 33.1, 32.6, 29.3, 28.6, 24.7, 24.6, 24.3, 24.2, 23.5, 23.2, 19.4 ppm.* ${}^{11}B$ NMR (128 MHz, C_6D_6): $\delta = -26.4$ (q, ${}^{1}J_{B-H} = 87$ Hz) ppm. HRMS (ES⁺): m/zcalcd for $C_{22}H_{36}BNNa$: 348.2842; obs: 348.2865 [M+Na]⁺.

[BICAAC·BHCl₂] (2)

Synthesis of **2** was carried out in a manner similar to that for **1**. The amount of reagents used were: BICAAC (0.31 g, 1.00 mmol) and BHCl₂·SMe₂ (0.12 mL, 1.00 mmol). Yield: 0.30 g, 76.4 %. Mp: 155-158 °C. FT-IR (nujol mull, cm⁻¹) v: 2924, 2854, 2724, 2488, 1533, 1459, 1377, 1084, 1027, 934, 798, 759, 630, 605, 567. ¹H NMR (400 MHz, CDCl₃): δ = 7.36 (broad t, 1H, *p*Ar-H), 7.23 (broad d, 2H, *m*Ar-H), 2.68 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.50 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.17 (m, 1H), 1.99 (s, 4H), 1.87 (s, 4H), 1.52-1.47 (m, 1H, BHCl₂), 1.29-1.24 (m, 13H), 1.15 (d, 3H, ³*J*_{H-H} = 4 Hz), 0.94 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 143.3, 143.0, 137.4, 129.5, 124.9, 124.8, 65.7, 48.3, 43.4, 38.3, 35.6, 32.6, 28.8, 28.5, 25.8, 25.1, 24.7, 24.2, 23.8, 21.1, 20.3 ppm.* ¹¹B NMR (128 MHz, CDCl₃): δ = -5.41 (broad), 7.06 (s) ppm. HRMS (ES⁺): *m/z* calcd for C₂₂H₃₄NBCl₂: 392.2087; obs: 392.2106 [M-H]⁺.

[BICAAC·BH₂Cl] (3)

Synthesis of **3** was carried out in a manner similar to that for **1**. The amount of reagents used were: BICAAC (0.31 g, 1.00 mmol) and BH₂Cl·SMe₂ (0.10 mL, 1.00 mmol). Yield: 0.26 g, 73.5 %. Mp: 215-218 °C. FT-IR (nujol mull, cm⁻¹) v: 2924, 2855, 2725, 2445, 2327, 1520, 1455, 1377, 1180, 1071, 808, 782. ¹H NMR (400 MHz, CDCl₃): δ = 7.36 (t, 1H, *p*Ar-H, ³*J*_{H-H} = 8 Hz), 7.21 (d, 2H, *m*Ar-H, ³*J*_{H-H} = 8 Hz), 2.74 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.46 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.16 (m, 1H), 1.99 (m, 2H) 1.87-1.68 (m, 6H), 1.55-1.39 (m, 2H, BH₂Cl), 1.28-1.21 (m, 13H), 1.09 (d, 3H, ³*J*_{H-H} = 4 Hz), 0.96 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 143.7, 143.2 138.0, 129.2, 124.6, 124.5, 64.5, 47.9, 43.6, 37.6, 33.7, 32.7, 29.1, 28.6, 25.0, 24.7, 23.9, 23.8, 21.9, 20.1 ppm.* ¹¹B

NMR (128 MHz, CDCl₃): δ = -15.7 (broad) ppm. HRMS (ES⁺): C₂₂H₃₄BNCl, [M-H] *m/z* (calc.): 358.2477, *m/z* (obs.): 358.2460.

$[BICAAC \cdot BF_3]$ (4)

Synthesis of **4** was carried out in a manner similar to that for **1**. The amount of reagents used were: BICAAC (0.31 g, 1.00 mmol) and BF₃·OEt₂ (0.13 mL, density 1.15 gmL⁻¹, 1.00 mmol). Yield: 0.30 g, 79.3 %. Mp: 203-205 °C. IR (nujol mull, cm⁻¹) v: 2953, 2923, 2853, 1619, 1588, 1560, 1475, 1466, 1455, 1446, 1435, 1377, 1366, 1345, 1317, 1258, 1230, 1217, 1182, 1090, 1048, 942, 876, 751, 741, 626, 564, 574. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.39$ -7.36 (m, 1H, *p*Ar-H), 7.23-7.21 (m, 2H), 2.77 (sept, 1H, CH(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.48 (sept, 1H, CH(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.21-2.15 (m, 1H), 2.06-1.97 (m, 1H), 1.85-1.78 (m, 3H), 1.72 (s, 3H), 1.60-1.55 (m, 1H), 1.31 (d, 3H, ³*J*_{H-H} = 4 Hz), 1.26-1.22 (m, 10H), 1.09 (d, 3H), 0.97 (s, 3H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃): $\delta = 143.2$, 142.9, 137.9, 129.4, 124.5, 124.3, 65.6, 46.7, 43.6, 38.2, 32.8, 29.4, 28.7, 24.7, 24.5, 24.4, 23.6, 23.5, 21.4, 21.4, 20.2 ppm.* ¹¹B NMR (128 MHz, CDCl₃): $\delta = -0.72$ (q, ¹*J*_{B-F} = 41 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -139.7$ (q, ¹*J*_{F-B}= 41) ppm. HRMS (ES+): *m/z* calcd for C₂₂H₃₃NBF₂: 360.2678; obs: 360.2661 [M-F]⁺.

$[BICAAC \cdot BCl_3]$ (5)

Synthesis of **5** was carried out in a manner similar to that for **1**. The amount of reagents used were: BICAAC (0.31 g, 1.00 mmol) and BCl₃ (1.00 mL, 1.00 mmol, 1.00 M). Yield: 0.38 g, 88.2 %. Mp: 320 °C (decomp). IR (nujol mull, cm⁻¹) v: 2924, 2855, 2725, 1458, 1377, 1154, 1055, 936, 766, 720, 659. ¹H NMR (400 MHz, C₆D₆): δ = 7.09 (t, 1H, *p*Ar-H, ³*J*_{H-H} = 8 Hz), 7.02-6.92 (m, 2H), 2.76 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.55 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.55 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.13-2.09 (m, 3H), 1.83-1.73 (m, 1H), 1.53-1.41 (m, 9H), 1.26-1.18 (m, 3H), 1.09-1.06 (m, 9H), 0.51 (broad signal, 3H) ppm. ¹³C{¹H} NMR (100 MHz, C₆D₆): δ = 143.9, 143.5, 137.8, 129.9, 124.9, 124.7, 67.6, 48.9, 42.7, 38.9, 36.1, 32.3, 29.3, 28.9, 25.5, 24.9, 24.6, 24.4, 23.9, 20.4 ppm.* ¹¹B NMR (128 MHz, C₆D₆): δ = 3.56 (broad) ppm. HRMS (ES⁺): *m/z* calcd for C₂₂H₃₃NBCl₂: 392.2087; obs: 392.2069 [M-Cl]⁺.

[BICAAC·BBr₃] (6)

In a glove box containing deep freezer, BICAAC (0.31 g, 1.00 mmol) was dissolved in toluene (10 mL) and this solution was cooled to -25 °C. To this solution, BBr₃·SMe₂ (0.31 g, 1.00 mmol) was added and the mixture was allowed to warm to room temperature and stirred for 2 h. The work-up procedure similar to that of **1** was adopted to isolate **6**. Yield: 0.45 g, 81.0 %. Mp: 285 °C (decomp). IR (nujol mull, cm⁻¹) v: 2921, 2854, 1456, 1377, 1261, 1153, 1098, 1020, 800, 722. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37$ (t, 1H, *p*Ar-H, ${}^{3}J_{\text{H-H}} = 8$ Hz), 7.19-7.17 (m, 2H, *m*Ar-H), 2.73 (sept, 1H, C*H*(CH₃)₂, ${}^{3}J_{\text{H-H}} = 8$ Hz), 2.56 (sept, 1H, *CH*(CH₃)₂, ${}^{3}J_{\text{H-H}} = 8$ Hz), 2.25-2.19 (m, 1H), 2.13-2.03 (m, 5H), 1.99-1.97 (m, 2H), 1.65-1.59 (m, 1H), 1.43-1.39 (m, 6H), 1.29 (t, 7H, ${}^{3}J_{\text{H-H}} = 8$ Hz), 1.23-1.21 (m, 3H), 0.95 (s, 3H) ppm. ${}^{13}\text{C}{}^{1}\text{H}$ NMR (100 MHz, CDCl₃): $\delta = 144.3$, 143.7, 137.2, 130.0, 125.0, 124.8, 68.4, 49.5, 42.6, 39.3, 37.2, 32.5, 29.1, 28.8, 25.6, 25.4, 24.9, 24.8, 24.4, 20.7 ppm.* ${}^{11}\text{B}$ NMR (128 MHz, CDCl₃): $\delta = 34.08$ (broad). HRMS (ES⁺): *m/z* calcd for C₂₂H₃₃NBBr₂: 482.1057; obs: 482.1035 [M-Br]⁺.

*The ${}^{13}C{}^{1}H$ NMR spectra of complexes **1-6** did not show signal for BICAAC carbon attached to boron perhaps due to quaternary nature of this carbon and the quadrupolar effect of B.

BICAAC(H)-(9-BBN) (7)

Synthesis of **7** was carried out inside a glove box in a manner described for **6**. The amount of reagents used were: BICAAC (0.31 g, 1.00 mmol) and 9-borabicyclo[3.3.1]nonane dimer (9-BBN)₂ (0.12 g, 0.50 mmol). Yield: 0.36 g, 83.6 %. Mp: 237–240 °C. FT-IR (nujol mull, cm⁻¹) v: 2924, 2854, 1463, 1377, 1264, 1172, 1044, 1010, 898, 811, 781. ¹H NMR (400 MHz, C₆D₆): δ = 7.09 (m, 2H, *m*Ar-H, ³*J*_{H-H} = 4 Hz), 7.03 (m, 1H, *p*Ar-H, ³*J*_{H-H} = 4 Hz), 4.23 (s, 1H, *CH*B), 3.93 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 3.62 (sept, 1H, *CH*(CH₃)₂, ³*J*_{H-H} = 8 Hz), 2.24 (d, 2H, ³*J*_{H-H} = 8 Hz), 1.94-1.76 (m, 7H), 1.70-1.53 (m, 9H), 1.42 (d, 3H, *J*_{H-H} = 4 Hz), 1.37-1.32 (m, 8H, ³*J*_{H-H} = 8 Hz), 1.15 (t, 7H, ³*J*_{H-H} = 8Hz), 0.92 (s, 3H), 0.80 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 150.9, 150.1, 146.5, 125.6, 124.8, 124.4, 62.4 (*C*HB), 52.8, 47.2, 38.4, 37.8, 36.1, 36.0, 33.5, 32.9, 31.3, 29.6, 27.8, 27.3, 27.2, 25.4, 25.3, 24.9, 23.1, 22.9, 15.9 ppm. ¹¹B NMR (128 MHz, CDCl₃): δ = 90 (broad) ppm. HRMS (AP⁺): *m*/z calcd for C₃₀H₄₉BN: 434.3963; obs: 434.3940 [M+H]⁺.

BICAAC(H)·Bcat (8)

Synthesis of **8** was carried out inside a glove box in a manner described for **6**. The amount of reagents used were: BICAAC (0.31 g, 1.00 mmol) and catecholborane (0.11 mL, 1.00 mmol). Yield: 0.35 g, 80.6 % of the diastereomeric mixture. Mp: 400 °C (decomp.). Characterization data for major diastereomeric mixture: FT-IR (nujol mull, cm⁻¹) v: 3194, 2923, 2854, 1598, 1489, 1462, 1377, 1244, 1207, 1101, 916, 745, 731, 700. ¹H NMR (400 MHz, CDCl₃): δ = 7.21-7.09 (m, 3H), 7.07-6.95 (m, 4H), 4.02-3.96 (overlapping signal from diastereomers, 1H, CHB), 3.57 (sept, 1H, CH(CH₃)₂), ³*J*_{H-H} = 8 Hz), 2.73-2.59 (m, 1H, CH(CH₃)₂), 2.12 (broad t, 1H), 2.02-1.95 (m, 1H), 1.86-1.83 (m, 2H), 1.67-1.60 (m, 1H), 1.49-1.43 (m, 1H), 1.40 (d, 2H, *J* = 4 Hz), 1.27-1.20 (m, 8H), 1.13-1.07 (m, 3H), 1.02 (d, 2H, *J* = 4 Hz), 0.91-0.80 (m, 1H), 0.70-0.67 (m, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 152.0, 151.8 148.0, 142.6, 126.5, 124.2, 124.0 122.5, 111.5, 52.3 (CHB), 47.0, 36.6, 36.0, 35.7, 33.6, 29.0, 27.7, 26.4, 25.7, 25.2, 24.8, 22.8, 15.9 ppm. ¹¹B NMR (128 MHz, CDCl₃): δ = 33.7 (broad) ppm. HRMS (ES⁺): *m/z* calcd for C₂₈H₃₉BNO₂: 432.3079; obs: 432.3060 [M+H]⁺.

1.3 Heteronuclear NMR and HRMS spectra of adducts (1-6) and carbene B-H insertion products (7 and 8)

Fig. S1 ¹H NMR spectrum (400 MHz, C_6D_6) of [BICAAC-BH₃] adduct (1). Insets (i) and (ii) show expansion of selected spectral region.

Fig. S2 ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, C₆D₆) of [BICAAC-BH₃] adduct (1).

Fig. S3 ¹¹B NMR spectrum (128 MHz, C₆D₆) of [BICAAC-BH₃] adduct (1).

Fig. S4 HRMS spectrum of [BICAAC-BH₃] adduct (1).

9

Fig. S5 ¹H NMR spectrum (400 MHz, CDCl₃) of [BICAAC-BHCl₂] adduct (**2**). Insets (i) and (ii) show expansion of selected spectral region.

Fig. S6 ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of [BICAAC-BHCl₂] adduct (2).

S7

 $^{11}\mathbf{B}$

NMR spectrum (128 MHz, CDCl₃) of [BICAAC-BHCl₂] adduct (**2**). *Signal for traces of BH₂Cl·SMe₂/BHCl₂·SMe₂ formed from exchange reaction in BHCl₂·SMe₂. [2]

Fig. S9 ¹H NMR spectrum (400 MHz, CDCl₃) of [BICAAC-BH₂Cl] adduct (**3**). Insets (i) and (ii) show expansion of selected spectral region.

Fig. S11 ¹¹B NMR spectrum (128 MHz, CDCl₃) of [BICAAC-BH₂Cl] adduct (3).

Fig. S12 HRMS spectrum of [BICAAC-BH₂Cl] adduct (3).

Fig. S13 ¹H NMR spectrum (400 MHz, CDCl₃) of [BICAAC-BF₃] adduct (4). Insets (i) and (ii) show expansion of selected spectral region.

Fig. S14 ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of [BICAAC-BF₃] adduct (4).

1H_BF3

7.37

Fig. S16¹⁹F NMR spectrum (376 MHz, CDCl₃) of [BICAAC-BF₃] adduct (4).

Fig. S18 ¹H NMR spectrum (400 MHz, C_6D_6) of [BICAAC-BCl₃] adduct (5). Insets (i) and (ii) show expansion of selected spectral region.

Fig. S20 ¹¹B NMR spectrum (128 MHz, C_6D_6) of [BICAAC-BCl₃] adduct (5).

Fig. S22 ¹H NMR spectrum (400 MHz, CDCl₃) of [BICAAC-BBr₃] adduct (6). Insets (i) and (ii) show expansion of selected spectral region.

Fig. S24 ¹¹B NMR spectrum (128 MHz, CDCl₃) of [BICAAC-BBr₃] adduct (6).

Fig. S26 ¹H NMR spectrum (400 MHz, C_6D_6) of carbene B-H insertion product, BICAAC(H)-(9-BBN) (7). Insets (i), (ii) and (iii) show expansion of selected spectral region.

Fig. S28 ¹¹B NMR spectrum (128 MHz, CDCl₃) of carbene B-H insertion product, BICAAC(H)-(9-BBN) (7).

Fig. S29 HRMS spectrum of carbene B-H insertion product, BICAAC(H)-(9-BBN) (7).

3.59 3.57 3.55 2.73

Catechol

7.09

Fig. S30 ¹H NMR spectrum (400 MHz, CDCl₃) of the diastereomeric mixture, [BICAAC(H)-Bcat]
(8). Insets (i) and (ii) show expansion of selected spectral region.

90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50

Fig. S32 ¹¹B NMR spectrum (128 MHz, CDCl₃) of the diastereomeric mixture, [BICAAC(H)-Bcat] (8).

Fig. S33 HRMS spectrum of carbene B-H insertion product, [BICAAC(H)-Bcat] (8).

MA_LA_11B

Fig. S34 ¹¹B NMR spectrum (128 MHz, CDCl₃) of the [BICAAC-B(C_6F_5)₃] adduct.

Fig. S35 HRMS spectrum of $[BICAAC-B(C_6F_5)_3]$ adduct.

1.4 Single crystal X-ray characterization of compounds 1-8

The single crystal X-ray diffraction data of adduct 1-3 and complexes 7-8 were collected on a Bruker AXS KAPPA APEX-II CCD diffractometer with MoKa radiation using omega scans equipped with Oxford Cryosystem 700 plus with a sample to detector distance of 6 cm with the variable position of the detector. Unit cell determination, refinement and data collection were done using the Bruker APPEX-II suite [3], data reduction and integration were performed using SAINT v8.34A (Bruker, 2013) [4], and absorption corrections and scaling were done using SADABS-2014/5 (Bruker, 2014/5) [5]. Single crystal X-ray diffraction data of 4, 5 and 6 were collected using a Rigaku XtaLAB mini diffractometer equipped with Mercury375M CCD detector. The data were collected with MoKa radiation $(\lambda = 0.71073 \text{ Å})$ using omega scans. During the data collection, the detector distance was 49.9 mm (constant) and the detector was placed at $2\theta = 29.85^{\circ}$ (fixed) for all the data sets. The data collection and data reduction were done using Crystal Clear suite [6]. All the crystal structures were solved through OLEX2 [7] package using XT [8] and the structures were refined using XL [8]. All non-hydrogen atoms were refined anisotropically. All figures were generated using Mercury 3.2. Complex 2 contains two molecules A and B in the asymmetric unit, molecule A contains boron atom B1(B1A and B1B as treated as a disordered part) has disorder around the B1-C1 bond, as seen in two orientation of B1-Cl1 bond (B1A-Cl1A and B1B-Cl1B) further this molecule, BICAAC unit is found to be disordered with C9 (C9A and C9B) being located on C3 and C7 respectively. The molecule B is disordered about B2-C24 bond thereby generating two orientation of B2-Cl2 bond (B2A-Cl2A, B2B-Cl2B). All the geometric data reported here are taken from the CIF.

Compound ^[a]	1	2	3	4
Chemical formula	C ₂₂ H ₃₆ BN	C ₂₂ H ₃₄ BCl ₂ N	C ₂₂ H ₃₅ BCIN	C ₂₂ H ₃₃ BF ₃ N
Molar mass	325.33	394.21	359.77	379.30
Crystal system	orthorhombic	monoclinic	orthorhombic	orthorhombic
Space group	Pbca	$P2_{1}/n$	Pbca	$Pca2_1$
<i>T</i> [K]	100.0(2)	100.0(2)	100.0(2)	100.02(10)
<i>a</i> [Å]	15.094(3)	9.2720(2)	15.3620(11)	17.8370(5)
<i>b</i> [Å]	15.236(3)	15.9647(3)	18.1323(12)	23.3635(7)
<i>c</i> [Å]	17.615(4)	15.3820(3)	30.142(2)	15.3109(6)
α [°]	90	90	90	90
β [°]	90	106.311(1)	90	90
γ [°]	90	90	90	90
V [Å ³]	4050.8(1)	2185.27(8)	8396.0(1)	6380.6(4)
Ζ	8	4	8	4
$D(\text{calcd.}) [\text{g} \cdot \text{cm}^{-3}]$	1.067	1.198	1.138	1.185
μ (Mo- K_{α}) [mm ⁻¹]	0.060	0.303	0.187	0.085
Reflections collected	15760	9914	36531	31150
Independent reflections	3579	3636	7419	11255
Data/restraints/parameters	3579/0/236	3636/0/246	7419/0/490	11255/0/751
$R1, wR2[I \ge 2\sigma(I)]^{[a]}$	0.0502, 0.1151	0.0351, 0.0761	0.0862, 0.2082	0.0668, 0.1782
R1, wR2 (all data) ^[a]	0.0839, 0.1319	0.0503, 0.0812	0.1913, 0.2616	0.0898, 0.2029
GOF	1.044	0.962	1.045	1.036
CCDC	1935353	1935354	1935355	1954942

Table S1 Crystallographic data for complexes 1-4

Compound ^[a]	5	6	7	8
Chemical formula	C ₂₂ H ₃₃ BCl ₃ N	C ₂₂ H ₃₃ BBr ₃ N	C ₃₀ H ₄₈ BN	C ₂₈ H ₃₈ BO ₂
Molar mass	428.65	528.89	433.50	431.40
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	P 1
<i>T</i> [K]	200.0(1)	200.0(1)	100.0(2)	100.0(2)
<i>a</i> [Å]	16.5507(7)	16.6037(4)	15.720(3)	10.1548(9)
<i>b</i> [Å]	17.6333(6)	17.7087(3)	10.4248(17)	15.6206(13)
<i>c</i> [Å]	17.2854(7)	17.5684(4)	16.049(3)	16.2411(14)
α [°]	90	90	90	72.926(2)
β[°]	114.292(5)	114.211(3)	98.578(4)	83.939(2)
γ [°]	90	90	90	89.112(2)
V [Å ³]	4598.0(4)	4711.27(18)	2600.7(8)	2448.6(4)
Z	4	4	4	4
$D(\text{calcd.}) [\text{g} \cdot \text{cm}^{-3}]$	1.238	1.491	1.107	1.170
μ (Mo- K_{α}) [mm ⁻¹]	0.406	5.142	0.062	0.071
Reflections collected	52223	53396	27365	34359
Independent reflections	15988	16658	4632	8661
Data/restraints/parameters	15988/0/501	16658/0/501	4625/0/296	8661/0/591
$R1, wR2[I>2\sigma(I)]^{[a]}$	0.0701/0.1727	0.0370/0.0716	0.0401/0.0937	0.0424/0.0937
R1, wR2 (all data) ^[a]	0.1473/0.2205	0.0738/0.0835	0.0496/0.0999	0.0651/0.1043
GOF	1.047	1.023	1.026	1.006
CCDC	1935356	1935357	1935358	1935359

Table S2 Crystallographic data for complexes 5-8 [a] $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$. $wR2 = [\Sigma w (|Fo^2| - |Fc^2|)^2 / \Sigma w |Fo^2|^2]^{1/2}$

2 Computational Results

To rationalize the processes involved in insertion of carbene carbon of BICAAC into the hydroboranes, we optimized the geometry and looked at the change in MOs and ESPs of all the steps involved in the process including possible adducts between BICAAC and boranes, intermediate steps during adduct formation and B-H activation, and calculated free energies in their ground states using density functional theory (DFT). The geometry optimization, frequency calculation and NBO analysis of all these structures have been carried out at B3LYP/6-31+G(d,p) level using Gaussian09 suit of the programme. The transition states were also investigated and confirmed by the IRC calculation employed in Gaussian09.[9] These calculations are in excellent agreement with the experimental observations and showed the carbene insertion into the B-H bond in case of 9-BBN and catechol borane (HBcat), and adduct formation with BH₃, BH₂Cl, and BHCl₂ through a series of transformations between BICAAC and boranes. The visualization of MOs and ESPs was done using Molden [10] and Chemcraft.[11]

2.1 Optimized geometry of BICAAC and molecules 1-3 and 5-8

Structure of singlet BICAAC

Ν	0.32210100	-0.18238100	0.02848500
С	1.01308300	-0.38380900	-1.07990400
С	2.41778700	-0.87351300	-0.73384500
С	3.21207500	-1.17771800	-2.00975800
Н	2.73765500	-1.99640300	-2.56300800
Н	4.24521900	-1.47291800	-1.77909100

Н	3.23758500	-0.31182600	-2.67838900
С	3.15383900	0.15847600	0.19154400
Н	4.06011600	-0.35117700	0.55184500
С	3.61027900	1.44232100	-0.51942800
Н	4.08059000	2.12450900	0.20081600
Н	2.76855100	1.97066100	-0.98200800

Н	4.34590200	1.23460400	-1.30344400	Н	-3.55509200	-3.07774000	0.70394500
С	2.24019600	0.47206500	1.40824400	С	-2.09976100	-2.79338200	-1.68865000
Н	2.76899700	0.29378200	2.35330200	Н	-3.17322600	-2.71250700	-1.89951800
Н	1.94716500	1.52785200	1.41356700	Н	-1.81896600	-3.85061000	-1.77926700
С	0.97438500	-0.41314500	1.38604200	Н	-1.55784100	-2.22602900	-2.45253500
С	0.05042600	-0.10453300	2.56023400	С	-3.41634600	-0.36960000	-0.23920500
Н	-0.25796000	0.94564900	2.57456200	Н	-4.19834200	-1.12051900	-0.31489100
Н	0.58378200	-0.31103900	3.49624700	С	-3.76547800	0.97756900	-0.23071900
Н	-0.85352200	-0.72111700	2.54547000	Н	-4.81059200	1.27296900	-0.28312900
С	1.45883000	-1.88360900	1.40245800	С	-2.76545000	1.94451900	-0.18035300
Н	2.10005200	-2.01266400	2.28344300	Н	-3.04094300	2.99528800	-0.21199500
Н	0.60985200	-2.56249800	1.53483500	С	-1.41105700	1.59148800	-0.10607100
С	2.23138400	-2.18108300	0.09796300	С	-0.36116300	2.69762700	-0.14992600
Н	1.69261200	-2.91263000	-0.51635300	Н	0.60998400	2.24792200	0.05882200
Н	3.21777800	-2.61535200	0.30748300	С	-0.27319300	3.29943900	-1.56843000
С	-1.07975000	0.21844600	-0.07205800	Н	-0.04341700	2.52267500	-2.30536900
С	-2.07685700	-0.77774700	-0.17042200	Н	0.51426800	4.06296800	-1.61226600
С	-1.76224300	-2.26758500	-0.27793300	Н	-1.21900800	3.77477600	-1.85684300
Н	-0.68721000	-2.39518200	-0.14885000	С	-0.59411600	3.79700700	0.90393000
С	-2.46390800	-3.10591000	0.80850100	Н	-1.51636400	4.35874500	0.71417000
Н	-2.21899800	-2.74965500	1.81630400	Н	0.23452100	4.51573200	0.88718600
Н	-2.15439500	-4.15605800	0.73614300	Н	-0.66124800	3.38051500	1.91613300

Zero-point correction	=	0.504158 (Hartree/Particle)
Thermal correction to Energy	=	0.528125
Thermal correction to Enthalpy	=	0.529069
Thermal correction to Gibbs Free Energy	=	0.452678
Sum of electronic and zero-point Energies	=	-912.435874
Sum of electronic and thermal Energies	=	-912.411907
Sum of electronic and thermal Enthalpies	=	-912.410962
Sum of electronic and thermal Free Energy	ies =	-912.487354

Structure of 1

С	-0.98656900	-0.30907900	1.04725500
С	-2.45639200	-0.57801000	0.71277500
С	-0.94994700	-0.21210100	-1.38722300
С	-2.94326400	0.69074500	-0.08101900
Н	-2.73245200	1.54942700	0.57030800
С	-2.09696800	0.82334800	-1.37278600
Н	-2.71640100	0.63536400	-2.25937700
Н	-1.69594900	1.83629500	-1.48345900
С	-1.59868300	-1.61501100	-1.45599700
Н	-2.18587600	-1.66757000	-2.38065700
Н	-0.82002200	-2.37959100	-1.53550100
С	-2.48707200	-1.83129800	-0.21320800
Н	-3.52545100	-2.03442300	-0.49751300
Н	-2.15148500	-2.69817500	0.36722200
N	-0.25240600	-0.12198800	-0.04354000
С	1.18115200	0.15445000	0.01486600
С	1.61946600	1.49556400	0.05527400
С	2.09126300	-0.92438600	0.00547400
С	2.99929000	1.73544200	0.01252500
С	3.45982900	-0.62553500	-0.03866900
С	3.91549400	0.68946000	-0.05151100
Н	3.36184000	2.75926000	0.04446000
Н	4.18066300	-1.43865000	-0.04753900
Н	4.98188300	0.89816500	-0.08740100
С	0.67381800	2.68376700	0.22075800
С	0.82101900	3.72586200	-0.90581500
С	0.86440700	3.34256300	1.60390800

Η	-0.35189700	2.30968700	0.19137900
Н	0.08462600	4.52872200	-0.77660900
Н	1.81483100	4.18878100	-0.90075000
Н	0.72991500	2.61164200	2.40662800
Н	1.86563500	3.78021700	1.70039500
Н	0.13231100	4.14830600	1.74224800
С	1.66513400	-2.38720500	0.11264500
С	2.15462700	-3.00568100	1.43946600
С	2.13531700	-3.23063900	-1.08943700
Н	0.57373000	-2.42383300	0.13689300
Н	1.79671500	-2.42589800	2.29512400
Н	1.77982800	-4.03238700	1.53739500
Н	3.24999800	-3.04464900	1.48151700
Н	1.77502200	-2.82423900	-2.04197900
Н	3.22940100	-3.27840200	-1.14389800
Н	1.76503300	-4.25938200	-0.99890200
В	-0.43455000	-0.25949300	2.53373500
Н	0.74165000	0.00626600	2.60682900
Н	-1.13185300	0.54889900	3.13442500
Н	-0.68260700	-1.35735300	3.02163200
Н	0.66802600	3.28327100	-1.89724700
С	-3.32364900	-0.83223200	1.95081800
Н	-4.33220500	-1.13527300	1.64798300
Н	-2.89922900	-1.62783300	2.56778500
Н	-3.40276000	0.06002800	2.57905000
С	-4.44736800	0.72138100	-0.39013100
Н	-5.05466700	0.75498600	0.51932300

Н	-4.68470500	1.61748500	-0.97704900	Н	0.44894800	1.01127000	-2.54265700
Н	-4.76324700	-0.14832300	-0.98017500	Н	0.79276400	-0.72286200	-2.60826900
С	-0.00933500	0.01910200	-2.56717600	Н	-0.59183400	-0.06088500	-3.49226500

Zero-point correction =	0.538083 (Hartree/Particle)
Thermal correction to Energy =	0.563566
Thermal correction to Enthalpy =	0.564510
Thermal correction to Gibbs Free Ener	y = 0.486382
Sum of electronic and zero-point Energy	gies = -939.107422
Sum of electronic and thermal Energie	s = -939.081940
Sum of electronic and thermal Enthalp	ie s= -939.080995
Sum of electronic and thermal Free En	ergies = -939.159123

Structure of 1TS

С	0.70493400	0.10656400	-1.31376000
С	2.82272200	-0.16644300	-0.80295000
С	0.94491200	0.28048100	1.17859100
С	3.24682300	0.97439400	0.15825600
Н	3.54882100	1.83627800	-0.44192300
С	2.02628800	1.39076000	1.03097800
Н	2.37702700	1.64630400	2.03910800
Н	1.55787900	2.29130500	0.62235200
С	1.69492400	-1.06246000	1.33920600
Н	2.38582700	-0.97102800	2.18684000
Н	0.99310000	-1.85752500	1.60675600
С	2.47190800	-1.41271400	0.04757600
Η	3.42016500	-1.90327300	0.31464700
Н	1.93192000	-2.14692000	-0.55866100

Ν	0.09678900	0.17251600	-0.04818500
С	-1.33133300	-0.05642200	-0.03022200
С	-2.17254800	1.08988200	-0.07943500
С	-1.90638400	-1.35461600	-0.02668100
С	-3.56182000	0.91596900	-0.04163300
С	-3.30373300	-1.47249500	0.00468900
С	-4.13001100	-0.35352100	0.01311200
Н	-4.21050900	1.78750700	-0.06965200
Н	-3.75244800	-2.46255100	0.01784900
Н	-5.21068800	-0.47061300	0.04369900
С	-1.61632600	2.50408900	-0.23122400
С	-2.17823000	3.49255600	0.80909500
С	-1.86055100	3.03101600	-1.66167300
Н	-0.53504900	2.44848700	-0.08942300

Н	-1.67142500	4.46122400	0.71808900	Н	-2.03600900	3.13058500	1.83393900
Н	-3.25087100	3.67207200	0.66727500	Н	1.89373600	2.12824500	-1.67773400
Н	-1.41584700	2.36633000	-2.40991900	С	3.85702900	-0.54762900	-1.86252100
Н	-2.93358300	3.11400200	-1.87660500	Н	3.43371000	-1.23593900	-2.60143500
Н	-1.41331200	4.02542700	-1.78440800	Н	4.24332300	0.32239800	-2.40150800
С	-1.08680400	-2.63879900	-0.09770400	Н	4.70774700	-1.06256900	-1.38598800
С	-1.38683500	-3.43369200	-1.38623500	С	4.48854800	0.62262400	1.01586100
С	-1.28843400	-3.53075800	1.14448700	Н	5.34748500	0.36376100	0.38627400
Н	-0.03471800	-2.35839600	-0.13342600	Н	4.77350100	1.50017300	1.60976600
Н	-1.23225700	-2.81939800	-2.28058900	Н	4.32253900	-0.20439100	1.71335600
Н	-0.72828200	-4.30872400	-1.45589800	С	0.08106500	0.56667200	2.41070700
Н	-2.42212200	-3.79459500	-1.40583100	Н	-0.38083600	1.55750500	2.35745100
Н	-1.07714700	-2.98606000	2.07174700	Н	-0.71519200	-0.17353000	2.53533800
Н	-2.31796400	-3.90304600	1.20838800	Н	0.71223000	0.53670600	3.30567600
Н	-0.62323300	-4.40245200	1.10244900	Н	0.33031600	-0.75845300	-1.88125900
В	1.65619700	1.01049500	-2.02254900	Н	1.92679800	0.69831300	-3.14782700

Zero-point correction =	0.538722 (Hartree/Particle)
Thermal correction to Energy =	0.563657
Thermal correction to Enthalpy =	0.564601
Thermal correction to Gibbs Free Ener	y = 0.487545
Sum of electronic and zero-point Energy	gies = -939.034203
Sum of electronic and thermal Energie	s = -939.009269
Sum of electronic and thermal Enthalp	ies = -939.008324
Sum of electronic and thermal Free En	ergies = -939.085380

Structure of 1BA

С	-1.16528000	-0.27385600	1.30851700
С	-2.57140100	-0.64768500	0.79757700
С	-0.73311500	-1.04510200	-1.04570600
С	-2.89502500	0.24170800	-0.44050600
Н	-2.82968800	1.28413800	-0.10202200
С	-1.79619700	-0.01917200	-1.51262700
Н	-2.25655500	-0.43275900	-2.41976300
Н	-1.30639000	0.90884500	-1.82416100
С	-1.47552400	-2.35678400	-0.70796600
Н	-1.91097000	-2.72549800	-1.64501800
Н	-0.75494500	-3.11035300	-0.37695500
С	-2.57701300	-2.12625400	0.35625100
Н	-3.56474800	-2.39039400	-0.03855500
Н	-2.40725000	-2.76422700	1.22794000
Ν	-0.06455300	-0.51745500	0.24071800
С	1.11828600	0.35768000	0.09939800
С	1.04455800	1.77398700	0.01551900
С	2.39759300	-0.27999000	0.06842200
С	2.23781100	2.50823600	-0.09771800
С	3.54478800	0.51009400	-0.06355900
С	3.48023200	1.89616800	-0.14628800
Н	2.18158700	3.59164800	-0.14961400
Н	4.51628000	0.02529400	-0.08618300
Н	4.38685700	2.48889900	-0.23949400
С	-0.23264400	2.61397700	0.07173800
С	-0.38775000	3.53990300	-1.15360600
С	-0.30802700	3.43727500	1.37601600

Н	-1.08729700	1.94804600	0.06652500
Н	-1.36615300	4.03595900	-1.12742200
Н	0.37642100	4.32502800	-1.17513600
Н	-0.22763100	2.79735200	2.26187000
Н	0.50028600	4.17608800	1.42960900
Н	-1.26042200	3.97994700	1.43101300
С	2.64126500	-1.78862700	0.20950100
С	3.35254800	-2.12234800	1.54057500
С	3.47464600	-2.36742600	-0.95720800
Н	1.67860200	-2.30079300	0.22160300
Н	2.78950100	-1.75438800	2.40101100
Н	3.46220800	-3.20944400	1.64350400
Н	4.35682800	-1.68197300	1.57254900
Н	3.07705400	-2.09051200	-1.93848000
Н	4.51535100	-2.02461400	-0.91792500
Н	3.49276900	-3.46256500	-0.89278100
В	-0.09080700	-1.31424000	1.73751900
Н	-0.31446700	2.98277700	-2.09457400
Н	-1.12284700	0.73495400	1.71368300
С	-3.55533800	-0.42193200	1.95489000
Н	-3.22361400	-0.96185700	2.84963100
Н	-3.63367000	0.64222500	2.21405800
Н	-4.55932400	-0.78150300	1.70190600
С	-4.30547000	0.08106800	-1.03236300
Н	-5.08741900	0.31233500	-0.30034000
Н	-4.43454500	0.76953000	-1.87743900
Н	-4.48474800	-0.93266500	-1.41033000

С	0.26899900	-1.29244600	-2.17296000	Н	-0.28543800	-1.57011100	-3.07640700
Н	0.86352700	-0.40427800	-2.40586400	Н	0.80446000	-0.91128400	2.41810600
Н	0.94540900	-2.11577400	-1.93828200	Н	-0.27077000	-2.49553100	1.70374800

Zero-point correction =	0.542726 (Hartree/Particle)
Thermal correction to Energy =	0.567071
Thermal correction to Enthalpy =	0.568016
Thermal correction to Gibbs Free Ener	y = 0.493250
Sum of electronic and zero-point Energy	gies = -939.090118
Sum of electronic and thermal Energie	s = -939.065772
Sum of electronic and thermal Enthalp	ies = -939.064828
Sum of electronic and thermal Free En	ergies = -939.139594

Structure of 2

.

~

C	-1.01049100 -0.16337300 0.71072100
С	-2.41830600 -0.74444000 0.47848700
С	-0.79488000 -1.05239500 -1.54149700
С	-2.99050500 0.00403800 -0.78524800
Н	-3.01699500 1.06465100 -0.51307500
С	-2.00513300 -0.19223300 -1.96438700
Н	-2.49540100 -0.71053700 -2.79802500
Н	-1.65656300 0.76885800 -2.35452100
С	-1.32510500 -2.43192100 -1.08888300
Н	-1.89433600 -2.85192600 -1.92661500

~ .

Н	-0.49093700	-3.11410100	-0.90449700				
С	-2.20812000	-2.25705100	0.15642100				
Н	-3.19020400	-2.72110900	0.01962200				
Н	-1.76147500	-2.74131600	1.03253800				
N	-0.19911900	-0.37227100	-0.30855300				
С	1.22536800	-0.01527400	-0.35564100				
С	1.60642400	1.23985400	-0.87675900				
С	2.17428500	-0.98735100	0.03609500				
С	2.97724900	1.48077000	-1.04274300				
С	3.52820500	-0.68334000	-0.14988900				
С	3.93205600	0.53090300	-0.69665800	Н	1.86752300	-3.50970800	-1.17193700
---	-------------	-------------	-------------	----	-------------	-------------	-------------
Н	3.30045100	2.43996600	-1.43658200	Н	3.36882500	-3.55987400	-0.24223000
Н	4.28000000	-1.40778600	0.15024500	Н	1.95792800	-4.46747500	0.31781600
Н	4.98925800	0.74342400	-0.83415300	В	-0.71708200	0.65097300	2.09714100
С	0.62965200	2.36776700	-1.21138700	Н	-1.23129000	0.07110200	3.00705700
С	0.63185500	2.73062100	-2.71152100	Н	0.37095300	1.88050200	-3.35187500
С	0.93130700	3.62586500	-0.36858900	Cl	1.04550100	1.02179900	2.59012400
Н	-0.37942100	2.04626700	-0.94126700	Cl	-1.67155200	2.29410100	1.79262000
Н	-0.09410500	3.53001000	-2.90414600	С	-3.37721800	-0.64096400	1.67394000
Н	1.61588800	3.09395000	-3.03119300	Н	-2.96839200	-1.13956700	2.55633600
Н	0.96095500	3.39025900	0.69756600	Н	-3.59767100	0.39416700	1.94190600
Н	1.89047300	4.07474200	-0.65421500	Н	-4.31694900	-1.14223600	1.42112500
Н	0.14859400	4.37650600	-0.52913100	С	-4.42024900	-0.40166600	-1.17632700
С	1.81763300	-2.32332700	0.69021900	Н	-5.14630000	-0.16560000	-0.39303300
С	2.39870200	-2.43226900	2.11679700	Н	-4.72001200	0.15063400	-2.07521300
С	2.27639800	-3.53042500	-0.15549300	Н	-4.50036500	-1.47117600	-1.40883400
Н	0.73032100	-2.37830100	0.78988600	С	0.19769600	-1.20548900	-2.69184400
Н	2.08506000	-1.59030100	2.73900300	Н	0.57470000	-0.24637800	-3.05138500
Н	2.05734300	-3.36288600	2.58736500	Н	1.05535800	-1.82647100	-2.42445700
Н	3.49492100	-2.45337000	2.09939100	Н	-0.32697700	-1.69398100	-3.52083700

Zero-point correction =	0.514248 (Hartree/Particle)
Thermal correction to Energy =	0.541639
Thermal correction to Enthalpy =	0.542583
Thermal correction to Gibbs Free En	ergy = 0.458508
Sum of electronic and zero-point Ene	ergies = -1857.797164
Sum of electronic and thermal Energ	ies = -1857.769774
Sum of electronic and thermal Enthal	lpies = -1857.768829
Sum of electronic and thermal Free E	Energies = -1857.852904

Structure of 2TS

С	1.10019200	-0.40573800	-0.33959400
С	2.54256400	-0.14008900	0.22856500
С	0.70939300	1.27126500	1.44786400
С	2.81700900	1.39678900	0.03541800
Н	2.72165200	1.57894000	-1.04442700
С	1.72790700	2.21279100	0.77981200
Н	2.18556600	2.83095800	1.56356500
Н	1.21617200	2.90315100	0.10136500
С	1.47652500	0.41461900	2.48087400
Н	1.99812500	1.08836900	3.17272700
Н	0.76992500	-0.16469400	3.08232500
С	2.46994900	-0.49717000	1.73962100
Н	3.47510800	-0.41353400	2.16738500
Н	2.18823100	-1.55300400	1.83167300
Ν	0.15934100	0.33644400	0.39993400
С	-1.27816600	0.23841600	0.24203300
С	-1.95189700	1.16131200	-0.59833300
С	-2.00170100	-0.74105100	0.96418600
С	-3.34937700	1.10602700	-0.66624600
С	-3.39886300	-0.75433200	0.85763900
С	-4.07374600	0.16387300	0.05907800
Н	-3.88061500	1.80464500	-1.30761500
Н	-3.96800300	-1.50157100	1.40471100
Н	-5.15872200	0.13767300	-0.00803400
С	-1.22380000	2.18024400	-1.47858900

С	-1.61550500	3.63892200	-1.15953500
С	-1.45597600	1.91328500	-2.98231900
Н	-0.15112900	2.07305400	-1.29267200
Н	-1.03849100	4.33018700	-1.78649900
Н	-2.67761400	3.81767500	-1.36472700
Н	-1.17196800	0.89612400	-3.26307300
Н	-2.50987500	2.05334400	-3.25242500
Н	-0.86462400	2.61602700	-3.58294700
С	-1.32916300	-1.80594100	1.82774500
С	-1.60890700	-3.23044200	1.30347400
С	-1.73895200	-1.69688500	3.31098400
Н	-0.24986800	-1.64717800	1.76746500
Н	-1.31991800	-3.33490700	0.25359400
Н	-1.04631300	-3.96642200	1.89172400
Н	-2.67259600	-3.48565100	1.38415900
Н	-1.53633700	-0.70046300	3.71973900
Н	-2.80899100	-1.89650900	3.44450400
Н	-1.18823100	-2.42972700	3.91412400
В	0.75364000	-1.37786400	-1.47723100
Н	-1.43338300	3.90448600	-0.11325000
Cl	-0.90975700	-1.63387400	-2.14111300
Cl	1.91475700	-2.50663300	-2.29064800
Н	1.17666500	0.00754600	-1.61452800
С	3.69490500	-0.95059300	-0.37878300
Н	3.53753300	-2.02491200	-0.27583200

Н	3.86144200	-0.72987000	-1.43696900	Н	4.44340200	1.65507800	1.49366800
Н	4.61338800	-0.70314600	0.16254300	С	-0.37736500	2.07409100	2.16550400
С	4.22227500	1.87223100	0.44072400	Н	-0.92349900	2.73894300	1.49483700
Н	5.01200600	1.42834400	-0.17271500	Н	-1.10446400	1.42891800	2.66592600
Н	4.28566500	2.96011800	0.31454200	Н	0.107358	00 2.69110:	500 2.93096800

Zero-point correction =	0.521766 (Hartree/Particle)
Thermal correction to Energy =	0.548919
Thermal correction to Enthalpy =	0.549863
Thermal correction to Gibbs Free Ener	gy = 0.466564
Sum of electronic and zero-point Energy	gies = -1858.370028
Sum of electronic and thermal Energies	s = -1858.342875
Sum of electronic and thermal Enthalp	ies = -1858.341931
Sum of electronic and thermal Free En	ergies = -1858.425230

Structure of 2BA

С	-1.01991400	-0.33061200	0.61100100
С	-2.49559700	-0.44663500	0.07268700
С	-0.82153100	0.35045400	-1.78178100
С	-2.88454600	0.99290500	-0.39545100
Н	-2.68314700	1.65727100	0.45657500
С	-1.95699600	1.38806900	-1.57818700
Н	-2.54109700	1.43017100	-2.50892800
Н	-1.54230200	2.39201100	-1.43831300

С	-1.50663100	-0.96936600	-2.21241000
Н	-1.98011900	-0.82759800	-3.19259600
Н	-0.74136100	-1.74355300	-2.33345600
С	-2.55606900	-1.39082100	-1.15072700
Н	-3.56901700	-1.35036300	-1.56873200
Н	-2.40247500	-2.42673000	-0.84031600
N	-0.10970000	0.05988800	-0.49826100
С	1.18856800	0.60951600	-0.17201300

С	1.34060700	1.87782300	0.46286700	Н	2.79217100	-3.60521500	-0.57297500
С	2.35863300	-0.14842300	-0.47662300	Н	4.02476000	-2.44579600	-0.05141700
С	2.62570600	2.34384600	0.77291300	Н	2.68015800	-0.85653300	-3.17774100
С	3.62052400	0.37620900	-0.16124600	Н	4.13527100	-1.41418200	-2.34861000
С	3.76429200	1.61020500	0.46092500	Н	2.94322100	-2.59047800	-2.91702800
Н	2.73589200	3.30931400	1.26022500	В	-0.48458900	-1.61618000	1.39027600
Н	4.50905200	-0.20296900	-0.39853600	Н	0.32465800	4.01382500	-0.99296500
Н	4.75213800	1.99516500	0.70274700	Cl	-0.39369800	-3.24889400	0.71413800
С	0.17480400	2.79470700	0.82753300	Cl	0.05640500	-1.44526500	3.07021200
С	0.25382600	4.14925400	0.09237300	Н	-1.05371800	0.46779600	1.36997400
С	0.06603700	3.01361100	2.35132500	С	-3.41669200	-0.93985500	1.19803500
Н	-0.74493500	2.31438300	0.50299800	Н	-3.10801800	-1.92424400	1.57162900
Н	-0.64053800	4.74965800	0.30291700	Н	-3.42262000	-0.24457100	2.04767600
Н	1.12585000	4.73301300	0.40994400	Н	-4.44767700	-1.04661700	0.84448800
Н	-0.00694100	2.06175500	2.88919400	С	-4.36432500	1.20027900	-0.75692000
Н	0.93884900	3.54936600	2.74344400	Н	-5.02902300	1.04277800	0.09952800
Н	-0.82354000	3.61074700	2.58934500	Н	-4.51499700	2.23115700	-1.10159200
С	2.32839700	-1.54010600	-1.10817100	Н	-4.69129800	0.53770900	-1.56770800
С	2.94442200	-2.59811000	-0.16547600	С	0.13398800	0.83991300	-2.86867300
С	3.06009700	-1.59661000	-2.46665900	Н	0.66967500	1.74542400	-2.56582500
Н	1.28057400	-1.80178600	-1.27400800	Н	0.87161700	0.07890500	-3.13143100
Н	2.50002100	-2.56885400	0.83356800	Н	-0.44185400	1.07392500	-3.77154400

Zero-point correction =	0.525420 (Hartree/Particle)
Thermal correction to Energy =	0.553039
Thermal correction to Enthalpy =	0.553983
Thermal correction to Gibbs Free Ener	y = 0.469500
Sum of electronic and zero-point Energy	gies = -1858.395583
Sum of electronic and thermal Energie	s = -1858.367964
Sum of electronic and thermal Enthalp	ies = -1858.367020
Sum of electronic and thermal Free En	ergies = -1858.451502

С	-1.02049100 -	0.32625000	0.91141000
С	-2.51976900	-0.58215800	0.67699600
С	-1.15819200	-0.21216800	-1.51742300
С	-3.03973500	0.70410700	-0.06930900
Н	-2.76139900	1.55324000	0.56922800
С	-2.29534200	0.82755500	-1.41983800
Н	-2.98195000	0.63559500	-2.25445200
Н	-1.90208300	1.83841800	-1.56691900
С	-1.80982000	-1.61378200	-1.54603700
Н	-2.44844800	-1.66690600	-2.43562600
Н	-1.03757100	-2.37846500	-1.66806200
С	-2.62559800	-1.82561400	-0.25628700
Н	-3.68292900	-2.00342200	-0.48068700
Н	-2.27580400	-2.70479200	0.29632200
Ν	-0.36229200	-0.12934300	-0.22062900
С	1.07406400	0.14629700	-0.30255600
С	1.50940800	1.48896600	-0.32852600
С	1.97290000 -	-0.93586100	-0.41657500
С	2.87627200	1.72531000	-0.52101300
С	3.32794100 -	-0.63701100	-0.60831000
С	3.77953700	0.67751900	-0.67303700
Н	3.24114500	2.74860500	-0.53510900
Н	4.04370000	-1.45027600	-0.69050600
Н	4.83646200	0.88495700	-0.82049900
С	0.58719400	2.68586200	-0.09563300
С	0.56963700	3.66106300	-1.29073800
С	0.96275400	3.43576400	1.20069000

Н	-0.43056800	2.31184700	0.04194800
Н	-0.13511100	4.48003700	-1.10014100
Н	1.55695900	4.10843800	-1.45471400
Н	0.98326300	2.75622600	2.05697100
Н	1.95079600	3.90438900	1.11572400
Н	0.23299500	4.23130500	1.39766100
С	1.56146100	-2.40220500	-0.28623400
С	2.23277900	-3.06751900	0.93440200
С	1.85676500	-3.21159300	-1.56613100
Н	0.48345800	-2.44103200	-0.10977400
Н	2.03110100	-2.50539500	1.85019600
Н	1.85405300	-4.09000900	1.05768300
Н	3.32028800	-3.12946700	0.80601700
Н	1.36410500	-2.78787800	-2.44901300
Н	2.93246500	-3.24768200	-1.77524800
Н	1.50879700	-4.24547300	-1.44912800
В	-0.50090700	-0.35110500	2.42328400
Н	-0.73447000	-1.48413600	2.80007700
Н	0.27145800	3.17036400	-2.22446700
Cl	1.29892100	0.06036100	2.84458300
Н	-1.21437500	0.41451200	3.03418400
С	-3.33868000	-0.84659000	1.94827300
Н	-2.90647100	-1.65563600	2.54084000
Н	-3.40229500	0.03641300	2.59017300
Н	-4.35595800	-1.14130400	1.66884200
С	-4.56261000	0.76915700	-0.26017600
Н	-5.09676000	0.81919300	0.69312900

Н	-4.82224800	1.67001000	-0.82982100	Н	0.15996700	1.00538400	-2.77293100
Н	-4.94382000	-0.09336800	-0.82139300	Н	0.48237700	-0.72954200	-2.87274200
С	-0.30694900	0.01812100	-2.76377700	Н	-0.96337100	-0.05318300	-3.63871000

Zero-point correction =	0.531720 (Hartree/Particle)
Thermal correction to Energy =	0.558193
Thermal correction to Enthalpy =	0.559137
Thermal correction to Gibbs Free Ener	xgy = 0.478528
Sum of electronic and zero-point Energy	gies = -1398.756037
Sum of electronic and thermal Energie	es = -1398.729564
Sum of electronic and thermal Enthalp	bies = -1398.728620
Sum of electronic and thermal Free En	ergies = -1398.809228

Structure of 3TS

С	-1.03859300	-0.16163900	0.97580600
С	-2.55740900	-0.42272200	0.71497100
С	-1.19220600	-0.01823200	-1.47981500
С	-3.11506300	0.83684000	-0.03719700
Н	-2.96124600	1.68426900	0.64619100
С	-2.27315800	1.07241500	-1.32281000
Н	-2.91978400	1.04411300	-2.20995100
Н	-1.80501200	2.06222300	-1.31301900
С	-1.92929300	-1.37849300	-1.56286000
Н	-2.66564900	-1.32818200	-2.37544400
Н	-1.22388000	-2.17134300	-1.82901200
С	-2.61603100	-1.66702400	-0.21054800

H	-3.66277900	-1.95763000	-0.35427200
Н	-2.13451800	-2.50558500	0.30729600
N	-0.34400900	-0.03194300	-0.24115000
С	1.09537400	0.08035000	-0.31887000
С	1.69881100	1.36351300	-0.31234200
С	1.89287600	-1.08626000	-0.42299100
С	3.08917300	1.45323100	-0.45697000
С	3.27877800	-0.94174800	-0.56915000
С	3.87746400	0.31446000	-0.59554400
Н	3.56466900	2.43088300	-0.45214200
Н	3.90170100	-1.82854800	-0.65532100
Н	4.95507300	0.40522200	-0.70973900

С	0.90528900	2.65443800	-0.11074300	Н	1.03339100	-4.25715800	-1.61644200
С	1.04947400	3.63504400	-1.29313800	В	-0.47633200	-0.24603000	2.38632900
С	1.29650100	3.36446700	1.20360200	Н	-1.22318000	-0.40835800	3.29049900
Н	-0.15125400	2.38390400	-0.03248100	Н	0.75802600	3.18077400	-2.24618900
Н	0.41728700	4.51749200	-1.13273000	Cl	1.24457700	-0.06790500	2.90194900
Н	2.08335300	3.98556100	-1.39699700	Н	-1.03826300	0.92491400	1.66988300
Н	1.18958000	2.70174900	2.06703400	С	-3.37528800	-0.70388300	1.98174500
Н	2.33780400	3.70804500	1.17457600	Н	-2.98500400	-1.56748300	2.52743500
Н	0.66053100	4.24497700	1.36079900	Н	-3.38928100	0.15039800	2.66794400
С	1.31141500	-2.49613400	-0.35596600	Н	-4.41066500	-0.92920700	1.70695700
С	1.89054500	-3.30315300	0.82507700	С	-4.61740200	0.79426100	-0.36271900
С	1.51204800	-3.27123200	-1.67465800	Н	-5.24097100	0.74189200	0.53558000
Н	0.23719000	-2.39774900	-0.18318700	Н	-4.90043900	1.70640000	-0.90258500
Н	1.75883900	-2.77352000	1.77322400	Н	-4.87516500	-0.05639200	-1.00642400
Н	1.38829000	-4.27622800	0.89844900	С	-0.37516700	0.21893200	-2.74994300
Н	2.96264400	-3.49468000	0.69432600	Н	0.11413000	1.19589100	-2.75053100
Н	1.08642300	-2.73908600	-2.53271800	Н	0.39627300	-0.54236000	-2.89410000
Н	2.57705900	-3.43174900	-1.88202800	Н	-1.05206300	0.18009900	-3.61124800

Zero-point correction =	0.529623 (Hartree/Particle)
Thermal correction to Energy =	0.555659
Thermal correction to Enthalpy =	0.556604
Thermal correction to Gibbs Free Ener	y = 0.476678
Sum of electronic and zero-point Energy	gies = -1398.735711
Sum of electronic and thermal Energie	s = -1398.709675
Sum of electronic and thermal Enthalp	ies = -1398.708731
Sum of electronic and thermal Free En	ergies = -1398.788656

Structure of 3BA

С	-1.20695300 -0.13917800 0.78311500
С	-2.49963600 -0.86490000 0.21058100
С	-0.84985200 -0.06103700 -1.66579300
С	-3.22527000 0.14771800 -0.72892100
Н	-3.90715700 -0.45516300 -1.34850800
С	-2.15188400 0.78493200 -1.64565400
Н	-2.53314600 0.87625500 -2.67101300
Н	-1.92146200 1.80412600 -1.31479600
С	-1.28755900 -1.51950100 -1.93777600
Н	-1.93688600 -1.54821000 -2.82407900
Н	-0.41767600 -2.14548300 -2.16133300
С	-2.03484500 -2.04326700 -0.68276300
Н	-2.91520000 -2.63200100 -0.97392900
Н	-1.38966500 -2.70951100 -0.10093200
N	-0.21360300 -0.06868100 -0.30585100
С	1.10381500 0.46650300 -0.06473600
С	1.30693000 1.82444600 0.31829000
С	2.24298500 -0.38276800 -0.21966500
С	2.60916600 2.28987200 0.55041900
С	3.52449000 0.14978100 -0.01889600
С	3.71729200 1.47048500 0.37103800
Н	2.75819900 3.32290100 0.85488400
Н	4.39137300 -0.49236200 -0.15002800
Н	4.72072100 1.85595600 0.53577400
С	0.17433000 2.83978400 0.47381600
С	0.35755000 4.06632800 -0.44434500
С	0.00143100 3.28592400 1.94068000
Н	-0.75342900 2.36141000 0.16408300

Н	-0.51781200	4.72481000	-0.37541800
Н	1.23739500	4.65882600	-0.16745100
Н	-0.17097500	2.43055500	2.60385900
Н	0.89304500	3.81110400	2.30422800
Н	-0.85151600	3.96954800	2.03880500
С	2.15570700	-1.87136600	-0.56702200
С	2.97226000	-2.74399000	0.41371700
С	2.63416800	-2.19111000	-2.00074400
Н	1.10560600	-2.15967000	-0.48037000
Н	2.78405100	-2.47737900	1.45650600
Н	2.71053900	-3.80097000	0.27904000
Н	4.05029000	-2.65183500	0.23229000
Н	2.02853100	-1.70626900	-2.77089100
Н	3.67432800	-1.87358900	-2.14660900
Н	2.58996600	-3.27342700	-2.17824400
В	-0.79083200	-0.79591400	2.15737400
Н	0.47523700	3.76775000	-1.49229500
Cl	0.15188400	-2.27497600	2.35614000
Н	-1.19460400	-0.33597700	3.18110700
Н	-1.55497300	0.86890400	1.07681200
С	-3.43505400	-1.37574400	1.31777800
Н	-4.37709800	-1.72989600	0.87937200
Н	-2.99663100	-2.22259900	1.86060000
Н	-3.68245400	-0.59804500	2.04866000
С	-4.08309100	1.21808900	-0.04012600
Н	-4.48857300	1.90895200	-0.79017500
Н	-4.93302400	0.78604100	0.49951300
Н	-3.50129500	1.81709300	0.67234100

С	0.07327500	0.49316900	-2.75078700	Н	-0.39838100	0.35134500	-3.73034800
Н	1.04579000	0.00082300	-2.77138300	Н	0.24871400	1.56588500	-2.61359800

Zero-point correction =	0.532724 (Hartree/Particle)
Thermal correction to Energy =	0.559147
Thermal correction to Enthalpy =	0.560092
Thermal correction to Gibbs Free Ener	gy = 0.479205
Sum of electronic and zero-point Energy	gies = -1398.736765
Sum of electronic and thermal Energie	s = -1398.710342
Sum of electronic and thermal Enthalp	ies = -1398.709398
Sum of electronic and thermal Free En	ergies = -1398.790284

С	1.01536100	-0.31114800	-0.07583100
С	2.39240700	-0.14369000	0.61565100
С	0.41828000	0.99557500	1.89847500
С	2.61821900	1.41740700	0.69602500
Н	2.53308300	1.78424300	-0.33444900
С	1.49864800	2.04082900	1.55477200
Н	1.90300200	2.40401200	2.50831600
Н	1.04649700	2.90541700	1.05933600
С	1.06093400	-0.08260100	2.79857900
Н	1.39891200	0.41304700	3.71615000
Н	0.30590400	-0.81507300	3.09562300
С	2.23192200	-0.73853100	2.05067800

Н	3.17490800	-0.58565100	2.58527000
Н	2.09650400	-1.82076800	1.95908900
N	0.04604600	0.29048600	0.59037500
С	-1.36940600	0.35632300	0.19718500
С	-1.80321200	1.46015200	-0.56967400
С	-2.25992900	-0.62861100	0.67755400
С	-3.17690800	1.57288200	-0.81766300
С	-3.62174300	-0.45530600	0.39894200
С	-4.08299400	0.63565400	-0.33098300
Н	-3.54061100	2.40443800	-1.41450600
Н	-4.33146500	-1.20008900	0.74748000
Н	-5.14488700	0.74567200	-0.53578600

С	-0.86629500	2.49992300	-1.18702500	Н	-2.03185700	-2.85015300	3.36993600
С	-1.15828100	3.92830600	-0.68060600	В	0.83326600	-1.18514200	-1.47437900
С	-0.92137900	2.46546000	-2.72970800	Н	-1.10710200	4.00451700	0.41153200
Н	0.16057400	2.25233700	-0.90541500	Cl	-0.83613700	-1.26499900	-2.29193200
Н	-0.43093200	4.63273800	-1.10232000	Cl	2.01074800	-0.43756200	-2.73592000
Н	-2.15608200	4.26382800	-0.98686100	Cl	1.28175400	-2.95399700	-0.96480500
Н	-0.68826600	1.46981500	-3.11440500	С	3.61841500	-0.80974800	-0.03314100
Н	-1.91374600	2.75186100	-3.09832100	Н	3.93467700	-0.29880500	-0.94256100
Н	-0.19417000	3.17458800	-3.14365400	Н	4.44462700	-0.77207800	0.68484500
С	-1.82835700	-1.89263600	1.42344500	Н	3.43986300	-1.85578300	-0.27719800
С	-2.22652600	-3.16894600	0.65084000	С	4.00379200	1.84075600	1.20906500
С	-2.39793200	-1.95240700	2.85704400	Н	4.04317000	2.93458100	1.28138800
Н	-0.73727700	-1.89967400	1.49289300	Н	4.21141400	1.43952800	2.20902000
Н	-1.83024900	-3.15826300	-0.36684100	Н	4.80887500	1.52716900	0.53947400
Н	-1.82751400	-4.05175300	1.16459100	С	-0.76693600	1.65628900	2.59953900
Н	-3.31641100	-3.27866500	0.59710100	Н	-1.24408600	2.42091000	1.98388300
Н	-2.11538700	-1.08220000	3.46001800	Н	-1.53105900	0.93831000	2.90254400
Н	-3.49313400	-2.00242900	2.84563700	Н	-0.38312200	2.14258000	3.50364800

Zero-point correction =	0.517086 (Hartree/Particle)
Thermal correction to Energy =	0.545831
Thermal correction to Enthalpy =	0.546775
Thermal correction to Gibbs Free Energy	gy = 0.461080
Sum of electronic and zero-point Energ	ties = -2318.046723
Sum of electronic and thermal Energies	s = -2318.017979
Sum of electronic and thermal Enthalpi	es = -2318.017035
Sum of electronic and thermal Free Ene	ergies = -2318.102729

Br	2.55077300	0.37412600	-1.66007000
Br	0.01984500	-1.62286900	-1.83652500
Br	2.06395100	-2.16307500	0.62185100
Ν	-0.61811500	0.67705900	0.77030200
С	0.65673300	0.36862300	0.59950000
С	1.56139400	1.06321700	1.64563200
С	1.33453000	2.62337800	1.57906400
Н	1.80631700	2.99365600	2.49903100
С	-0.17559600	2.92794800	1.64531000
Н	-0.40146300	3.63557100	2.45192100
Н	-0.52546600	3.39287800	0.71868400
С	-0.97729300	1.64013600	1.90490100
С	-0.45942000	1.00260800	3.21434100
Н	-0.57135200	1.75279900	4.00603200
Н	-1.08854200	0.15464700	3.49624900
С	1.00811900	0.58953200	3.03195000
Н	1.13247400	-0.49542300	3.09865500
Н	1.64530200	1.03354600	3.80521000
С	-2.47130300	1.94314100	1.99680500
Н	-3.07452200	1.04906000	2.16065800
Н	-2.85147300	2.44956300	1.10768100
Н	-2.61858400	2.61128700	2.85290000
С	2.00298900	3.34407100	0.40139200
Н	3.08538700	3.18845600	0.38341900
Н	1.82071700	4.42302000	0.48800800
Н	1.60688600	3.00849200	-0.56168400
С	3.07575800	0.78056700	1.65448200

Н	3.29778200	-0.19980900	2.07624300
Н	3.54908200	1.53491700	2.29564500
Н	3.53360900	0.83286100	0.66958000
С	-1.73377300	0.15266900	-0.02799300
С	-2.15612900	0.87475200	-1.16514500
С	-3.27232100	0.39244400	-1.85890000
Н	-3.60770400	0.91548000	-2.74979600
С	-3.94598800	-0.75198500	-1.44528900
Н	-4.80727100	-1.11018700	-2.00350100
С	-3.50177900	-1.44761800	-0.32525600
Н	-4.01528700	-2.35636300	-0.02520600
С	-2.39079900	-1.01841300	0.41017100
С	-1.93297000	-1.87181600	1.59553000
Н	-0.99873200	-1.45598400	1.98253000
С	-1.62485300	-3.32576100	1.17716900
Н	-2.53489400	-3.85251700	0.86543700
Н	-1.20048300	-3.87146900	2.02832600
Н	-0.90708400	-3.36370800	0.35567400
С	-2.96827800	-1.87862600	2.74106200
Н	-3.20627100	-0.87368600	3.10589200
Н	-2.58736300	-2.46241200	3.58810700
Н	-3.90812100	-2.34132700	2.41760400
С	-1.44638800	2.11457600	-1.71090000
Н	-0.58911000	2.33103800	-1.07034000
С	-0.88913600	1.88434200	-3.13186500
Н	-0.19260500	1.04354400	-3.15817300
Н	-0.35611300	2.78171200	-3.46930400

Н	-1.69499500	1.68638800 -3.84873600	Н	-1.80269100	4.23712800	-2.04942700
С	-2.36065700	3.35839000 -1.70376700	Н	-2.75745600	3.58264500	-0.70740800
Н	-3.21592100	3.22552400 -2.37641300	В	1.23115400	-0.68084000	-0.51574200

Zero-point correction =	0.515289 (Hartree/Particle)
Thermal correction to Energy =	0.544970
Thermal correction to Enthalpy =	0.545914
Thermal correction to Gibbs Free Energy	gy = 0.456860
Sum of electronic and zero-point Energ	gies = -8652.651602
Sum of electronic and thermal Energies	s = -8652.621921
Sum of electronic and thermal Enthalpi	ies = -8652.620977
Sum of electronic and thermal Free End	ergies = -8652.710031

С	0.68759400	-3.14192400	-1.04533400
С	1.55313800	-2.43870500	-2.12109100
С	3.12197400	-1.63113200	1.44789800
С	2.44190100	-1.27420800	-1.54755200
С	4.20822300	-1.35827500	0.37625100
С	3.82247200	-1.82581200	-1.04084000
Н	0.47760200	-4.17503200	-1.35302700
Н	3.32452500	-2.58455400	1.95630500
Н	5.15480300	-1.82809600	0.67518100
Н	-0.28925600	-2.64396900	-0.97689000
Н	0.89671600	-2.05056000	-2.90928500
Н	3.18869600	-0.85897600	2.22550200
Н	4.41489900	-0.27978200	0.34471300

Н	3.81359600	-2.92293700	-1.06192200
Н	4.61407100	-1.52584700	-1.74081800
С	1.34073500	-3.12882900	0.34742700
Н	2.26224900	-3.72421300	0.31878100
Н	0.68130100	-3.64189300	1.05831900
С	1.66636700	-1.67927100	0.87430800
Н	0.97757400	-1.42124800	1.68167900
Н	2.61946100	-0.57061500	-2.36883600
В	1.58170100	-0.68370500	-0.35006400
С	0.71459800	0.66232000	-0.51143200
С	1.55593400	1.98938700	-0.32527700
С	-0.75244500	2.13394400	0.90953400
С	0.71029800	3.16218100	-0.88040400

Н	1.26866100	4.09928800	-0.76078400	С	-1.77374400	-0.97906700	2.48977400
Н	0.58875500	3.02110800	-1.96247600	С	-1.23147300	-2.30309200	3.06933100
С	-0.65490000	3.24439000	-0.16861700	С	-3.01988000	-0.58958900	3.32583900
Н	-0.77082100	4.21578900	0.32981800	Н	-1.00083300	-0.21683200	2.62135200
Н	-1.49197400	3.16426000	-0.86878300	Н	-0.34783500	-2.66193900	2.54122900
С	0.41074800	2.37863100	1.89677200	Н	-0.96045300	-2.16159700	4.12343500
Н	0.33007700	3.40385800	2.28578000	Н	-1.98687400	-3.09711700	3.03274100
Н	0.31180200	1.70550900	2.75635400	Н	-3.55568900	0.27039700	2.91704800
С	1.79015600	2.17870100	1.20519900	Н	-3.73056400	-1.42399300	3.36476600
Н	2.22643600	1.24023500	1.57193400	Н	-2.72964300	-0.35662300	4.35865600
Ν	-0.53309900	0.76881900	0.32766800	Н	0.44623500	0.67567600	-1.58202300
С	-1.61766100	-0.13308600	0.00590500	Н	2.21541900	-3.16701500	-2.61041800
С	-2.17991300	-0.20046000	-1.30800000	Н	-3.01743000	2.45391600	-3.40173000
С	-2.11933200	-1.03957800	0.99747800	Н	-4.00951200	1.01524300	-3.10796500
С	-3.08668700	-1.22207200	-1.62699600	Н	-3.61670500	2.10069800	-1.76783300
С	-3.04545800	-2.02392200	0.62396800	С	2.87074300	1.95870800	-1.11809400
С	-3.50959300	-2.14608300	-0.68039100	Н	3.59765500	1.24792300	-0.71629100
Н	-3.48910200	-1.27761600	-2.63545300	Н	2.68913900	1.69562700	-2.16610800
Н	-3.40891300	-2.71804100	1.37700700	Н	3.33897100	2.94944300	-1.10806400
Н	-4.21116300	-2.93268000	-0.94758700	С	2.76862100	3.30045000	1.58687500
С	-1.93414900	0.84046500	-2.40399100	Н	2.83896800	3.37510800	2.67950400
С	-3.22088800	1.64833200	-2.68422300	Н	3.77950000	3.11965300	1.20497800
С	-1.39024600	0.23775000	-3.71458900	Н	2.43649000	4.27870100	1.21659900
Н	-1.19504200	1.55222700	-2.04496500	С	-2.09399300	2.28133000	1.62646600
Н	-0.46998800	-0.33135300	-3.54546200	Н	-2.13457700	1.69804100	2.54526300
Н	-2.11553800	-0.43639900	-4.18512800	Н	-2.23575400	3.33284400	1.90156700
Н	-1.16740600	1.03441500	-4.43565900	Н	-2.93419100	1.98685500	0.98847600

Zero-point correction =	0.730721 (Hartree/Particle)
Thermal correction to Energy =	0.762823
Thermal correction to Enthalpy =	0.763767
Thermal correction to Gibbs Free Ener	xgy = 0.671683
Sum of electronic and zero-point Energy	gies = -1250.981269
Sum of electronic and thermal Energie	$e_{\rm S} = -1250.949167$

Sum of electronic and thermal Enthalpies =	-1250.948223
Sum of electronic and thermal Free Energies =	-1251.040307

Structure of 7A

С	3.74901600 -	-1.88575800	-1.36460100	С	0.45942200	0.88409600	-0.38776800
С	4.34462200	-0.69289000	-0.60427000	С	0.51661100	2.38407900	-0.80299000
С	2.46401100	-1.48204800	1.72967300	С	-1.92284100	1.55650000	-0.46065600
С	3.30432200	0.41870800	-0.18991100	С	-0.32289800	2.55360700	-2.10566300
С	2.59701800	-0.04100800	2.23973500	Н	-0.29644300	3.60858400	-2.40039400
С	3.48393400	0.80583900	1.30449800	Н	0.17759000	1.99693500	-2.90569700
Н	4.54250200	-2.60218400	-1.62308500	С	-1.76298500	2.07285900	-1.90540100
Н	3.46827900	-1.92588400	1.70953600	С	-1.63713100	2.73341000	0.49285100
Н	2.99419500	-0.02629300	3.26537600	Н	-2.29561600	3.56207100	0.20139500
Н	3.34104400	-1.52499800	-2.31827500	Н	-1.90494300	2.46920700	1.52029900
Н	5.13111000	-0.23620100	-1.22299400	С	-0.15471600	3.16130300	0.39324000
Н	1.90854500	-2.09264900	2.45482300	Н	0.37095300	2.83274500	1.29980400
Н	1.59771000	0.41354200	2.29656100	Ν	-0.82567400	0.51991800	-0.21322600
Н	4.54024000	0.69504600	1.59854800	С	-1.28113200	-0.82782700	0.12946700
Н	3.24439600	1.86938000	1.45872200	С	-1.52643800	-1.74854300	-0.91969800
С	2.63564400	-2.58786200	-0.56090100	С	-1.57244500	-1.15143800	1.47946700
Н	3.08068000	-3.35913700	0.08816100	С	-2.03891400	-3.00828300	-0.58282400
Н	1.98458300	-3.13522800	-1.25431500	С	-2.09406200	-2.42468000	1.74740000
С	1.79750100	-1.60463000	0.30950800	С	-2.32404200	-3.35010900	0.73469200
Н	0.82414100	-2.07654700	0.45923000	Н	-2.22134300	-3.73344400	-1.37085600
Н	3.58434500	1.28705500	-0.78348700	Н	-2.31927000	-2.69868200	2.77401900
В	1.75466600	-0.13000300	-0.45292400	Н	-2.72259600	-4.33331500	0.97193100

С	-1.28632300	-1.45030700	-2.40326400	Н	1.57024800	-0.25467300	-1.68528900
С	-2.60545300	-1.44761900	-3.20873600	Н	4.86415000	-1.07167800	0.28713800
С	-0.30118300	-2.43724200	-3.05964600	Н	-3.34844000	-0.75131800	-2.80682900
Н	-2.40871000	-1.16453300	-4.25027700	Н	-2.03688000	1.28946100	-2.61628900
Н	-3.06241900	-2.44434700	-3.21909600	Н	-2.48217700	2.88869200	-2.04751200
Н	0.66992100	-2.41452600	-2.56415300	Н	-0.83232500	-0.46057500	-2.48325800
Н	-0.67932200	-3.46643500	-3.03560300	С	1.89702000	2.96957500	-1.11278300
Н	-0.15165200	-2.16503100	-4.11189700	Н	2.55051000	3.00479800	-0.23966100
С	-1.34626900	-0.21445800	2.67332900	Н	2.39521500	2.40681000	-1.90373100
С	-0.52757100	-0.88472800	3.79852300	Н	1.76934900	3.99541600	-1.47516600
С	-2.66410400	0.29606800	3.30108800	С	-0.02575400	4.69156900	0.33688700
Н	-0.77345500	0.64906100	2.32249500	Н	-0.58287500	5.13441000	1.17185500
Н	0.37510200	-1.36417800	3.42117300	Н	1.01213900	5.02571700	0.42307700
Н	-0.23094600	-0.13194600	4.53854400	Н	-0.44350500	5.10525100	-0.58995500
Н	-1.11982800	-1.64270500	4.32507700	С	-3.34340900	1.02170600	-0.27509400
Н	-3.26523800	0.90448800	2.62106500	Н	-4.03427200	1.85660600	-0.44154100
Н	-3.28655900	-0.54357400	3.63331600	Н	-3.58745300	0.23906200	-0.99552300
Н	-2.44059400	0.91088200	4.18186400	Н	-3.53239600	0.62611100	0.72116700

Zero-point correction =	0.729774 (Hartree/Particle)
Thermal correction to Energy =	0.761345
Thermal correction to Enthalpy =	0.762289
Thermal correction to Gibbs Free Energy	gy = 0.672318
Sum of electronic and zero-point Energ	sies = -1250.967710
Sum of electronic and thermal Energie	s= -1250.936138
Sum of electronic and thermal Enthalpi	es = -1250.935194
Sum of electronic and thermal Free Ene	ergies = -1251.025165

Structure of 7TS

С	3.16841400	-2.20507500	-1.60953400
С	4.08385400	-1.16770600	-0.94692200
С	2.50922700	-1.73251000	1.70029900
С	3.31976600	0.06977000	-0.34079800
С	2.95628400	-0.34265200	2.17629400
С	3.80742800	0.37551200	1.10815800
Н	3.76498800	-3.00852300	-2.06457300
Н	3.40755000	-2.34060200	1.53079200
Н	3.51301000	-0.42146900	3.12091300
Н	2.62960300	-1.71864900	-2.43671700
Н	4.81865600	-0.81047600	-1.68236500
Н	1.96787800	-2.24768200	2.50497600
Н	2.06693500	0.26489800	2.39653900
Н	4.86304100	0.08085400	1.21295900
Н	3.77733800	1.45811500	1.29916700
С	2.15708300	-2.78856500	-0.60642600
Н	2.63144600	-3.60725700	-0.04389900
Н	1.32552600	-3.25344500	-1.14802100
С	1.62076100	-1.72140600	0.39410300
Н	0.61987200	-2.03224900	0.69048600
Н	3.60801800	0.91161600	-0.96250300
В	1.71161000	-0.22458700	-0.25208500
С	0.56320800	0.82319300	-0.39086200
С	0.74679500	2.31883500	-0.82790400
С	-1.76561400	1.73067100	-0.47690000
С	-0.08242800	2.58625400	-2.11621900

16841400	-2.20507500	-1.60953400	Н	0.02613000	3.64245900	-2.38998200	
.08385400	-1.16770600	-0.94692200	Н	0.36640700	2.01061000	-2.93479300	
.50922700	-1.73251000	1.70029900	С	-1.56207800	2.22087400	-1.92399200	
.31976600	0.06977000	-0.34079800	С	-1.36598100	2.89162500	0.45775200	
.95628400	-0.34265200	2.17629400	Н	-1.91212300	3.79057300	0.14019400	
.80742800	0.37551200	1.10815800	Н	-1.68021800	2.68292300	1.48552500	
.76498800	-3.00852300	-2.06457300	С	0.15873200	3.13721400	0.38343500	
.40755000	-2.34060200	1.53079200	Н	0.62961000	2.72093800	1.28436200	
.51301000	-0.42146900	3.12091300	Ν	-0.80763000	0.59112300	-0.19655500	
.62960300	-1.71864900	-2.43671700	С	-1.37196100	-0.68825100	0.18603700	
.81865600	-0.81047600	-1.68236500	С	-1.73061600	-1.61943600	-0.82571300	
.96787800	-2.24768200	2.50497600	С	-1.63063500	-0.97554400	1.55286700	
.06693500	0.26489800	2.39653900	С	-2.30869100	-2.83672700	-0.44088800	
.86304100	0.08085400	1.21295900	С	-2.22714600	-2.20204100	1.87573200	
.77733800	1.45811500	1.29916700	С	-2.55797600	-3.13275800	0.89531800	
.15708300	-2.78856500	-0.60642600	Н	-2.57824400	-3.56243300	-1.20411400	
.63144600	-3.60725700	-0.04389900	Н	-2.43067800	-2.43687800	2.91703100	
.32552600	-3.25344500	-1.14802100	Н	-3.01158100	-4.08158400	1.17139500	
.62076100	-1.72140600	0.39410300	С	-1.56059100	-1.35259000	-2.32544700	
.61987200	-2.03224900	0.69048600	С	-2.92307300	-1.28480600	-3.05242100	
.60801800	0.91161600	-0.96250300	С	-0.67490700	-2.39170600	-3.04112200	
.71161000	-0.22458700	-0.25208500	Н	-2.77630000	-1.01138400	-4.10485200	
.56320800	0.82319300	-0.39086200	Н	-3.42728600	-2.25842100	-3.03182800	
.74679500	2.31883500	-0.82790400	Н	0.34274100	-2.39189000	-2.64903900	
.76561400	1.73067100	-0.47690000	Н	-1.07840900	-3.40679900	-2.94433600	
.08242800	2.58625400	-2.11621900	Н	-0.62266700	-2.15834700	-4.11200200	

С	-1.28693500	-0.02335900	2.70222100	Н	-2.21082100	3.09091100	-2.08643700
С	-0.42574100	-0.69843600	3.79043200	Н	-1.06580300	-0.38556400	-2.43642900
С	-2.54329100	0.56540100	3.38278400	С	2.17067400	2.79117400	-1.13549300
Н	-0.70246400	0.80188600	2.28559200	Н	2.83987200	2.72068900	-0.27551500
Н	0.45441400	-1.18703500	3.37114500	Н	2.60380600	2.23530400	-1.96994700
Н	-0.08650200	0.05113600	4.51599600	Н	2.13201000	3.84143500	-1.44232400
Н	-0.99737000	-1.45284200	4.34482700	С	0.46498000	4.64358200	0.37775300
Н	-3.17435300	1.13693700	2.69684000	Н	-0.05893200	5.12348700	1.21392700
Н	-3.16160100	-0.23068800	3.81523900	Н	1.53177100	4.85707900	0.49602800
Н	-2.24798200	1.23620000	4.19953800	Н	0.11899900	5.12935300	-0.54394300
Н	1.11049000	-0.01290300	-1.47668000	С	-3.23490900	1.36196200	-0.26515100
Н	4.67200200	-1.66964400	-0.16659200	Н	-3.83595500	2.26389700	-0.43068900
Н	-3.60463000	-0.55364000	-2.60817000	Н	-3.57938500	0.59968900	-0.96564500
Н	-1.88951900	1.45603900	-2.63314100	Н	-3.44173100	1.00346900	0.74303400

Zero-point correction =	0.727793 (Hartree/Particle)
Thermal correction to Energy =	0.759076
Thermal correction to Enthalpy =	0.760020
Thermal correction to Gibbs Free Ener	gy = 0.670591
Sum of electronic and zero-point Energy	gies = -1250.962393
Sum of electronic and thermal Energie	s = -1250.931110
Sum of electronic and thermal Enthalp	ies = -1250.930166
Sum of electronic and thermal Free En	ergies = -1251.019595

0	2.06221800 -0.60510500	-0.83427500	Ν	-1.17683900	-0.09454800	-0.40326700
0	1.88597600 -0.82835900	1.43780400	С	3.31255200	-0.44485700	-0.26912400

С	-0.34920000	-1.18980300	0.14858200	Н	4.20435000	-0.56844400	3.02943500
Н	-0.63365900	-1.42526900	1.19154200	С	0.40768300	-3.57520800	-0.44385600
С	3.20420500	-0.57860500	1.11529300	Н	1.37005400	-3.30506300	-0.89489500
С	-2.07818700	0.59473400	2.39582900	Н	0.09272200	-4.52375200	-0.89757800
Н	-2.19619800	-0.35303000	1.87129000	Н	0.57461800	-3.75846500	0.62440600
С	-0.64748700	-2.48686400	-0.68815400	С	-3.42097200	0.52836100	-1.34832200
С	4.52430500	-0.19419400	-0.89137800	Н	-3.84787800	0.86402900	-0.39727700
Н	4.59802200	-0.09301100	-1.96948000	Н	-4.23858200	0.14250100	-1.96848600
С	-2.08179600	-2.98079500	-0.31693900	Н	-3.00085500	1.40187700	-1.85128900
Н	-2.37103600	-3.68782800	-1.10957500	С	-1.88204000	-1.16163700	-2.48166200
С	-1.27253000	2.90717100	1.87611500	Н	-1.58925900	-0.35669800	-3.16426400
Н	-1.58487800	3.16991900	2.88377500	Н	-2.70180300	-1.70805900	-2.96886900
С	-0.43832800	2.24363300	-0.71780300	С	1.57977800	2.38087700	-2.26422900
С	5.64598000	-0.07831000	-0.05430300	Н	1.69358300	3.47165700	-2.23927400
Н	6.61824200	0.11873000	-0.49715800	Н	1.97567900	2.03205900	-3.22652200
С	-1.03070700	1.24193400	0.10851100	Н	2.20183700	1.95941600	-1.47037300
С	-1.44334700	1.59036400	1.42670900	С	-2.21331000	-3.73266700	1.01526800
С	0.10251000	1.95801100	-2.11895100	Н	-1.64183800	-4.66728700	1.02282900
Н	0.05137500	0.87712300	-2.26690000	Н	-3.26504600	-3.98968800	1.19484700
С	-0.31709000	3.55194800	-0.22803200	Н	-1.87715000	-3.12556300	1.86529500
Н	0.12198100	4.31814500	-0.86203400	С	-1.17619900	0.33650200	3.62120800
С	-0.72702000	3.89019200	1.05724500	Н	-0.18030600	-0.00636900	3.32095600
Н	-0.61632700	4.90949500	1.41997100	Н	-1.62182900	-0.42872700	4.26984200
С	-2.38603500	-0.57624500	-1.13970800	Н	-1.04947800	1.24661900	4.22052700
С	-3.03514300	-1.75736700	-0.37084600	С	-3.48739000	1.03279000	2.84597500
Н	-3.97854400	-2.03045500	-0.86181300	Н	-3.45754900	1.95656300	3.43573400
Н	-3.29997100	-1.43294300	0.64192800	Н	-3.94410200	0.25587200	3.47227500
С	5.53657000	-0.20977900	1.33691300	Н	-4.14709600	1.20799000	1.98849400
Н	6.42558500	-0.11252200	1.95373600	С	-0.72670400	2.64051000	-3.22762700
С	-0.68408400	-2.10287700	-2.18950300	Н	-1.77395300	2.32313800	-3.22110700
Н	-0.75570900	-3.01943200	-2.79050900	Н	-0.31070000	2.40012200	-4.21457900
Н	0.26179100	-1.62237800	-2.46175500	Н	-0.71117700	3.73226400	-3.11816500
С	4.30091700	-0.46505500	1.95325100	В	1.19116600	-0.84391500	0.22737600

Zero-point correction =

0.612140 (Hartree/Particle)

Thermal correction to Energy =

0.642735

Thermal correction to Enthalpy =	0.643679
Thermal correction to Gibbs Free Energy =	0.552725
Sum of electronic and zero-point Energies =	-1319.441531
Sum of electronic and thermal Energies =	-1319.410936
Sum of electronic and thermal Enthalpies =	-1319.409992
Sum of electronic and thermal Free Energies	s = -1319.500947

Structure of 8A

0	2.08225000	1.42098700	-0.29894500
0	2.12521200	-0.46593800	1.15316500
Ν	-1.08246000	-0.34408600	-0.49444200
С	3.34825800	1.17204100	0.13749800
С	0.22980400	-0.36414200	-0.59182700
С	3.37412700	0.05612400	0.99654200
С	-1.66618500	-1.49532000	2.19539700
Н	-1.11880600	-1.95793800	1.37154600
С	0.72782300	-1.20614900	-1.75721200
С	4.50975700	1.85769200	-0.18411300
Н	4.47907000	2.71792100	-0.84748800
С	0.18192000	-2.67362100	-1.60470800
Н	0.37094000	-3.14692400	-2.57841100
С	-2.93888000	0.63659900	2.61492500
Н	-3.21573000	0.21526600	3.57717900
С	-2.17382400	1.78133000	0.16310000
С	5.72066100	1.40506400	0.38040800
Н	6.64410400	1.92978100	0.14809200
С	-1.81071400	0.45940200	0.49876400

С	-2.15850000	-0.12487900	1.73521900
С	-1.70871800	2.49767500	-1.10380200
Н	-1.13908700	1.79137700	-1.71165700
С	-2.95370600	2.49312900	1.08432100
Н	-3.24323100	3.51492000	0.85562000
С	-3.34775500	1.92741200	2.29303500
Н	-3.95344600	2.49874000	2.99188100
С	-1.87382500	-1.17325000	-1.49867500
С	-1.34662300	-2.61881700	-1.36434800
Н	-1.88301600	-3.24368800	-2.08835500
Н	-1.59981600	-3.00501000	-0.37151100
С	5.74610100	0.30011700	1.23207900
Н	6.68910900	-0.03108000	1.65996300
С	0.04730200	-0.59590400	-3.02697700
Н	0.40567200	-1.15442300	-3.89967800
Н	0.39441800	0.43576700	-3.14889700
С	4.56152500	-0.39597900	1.55188200
Н	4.57037100	-1.25719000	2.21464500
С	2.24744500	-1.20017900	-1.95948000

Н	2.60756600	-0.20093400	-2.21426800	Н	0.41736700	-4.49327400	-0.44809300
Н	2.49816800	-1.87600700	-2.78725400	Н	0.86874400	-3.02809000	0.44893200
Н	2.78773300	-1.53229900	-1.07279800	С	-0.66828000	-1.35626200	3.36565600
С	-3.38206900	-1.10387300	-1.27671100	Н	0.18623100	-0.73248200	3.08891000
Н	-3.67749800	-1.50635500	-0.30453400	Н	-0.28806500	-2.34445600	3.65293400
Н	-3.86711000	-1.70638400	-2.05292100	Н	-1.15020400	-0.91357800	4.24586100
Н	-3.76525700	-0.08310300	-1.35310400	С	-2.81977000	-2.44563200	2.57494200
С	-1.48639300	-0.66195400	-2.90792900	Н	-3.37710800	-2.07630600	3.44362100
Н	-1.95207300	0.30956100	-3.09830100	Н	-2.42201200	-3.43362000	2.83655300
Н	-1.91433000	-1.36238300	-3.63474900	Н	-3.53494000	-2.57564900	1.75404100
С	-0.74671400	3.65581900	-0.76233600	С	-2.88742600	2.99969200	-1.96247400
Н	-1.24687800	4.42394000	-0.16026400	Н	-3.57700500	2.18996600	-2.23007400
Н	-0.39245900	4.13134700	-1.68535200	Н	-2.51367600	3.44708000	-2.89149800
Н	0.12645600	3.29623100	-0.21065600	Н	-3.46861400	3.76789800	-1.43909800
С	0.89823600	-3.51060200	-0.53439800	В	1.19569600	0.49162000	0.47073700
Н	1.94956800	-3.67840800	-0.78587600	Н	0.50244300	1.08667600	1.26605500

Zero-point correction =	0.610091 (Hartree/Particle)
Thermal correction to Energy =	0.641003
Thermal correction to Enthalpy =	0.641947
Thermal correction to Gibbs Free Ener	gy = 0.550024
Sum of electronic and zero-point Energy	gies = -1319.413606
Sum of electronic and thermal Energie	s = -1319.382695
Sum of electronic and thermal Enthalp	ies = -1319.381751
Sum of electronic and thermal Free En	ergies = -1319.473673

Structure of 8TS

0	1.75429300	-0.40036900	-0.35151100	Н	-1.04142500	1.97462400	2.58495600
0	2.24688600	1.79480400	0.27454000	С	4.71196500	1.52780900	0.24057400
Ν	-1.28479600	0.18747900	0.09431800	Н	4.93014500	2.55131100	0.53092700
С	3.11248900	-0.22738200	-0.28357800	С	0.13924600	3.64857500	0.71766800
С	-0.30991700	1.15021800	0.17338500	Н	0.76424600	3.43542000	1.58898000
Н	0.43654500	1.37099500	-1.16983000	Н	-0.38996400	4.59320100	0.89729700
С	3.40681500	1.08982100	0.08909100	Н	0.80750100	3.78812600	-0.13391600
С	-1.06063700	-1.10971000	-2.56674800	С	-3.73155300	-0.44069700	-0.00086900
Н	-1.22884800	-0.05543600	-2.33153300	Н	-3.69212100	-0.88352900	-0.99850600
С	-0.89524100	2.54151100	0.48662800	Н	-4.73387500	-0.02120300	0.14277600
С	4.11009900	-1.15897500	-0.51749700	Н	-3.59348900	-1.24195500	0.73084500
Н	3.86857300	-2.17863100	-0.80259400	С	-2.88117800	1.35500400	1.56120500
С	-1.93528300	2.96765500	-0.61234400	Н	-2.93097300	0.59404400	2.34622600
Н	-2.51855100	3.77698700	-0.14907100	Н	-3.84557900	1.87865600	1.57026100
С	-0.74976800	-3.25410300	-1.28864200	С	0.75166100	-1.45680400	3.17945000
Н	-0.72357300	-3.75854600	-2.25101900	Н	1.00557700	-2.50583000	3.37421800
С	-0.75255700	-1.96648500	1.20595700	Н	0.81866500	-0.91560200	4.13171400
С	5.44122600	-0.72495100	-0.36733200	Н	1.50697000	-1.05184500	2.49868000
Н	6.25115000	-1.42761500	-0.54450900	С	-1.33771900	3.52950300	-1.90843500
С	-0.98864100	-1.23321800	0.01959300	Н	-0.78366100	4.45855600	-1.73920000
С	-0.95471200	-1.86953500	-1.24511400	Н	-2.14132300	3.75005800	-2.62250800
С	-0.66625400	-1.32024500	2.58584700	Н	-0.65748600	2.81259300	-2.38480400
Н	-0.85934300	-0.25268500	2.46825700	С	0.26109300	-1.19079500	-3.36200500
С	-0.54658900	-3.34921600	1.10541000	Н	1.10773800	-0.86009100	-2.75534800
Н	-0.36696300	-3.92802400	2.00768500	Н	0.20231300	-0.55866800	-4.25712300
С	-0.55922000	-3.99597600	-0.12641500	Н	0.46192600	-2.21723400	-3.69347200
Н	-0.40340000	-5.07071000	-0.18217000	С	-2.22988300	-1.59077600	-3.45033600
С	-2.70957700	0.67994600	0.17678900	Н	-2.08655800	-2.62928300	-3.77198600
С	-2.88212100	1.77477600	-0.89513700	Н	-2.29737400	-0.97376200	-4.35502400
Н	-3.92895400	2.10383500	-0.90681000	Н	-3.19401900	-1.53639400	-2.93357400
Н	-2.67770900	1.34796900	-1.88352900	С	-1.71996100	-1.87848400	3.56357300
С	5.73559200	0.59030000	0.00385700	Н	-2.73742700	-1.77341200	3.16875700
Н	6.77203000	0.89894500	0.11201100	Н	-1.67093000	-1.34608400	4.52180400
С	-1.71298100	2.33597400	1.79727700	Н	-1.55408600	-2.94279400	3.76880400
Н	-2.08056900	3.31526100	2.12716400	В	1.18212100	0.89369600	-0.08808100

Zero-point correction =	0.607304 (Hartree/Particle)
Thermal correction to Energy =	0.637643
Thermal correction to Enthalpy =	0.638587
Thermal correction to Gibbs Free Energy	gy = 0.548850
Sum of electronic and zero-point Energ	ties = -1319.404363
Sum of electronic and thermal Energies	s = -1319.374024
Sum of electronic and thermal Enthalpi	es = -1319.373079
Sum of electronic and thermal Free Ene	ergies = -1319.462816

2.2 Calculation of free energy for the interaction of BICAAC with various boranes

Table 53. Calculation of AG for the interaction of DICAAC and Dr	Table	S3.	Calculation	of ΔG for	or the in	iteraction	of BICAA	C and BH
--	-------	-----	-------------	-------------------	-----------	------------	----------	----------

Properties/Molecules	BICAAC	BH ₃	1	1TS	1BA
Zero-point correction (Hartree/Particle)	0.504158	0.026394	0.538083	0.538722	0.542726
Thermal correction to Energy (Hartree/Particle)	0.528125	0.029280	0.563566	0.563657	0.567071
Thermal correction to Enthalpy (Hartree/Particle)	0.529069	0.030224	0.564510	0.564601	0.568016
Thermal correction to Gibbs Free Energy (Hartree/Particle)	0.452678	0.008838	0.486382	0.487545	0.493250
Sum of electronic and thermal Free Energies (Hartree/Particle)G _{tot}	-912.487354	-26.606098	-939.159123	-939.085380	-939.139594
Relative Free Energy (Hartree/Particle)	0.000000	0.000000	-0.065671	0.008072	-0.046142
Relative Free Energy ΔG (kcal/mole)	0.000000	0.000000	-41.209209	5.065261	-28.954566

Table S4. Calculation of ΔG for the interaction of BICAAC and BHCl₂

Properties/Molecules	BICAAC	BHCl ₂	2	2TS	2BA
Zero-point correction (Hartree/Particle)	0.504158	0.014919	0.525218	0.521766	0.525420
Thermal correction to Energy (Hartree/Particle)	0.528125	0.018442	0.552706	0.548919	0.553039
Thermal correction to Enthalpy (Hartree/Particle)	0.529069	0.019386	0.553650	0.549863	0.553983
Thermal correction to Gibbs Free Energy (Hartree/Particle)	0.452678	-0.011035	0.470937	0.466564	0.469500
Sum of electronic and thermal Free Energies (Hartree/Particle)G _{tot}	-912.487354	-945.934562	-1858.458082	-1858.425230	-1858.451502
Relative Free Energy (Hartree/Particle)	0.000000	0.000000	-0.036166	-0.003314	-0.029586
Relative Free Energy ΔG (kcal/mole)	0.000000	0.000000	-22.694527	-2.079568	-18.565511

Properties/Molecules	BICAAC	BH ₂ Cl	3	3TS	3BA
Zero-point correction (Hartree/Particle)	0.504158	0.021300	0.531720	0.529623	0.532724
Thermal correction to Energy (Hartree/Particle)	0.528125	0.024316	0.558193	0.555659	0.559147
Thermal correction to Enthalpy (Hartree/Particle)	0.529069	0.025260	0.559137	0.556604	0.560092
Thermal correction to Gibbs Free Energy (Hartree/Particle)	0.452678	-0.001350	0.478528	0.476678	0.479205
Sum of electronic and thermal Free Energies (Hartree/Particle)G _{tot}	-912.487354	-486.273423	-1398.809228	-1398.788656	-1398.790284
Relative Free Energy (Hartree/Particle)	0.000000	0.000000	-0.048451	-0.027879	-0.029507
Relative Free Energy ΔG (kcal/mole)	0.000000	0.000000	-30.403487	-17.494351	-18.515938

Table S5. Calculation of ΔG for the interaction of BICAAC and BH_2Cl

Table S6. Calculation of ΔG for the interaction of BICAAC and 9-BBN

Properties/Molecules	BICAAC	9-BBN	7A	7TS	7
Zero-point correction (Hartree/Particle)	0.504158	0.218716	0.729774	0.727793	0.730721
Thermal correction to Energy (Hartree/Particle)	0.528125	0.227070	0.761345	0.759076	0.762823
Thermal correction to Enthalpy (Hartree/Particle)	0.529069	0.228014	0.762289	0.760020	0.763767
Thermal correction to Gibbs Free Energy (Hartree/Particle)	0.452678	0.186315	0.672318	0.670591	0.671683
Sum of electronic and thermal Free Energies (Hartree/Particle)G _{tot}	-912.487354	-338.539607	-1251.025165	-1251.019595	-1251.040307
Relative Free Energy (Hartree/Particle)	0.000000	0.000000	0.001796	0.007366	-0.013346
Relative Free Energy ΔG (kcal/mole)	0.000000	0.000000	1.127008	4.622239	-8.374748

Table S7. Calculation of ΔG for the interaction of BICAAC and catechol borane

Properties/Molecules	BICAAC	Catechol borane	8A	8TS	8
Zero-point correction (Hartree/Particle)	0.504158	0.102512	0.610091	0.607304	0.612140
Thermal correction to Energy (Hartree/Particle)	0.528125	0.108527	0.641003	0.637643	0.642735
Thermal correction to Enthalpy (Hartree/Particle)	0.529069	0.109472	0.641947	0.638587	0.643679
Thermal correction to Gibbs Free Energy (Hartree/Particle)	0.452678	0.072309	0.550024	0.548850	0.552725
Sum of electronic and thermal Free Energies (Hartree/Particle)G _{tot}	-912.487354	-406.978500	-1319.473673	-1319.462816	-1319.500947
Relative Free Energy (Hartree/Particle)	0.000000	0.000000	-0.007819	0.003038	-0.035093
Relative Free Energy ΔG (kcal/mole)	0.000000	0.000000	-4.906501	1.906375	-22.021208

2.3 Results of IRC calculations for the transition states (1TS-3TS, 7TS and 8TS)

Fig. S36 Results of IRC calculation for 1TS.

Fig. S37 Optimized structure of 1TS.

Fig. S38 Results of IRC calculation for 2TS.

Fig. S39 Optimized structure of 2TS.

Fig. S40 Results of IRC calculation for 3TS.

Fig. S42 Results of IRC calculation for 7TS.

Fig. S43 Optimized structure of 7TS.

Fig. S44 Results of IRC calculation for 8TS.

Fig. S45 Optimized structure of 8TS.

2.4 Plausible mechanism for Lewis adduct formation and B-H bond activation

The shape of monomeric boranes is usually trigonal-planar where a non-bonding *p*-orbital (as LUMO) on B stays perpendicular to the molecular plane. During our studies of MOs, it was found that the filled sp^2 hybrid orbital of BICAAC gave away its electrons to the empty non-bonding *p*-orbital of borane and formed an adduct (Fig. S44 (i)). The LUMO of BICAAC having *p*-character interacts (Fig. S44 (ii)) with the B-H hydrogen and the molecule performs a bond rotation to form a transition state (Fig. S44 (iii)) where the orbital lobes of BICAAC and borane overlap well. In the end, the hydrogen migrates and forms a σ -bond with C_{carbene} leaving the boron (Fig. S44 (iv)).

The migration of hydrogen was made possible via generation of hydride. Fig. S44 (v) shows the relative charges of each atom in the case of 7.

Fig. S46 MOs and ESP during the interaction of BICAAC and 9-BBN. (i) HOMO-2 of **7A**, (ii) LUMO of **7A**, (iii) HOMO of **7TS**, (iv) HOMO of **7**, (v) ESP plot of **7A**.

Table S8 Hydride formation from adducts and B-H activated products. H in the parenthesis in each compound was removed to calculate the values of ΔG_{FBD} . The values of ΔG_{FBD} are expressed in kcal/mol.

Entry	Lewis adducts	ΔG _{FBD}	B-H activation product	ΔG _{FBD}
1	$BICAAC-BH_2(H)(1)$	0	$BICAAC(H)-BH_2(1BA)$	-12.3
2	BICAAC-BH(H)Cl (2)	0	BICAAC(H)-BHCl (2BA)	-12.0
3	BICAAC-B(H)Cl2 (3)	0	BICAAC(H)-BCl ₂ (3BA)	-4.1
4	BICAAC-9-BBN(H) (7A)	0	BICAAC(H)-9-BBN (7BA)	9.5
5	BICAAC-(H)Bcat (8A)	0	BICAAC(H)-Bcat (8BA)	17.1

In Table S8, the possibility of hydride formation (C-H bond) was judged by comparing the calculated free energy of bond dissociation (ΔG_{FBD}) of B-H and C-H bonds between the Lewis adducts and their corresponding B-H activated products. In the case of **1**, the hydride removal from **1BA** is thermodynamically feasible ($\Delta G_{FBD} = -12.3$ kcal/mol) when compared to adduct **1** and indicate the adduct formation is preferred over B-H activation in line with the experimental observation. The similar results were observed in the case of **2BA** ($\Delta G_{FBD} = -12.0$ kcal/mol) and **3BA** ($\Delta G_{FBD} = -4.1$ kcal/mol). On the other hand, hydride removal from B-H activated products 7 ($\Delta G_{FBD} = 9.5$ kcal/mol) and **8** ($\Delta G_{FBD} = 17.1$ kcal/mol) were thermodynamically not feasible with respect to their adducts implying the B-H activation leading to the C-H bond formation as the preferred reaction pathway again supporting the experimental observations. Hence, it can be concluded that the bond activation of B-H bond involved hydride formation after carbene lone pair donation into the non-bonding orbital of boranes.

2.5 Molecular orbitals during Lewis adduct formation and B-H bond activation

Fig. S47 Important molecular orbitals for 1.

Fig. S48 Important molecular orbitals for 1TS.

Fig. S49 Important molecular orbitals for 1BA.

MO107 (LUMO)

MO106 (HOMO)

MO102 (HOMO-4)

Fig. S50 Important molecular orbitals for 2.

Fig. S51 Important molecular orbitals for 2TS.

Fig. S52 Important molecular orbitals for 2BA.

Fig. S53 Important molecular orbitals for 3.

Fig. S54 Important molecular orbitals for 3TS.

Fig. S55 Important molecular orbitals for 3BA.

Fig. S56 Important molecular orbitals for 7A.

Fig. S57 Important molecular orbitals for 7TS.

Fig. S58 Important molecular orbitals for 7.

Fig. S59 Important molecular orbitals for 8A.

Fig. S60 Important molecular orbitals for 8TS.

Fig. S61 Important molecular orbitals for 8.

2.6 Electrostatic potentials (ESPs) during Lewis adduct formation and B-H bond activation

ESP of 1

ESP of 1TS

ESP of 1BA

ESP of 2 Fig. S63 ESPs for the interaction of BICAAC and BHCl₂.

Fig. S64 ESPs for the interaction of BICAAC and BH₂Cl.

ESP of 6A

ESP of 6TS

ESP of 6

Fig. S65 ESPs for the interaction of BICAAC and 9-BBN.

Fig. S66 ESPs for the interaction of BICAAC and HBcat.
2.7 Calculation of free energy of bond dissociation (ΔG_{FBD})

Free energy of bond dissociation was calculated to further verify the adduct formation and B-H activation in the compounds. To achieve this we needed to investigate the free energy change (ΔG_{eqn}) in the following equations: eqn. 1 and eqn. 2. The difference in the free energy change $(\Delta G_{FBD} = \Delta G_{eqn2} - \Delta G_{eqn1})$ would signify the feasibility of occurrence of eqn. 2 over eqn. 1 which has been listed in the Table S8.

$$BICAAC - B(H)H_2 \rightarrow BICAAC - BH_2^+ + H^-$$
(eqn. 1)
$$BICAAC(H) - BH_2 \rightarrow BICAAC - BH_2^+ + H^-$$
(eqn. 2)

$$\Delta \mathbf{G}_{eqn1} = \Delta \mathbf{G} \begin{bmatrix} BICAAC - BH_{2}^{+} \end{bmatrix} + \Delta \mathbf{G} \begin{bmatrix} H^{-} \end{bmatrix} - \Delta \mathbf{G} \begin{bmatrix} BICAAC - B(H)H_{2} \end{bmatrix}$$
$$\Delta \mathbf{G}_{eqn2} = \Delta \mathbf{G} \begin{bmatrix} BICAAC - BH_{2}^{+} \end{bmatrix} + \Delta \mathbf{G} \begin{bmatrix} H^{-} \end{bmatrix} - \Delta \mathbf{G} \begin{bmatrix} BICAAC(H) - BH_{2} \end{bmatrix}$$

Properties/Molecules	hydride	BICAAC-BH ₂ +	BICAAC-BH ₂ +	BICAAC-BH ₂ (H) (1)	BICAAC(H)-BH ₂ (1BA)
Zero-point correction (Hartree/Particle)	0.000000	0.529084		0.538083	0.542726
Thermal correction to Energy (Hartree/Particle)	0.001416	0.554890		0.563566	0.567071
Thermal correction to Enthalpy (Hartree/Particle)	0.002360	0.555834		0.564510	0.568016
Thermal correction to Gibbs Free Energy (Hartree/Particle)	-0.010000	0.476552		0.486382	0.493250
Sum of electronic and zero-point Energies (Hartree/Particle) E _{zpe}	-0.461817	-938.299226		-939.107422	-939.090118
Sum of electronic and thermal Free Energies (Hartree/Particle) G _{tot}	-0.471816	-938.351758		-939.159123	-939.139594
BDE (Hartree/Particle)		0.335549	0.316020	0.000000	0.000000
BDE (kcal/mole)		210.560353	198.305710	0.000000	0.000000
		ΔG_{eqn1}	ΔG_{eqn2}		

Table S9 Calculation of ΔG_{FBD} for the interaction of BICAAC and BH₃

Properties/Molecules	hydride	BICAAC-BCl ₂ ⁺	BICAAC-BCl ₂ ⁺	BICAAC-BHCl ₂ (2)	BICAAC(H)-BCl ₂ (2BA)
Zero-point correction (Hartree/Particle)	0.000000	0.515808		0.525218	0.525420
Thermal correction to Energy (Hartree/Particle)	0.001416	0.543361		0.552706	0.553039
Thermal correction to Enthalpy (Hartree/Particle)	0.002360	0.544306		0.553650	0.553983
Thermal correction to Gibbs Free Energy (Hartree/Particle)	-0.010000	0.460280		0.470937	0.469500
Sum of electronic and zero-point Energies (Hartree/Particle) E _{zpe}	-0.461817	-1857.600231		-1858.403801	-1858.395583
Sum of electronic and thermal Free Energies (Hartree/Particle) G _{tot}	-0.471816	-1857.655758		-1858.458082	-1858.451502
BDE (Hartree/Particle)		0.330508	0.323928	0.000000	0.000000
BDE (kcal/mole)		207.397075	203.268059	0.000000	0.000000
		ΔG_{eqn1}	ΔG_{eqn2}		

Table S10 Calculation of ΔG_{FBD} for the interaction of BICAAC and $BHCl_2$

Properties/Molecules	hydride	BICAAC-BHCl ⁺	BICAAC-BHCl ⁺	BICAAC-BH(H)Cl (3)	BICAAC(H)-BHCl (3BA)
Zero-point correction (Hartree/Particle)	0.000000	0.522895		0.531720	0.532724
Thermal correction to Energy (Hartree/Particle)	0.001416	0.549574		0.558193	0.559147
Thermal correction to Enthalpy (Hartree/Particle)	0.002360	0.550518		0.559137	0.560092
Thermal correction to Gibbs Free Energy (Hartree/Particle)	-0.010000	0.468315		0.478528	0.479205
Sum of electronic and zero-point Energies (Hartree/Particle) E _{zpe}	-0.461817	-1397.950851		-1398.756037	-1398.736765
Sum of electronic and thermal Free Energies (Hartree/Particle) G _{tot}	-0.471816	-1398.005431		-1398.809228	-1398.790284
BDE (Hartree/Particle)		0.331981	0.313037	0.000000	0.000000
BDE (kcal/mole)		208.321397	196.433848	0.000000	0.000000
		ΔG_{eqn1}	ΔG_{eqn2}		

Table S11 Calculation of ΔG_{FBD} for the interaction of BICAAC and BH_2Cl

Properties/Molecules	hydride	BICAAC-9-BBN+	BICAAC-9-BBN+	BICAAC-9-BBN(H) (7A)	BICAAC(H)-(9- BBN) (7)
Zero-point correction (Hartree/Particle)	0.000000	0.721704		0.729774	0.730721
Thermal correction to Energy (Hartree/Particle)	0.001416	0.753829		0.761345	0.762823
Thermal correction to Enthalpy (Hartree/Particle)	0.002360	0.754773		0.762289	0.763767
Thermal correction to Gibbs Free Energy (Hartree/Particle)	-0.010000	0.662689		0.672318	0.671683
Sum of electronic and zero-point Energies (Hartree/Particle) E _{zpe}	-0.461817	-1250.203890		-1250.967710	-1250.981269
Sum of electronic and thermal Free Energies (Hartree/Particle) G _{tot}	-0.471816	-1250.262905		-1251.025165	-1251.040307
BDE (Hartree/Particle)		0.290444	0.305586	0.000000	0.000000
BDE (kcal/mole)		182.256514	191.758271	0.000000	0.000000
		ΔG_{eqn1}	ΔG_{eqn2}		

Table S12 Calculation of ΔG_{FBD} for the interaction of BICAAC and 9-BBN

Properties/Molecules	hydride	BICAAC-Bcat+	BICAAC- Bcat+	BICAAC-(H)Bcat (8A)	BICAAC(H)-Bcat (8)
Zero-point correction (Hartree/Particle)	0.000000	0.602860		0.610091	0.612140
Thermal correction to Energy (Hartree/Particle)	0.001416	0.633474		0.641003	0.642735
Thermal correction to Enthalpy (Hartree/Particle)	0.002360	0.634418		0.641947	0.643679
Thermal correction to Gibbs Free Energy (Hartree/Particle)	-0.010000	0.542999		0.550024	0.552725
Sum of electronic and zero-point Energies (Hartree/Particle) E _{zpe}	-0.461817	-1318.653629		-1319.413606	-1319.441531
Sum of electronic and thermal Free Energies (Hartree/Particle) G _{tot}	-0.471816	-1318.713490		-1319.473673	-1319.500947
BDE (Hartree/Particle)		0.288367	0.315641	0.000000	0.000000
BDE (kcal/mole)		180.953176	198.067884	0.000000	0.000000
		ΔG_{eqn1}	ΔG_{eqn2}		

Table S13 Calculation of ΔG_{FBD} for the interaction of BICAAC and HBcat

3 References

- E. Tomás-Mendivil, M. M. Hansmann, Cory M. Weinstein, R. Jazzar, M. Melaimi, G. Bertrand, J. Am. Chem. Soc., 2017, 139, 7753–7756.
- [2] M. Arrowsmith, J. D. Mattock, J. Böhnke, I. Krummenacher, A. Vargasc, H. Braunschweig, *Chem. Commun.*, 2018, 54, 4669-4672.
- [3] Bruker (2012). Apex-II. Bruker AXS Inc., Madison, Wisconsin, USA.
- [4] Bruker (2013). SAINT v8.34A. Bruker AXS Inc., Madison, Wisconsin, USA.
- [5] Bruker (2014/5). Sadabs, 2014/5. Bruker AXS Inc., Madison, Wisconsin, USA.
- [6] CrystalClear 2.0; *Rigaku Corporation*: Tokyo, Japan, 2013.
- [7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- [8] G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.
- [9] Gaussian09, RevisionC.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg,

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark,
J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.
Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox,
Gaussian, Inc., Wallingford CT, 2010.

- [10] Gijs Schaftenaar, Elias Vlieg and Gerrit Vriend,"Molden 2.0: quantum chemistry meets proteins", J Comput Aided Mol Des (2017) 31: 789
- [11] Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com