Supplementary Information

Near Sunlight Continuous Broadband White-Light Emission by Single-Phase Zn(II)-1,3,5-benzenetricarboxylate MOFs

Ce Wang, Zheng Yin*, Wei-Min Ma, Xi-Yao Li, Li-Hui Cao, Yu Cheng, Xin-Yu Yu and Yang-Min Ma*

College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.

Email: yinzheng@sust.edu.cn

Materials and physical measurements

The metal salt and the organic ligand of H₃btc, H₂gac used in the MOFs synthesis were purchased from Aladdin Co. All the organic solvents were purchased from Xilong Scientific Co. The materials are used without further purification unless otherwise specified. The anhydrous dichloromethane and acetonitrile for solvent exchange were purchased from Aladdin Co.

The powder X-ray diffraction (PXRD) intensities were measured at 298 K on a Rigaku D/max-IIIA diffractometer (Cu- K_{α} , $\lambda = 1.54056$ Å). The sample was prepared by crushing the MOFs crystals into powder and then scanned from 3 to 60° at a rate of 5 °/min. Calculated PXRD patterns of 1 were generated using Materials Studio (4.0) program. The IR spectrum was recorded in a Bruker TENSOR-II FTIR Spectrometer. The thermogravimetric analyses (TGA) were performed on a TGA-55 instrument in flowing N₂ under a heating rate of 5 °C/min. Both the fluorescence spectrums of 1 in solid state and in solution were measured in a Edinburgh FL-980 spectrophotometer.

Synthesis of {[NH₂(CH₃)₂]₆[Zn₁₆(btc)₁₂(gac)(DMA)₃(H₂O)₃]}·17DMA (1)

(i) Traditional solvothermal synthesis. A DMA solution (15 mL) containing $Zn(NO_3)_2 \cdot 6H_2O$ (0.2 mmol, 59.7 mg), H₃btc (0.2 mmol, 42.1 mg) and H₂gac (0.4 mmol, 30.0mg) in a Teflon-lined steel bomb was heated at 140 °C for 72 h. The autoclave was cooled at a rate of 10 °C h⁻¹ to room temperature. Colorless block crystals of **1** were collected, washed with DMA, and dried in air with yield of 84.6% based on Zn. Elemental analysis (%) Calcd. for C₂₀₂H₂₇₃N₂₆Zn₁₆O₉₈: H, 4.84; C, 42.71; N, 6.41. Found: H, 4.59; C, 43.10; N, 6.23. IR data for **1** (KBr, cm⁻¹): 3443(s), 2930(w), 1638(s), 1560(w), 1481(s), 1463(s), 1322(m), 1221(s), 1120(s), 1092(s), 967(w), 865(s), 746(m), 625(w), 485(w). The glycolic acid (H₂gac) is excessive than H₃btc with proportion of 2:1 in the starting reaction solution, while the ratio of H₂gac to H₃btc in the MOFs is just 1:12. The contrast experiment without glycolic acid showed no formation of the presented MOFs, but a known Cd(II)-btc MOFs of [Zn₂(btc)(NO₃)(DMA)₃] with CCDC number of 838769.^[5] Hence, the H₂gac was an auxiliary multidentate and bridging ligand, which direct the construction of the MOFs with unprecedented sophistication in crystallographic asymmetric unit.

(ii) Microwave-assisted solvothermal synthesis. The same reaction solution of the traditional solvothermal method was placed in a 60 mL Teflon-lined autoclave, which was then inserted into the cavity of a microwave reactor. The reaction mixture was maintained at 140 °C, 300W, and 6.3 atm for a total of 30 min. After the reaction solution has been cooled to room temperature (ca. 2 h), the

colorless crystals of **1** were collected by filtration, washed with DMA, and dried in air, giving a yield of 70.8% based on Zn.

Single crystal X-ray diffraction analyses

The single-crystal diffraction data of **1** were collected on a Rigaku XtaLAB Synergy four-circle diffractometer under Cu- $K\alpha$ radiation ($\lambda = 1.54056$ Å), with the CrysAlisPro software (version 1.171.39.34b) for data reduction and analysis. The structure was solved by direct methods and refined by full-matrix least-squares method on F² using SHELX algorithms in Olex2.^[1, 2] All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were generated geometrically. The disordered guest molecules which cannot be modeled were treated by the SQUEEZE routine.^[3, 4] The contributions of 3649 electrons per unit-cell, ie 912 electrons per formula unit were removed. The removed materials during SQUEEZE process are 3 counter cations of [H₂N(CH₃)₂]⁺ and 16 DMA guest molecules per formula (Cal. 849 electrons in total), which are defined by considering charge balance, thermogravimetry and elemental analysis results. The structure figures were produced by Diamond 4.0 software.

The sample of **1** processes good shape and transparency for single crystal diffraction. However, the collected data exhibits high wR_2 value of 0.53 after several attempts with optimized measurement parameters. The possible reasons may stem from the unusual sophistication of crystallographic asymmetric unit with sixteen metal ions and twelve ligands. In addition, due to disorder of the coordinated DMA and H₂O, as well as guest solvent, command including DFIX, FLAT and IOSR were used to restrain the solvent molecules. Given that the high structure complexity with several heavy-atoms of **1**, it was not possible to see clear electron-density peaks in difference maps which would correspond with acceptable locations for the H atoms bonded to water oxygen atoms, the refinement was completed with no allowance for these H atoms in the model.

The CCDC reference numbers are 1943080 for **1**. The supplementary crystallographic data for **1** can be found in the Supporting Information or can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Crystallographic details are provided in Table S1, and the selected bond lengths and angles are listed in Table S2-3.

Empirical formula	$C_{202}H_{273}N_{26}Zn_{16}O_{98}$
Formula weight	5679.99
Temperature / K	100
Radiation / Å	1.54184 (Cu Kα)
Crystal system	Monoclinic
Space group	$P2_{1}/c$
<i>a</i> / Å	35.8753 (3)
b / Å	24.4464 (2)
<i>c</i> / Å	32.1563 (3)
α / °	90
β / °	114.077 (1)
γ / °	90
$V/\text{\AA}^3$	25748.2 (4)
Ζ	4
<i>F</i> (000)	8492
$D_{c.}$ / g cm ⁻³	1.090
μ / mm ⁻¹	2.17
Reflns. coll.	150740
Unique reflns.	51918
R _{int}	0.029
${}^{a}R_{I}\left[\mathrm{I}\geq2\sigma(\mathrm{I})\right]$	0.136
${}^{b}wR_{2}$ (all data)	0.533
GOF	1.04
Void	55.8%
CCDC number	1943080

 Table S1 Crystal data and structure refinement for 1.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}wR_{2} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2}\right]^{1/2}.$

			<u>.</u>
Zn1—O23 ⁱⁱ	2.052 (5)	Zn9—O40 ^{ix}	1.938 (5)
Zn1—O24 ⁱⁱⁱ	2.090 (5)	Zn9—O50 ^x	1.975 (5)
Zn1—O63	2.028 (5)	Zn9—O57 ^{ix}	1.947 (6)
Zn1—O64 ⁱ	2.025 (5)	Zn9—O67	1.907 (5)
Zn1—O260 ⁱⁱⁱ	1.980 (6)	Zn10—O28	1.920 (6)
Zn2—O4 ⁱⁱ	1.989 (7)	Zn10—O35	1.934 (8)
Zn2—O41 ^{iv}	1.967 (8)	Zn10—O37	1.957 (6)
Zn2—O42 ^{iv}	2.440 (10)	Zn10—O44 ⁱⁱⁱ	1.943 (6)
Zn2—065	1.971 (7)	Zn11—O9	1.966 (5)
Zn2—077	1.920 (6)	Zn11—O17	1.942 (5)
Zn3—O11 ^v	1.982 (6)	Zn11—O19	1.999 (5)
Zn3—O45	1.951 (6)	Zn11—O25	1.935 (6)
Zn3—O61	1.976 (7)	Zn12—O10	1.942 (6)
Zn3—O80	1.923 (15)	Zn12—O13 ^{xi}	2.415 (10)
Zn4—O12 ^v	1.990 (7)	Zn12—O14 ^{xi}	1.969 (6)
Zn4—046	1.883 (10)	Zn12—O20	1.975 (6)
Zn4—055	1.911 (6)	Zn12—O26	1.941 (6)
Zn4—O62	1.949 (6)	Zn13—O15 ^{xi}	2.030 (5)
Zn5—047	1.958 (6)	Zn13—O16 ^{vi}	1.987 (5)
Zn5—O51	1.950 (5)	Zn13—O21	1.957 (5)
Zn5—069 ^{iv}	1.935 (5)	Zn13—O31 ^{vi}	2.351 (9)
Zn5—O70 ^{vi}	2.000 (4)	Zn13—O32 ^{vi}	2.072 (6)
Zn6—O36 ⁱⁱⁱ	1.993 (9)	Zn14—O5	1.968 (6)
Zn6—O38 ⁱⁱⁱ	2.031 (7)	Zn14—07	1.928 (6)
Zn6—O43	2.025 (8)	Zn14—O33 ^{xii}	2.140 (7)
Zn6—073	2.005 (7)	Zn14—O34 ^{xii}	2.260 (6)
Zn6—079	2.105 (10)	Zn14—O60 ^{xiii}	1.977 (6)
Zn7—O6 ^{vii}	2.054 (6)	Zn14—C53 ^{xii}	2.510 (9)
Zn7—O34 ⁱⁱⁱ	2.158 (6)	Zn15—O3	1.944 (6)
Zn7—O59 ^{vi}	2.032 (6)	Zn15—O29 ^{xiv}	1.932 (6)
Zn7—074	2.163 (9)	Zn15—066 ^{xv}	1.994 (9)

 Table S2 The selected bond lengths of 1.

Zn7—075	2.164 (8)	Zn15—O81	1.961 (11)
Zn7—076	2.091 (7)	Zn16—O1	2.026 (5)
Zn8—O39	1.925 (6)	Zn16—O2 ^{xvi}	2.040 (5)
Zn8—O49 ^{viii}	1.993 (5)	Zn16—O53 ^{xiii}	2.060 (5)
Zn8—O58	1.943 (5)	Zn16—O54 ^{xiv}	2.079 (4)
Zn8—071	1.928 (5)	Zn16—078	1.970 (5)

Symmetry codes: (i) -x+3, -y+1, -z+2; (ii) x+1, y, z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+2, y-1/2, -z+3/2; (v) x+1, -y+3/2, z+1/2; (vi) x, -y+3/2, z-1/2; (vii) x+1, y, z; (viii) x, -y+3/2, z+1/2; (ix) -x+2, y+1/2, -z+3/2; (x) -x+2, -y+2, -z+1; (xi) -x+1, y+1/2, -z+1/2; (xi) -x+1, -y+1, -z+1; (xiii) x-1, -y+3/2, z-1/2; (xiv) -x+1, y-1/2, -z+1/2; (xv) x-1, y, z-1; (xvi) -x, -y+1, -z; (xvii) x-1, y, z.

O23 ⁱⁱ —Zn1—O24 ⁱⁱⁱ	159.4 (2)	O40 ^{ix} —Zn9—O50 ^x	107.6 (2)
O63—Zn1—O23 ⁱⁱ	89.0 (2)	O40 ^{ix} —Zn9—O57 ^{ix}	125.8 (3)
O63—Zn1—O24 ⁱⁱⁱ	87.0 (2)	O57 ^{ix} —Zn9—O50 ^x	105.0 (3)
O64 ⁱ —Zn1—O23 ⁱⁱ	89.0 (2)	O67—Zn9—O40 ^{ix}	105.6 (3)
O64 ⁱ —Zn1—O24 ⁱⁱⁱ	87.1 (2)	O67—Zn9—O50 ^x	108.4 (2)
O64 ⁱ —Zn1—O63	157.6 (2)	O67—Zn9—O57 ^{ix}	103.7 (2)
O260 ⁱⁱⁱ —Zn1—O23 ⁱⁱ	101.3 (3)	O28—Zn10—O35	107.4 (3)
O260 ⁱⁱⁱ —Zn1—O24 ⁱⁱⁱ	99.3 (3)	O28—Zn10—O37	97.0 (3)
O260 ⁱⁱⁱ —Zn1—O63	98.6 (2)	O28—Zn10—O44 ⁱⁱⁱ	112.0 (3)
O260 ⁱⁱⁱ —Zn1—O64 ⁱ	103.7 (2)	O35—Zn10—O37	108.3 (3)
O4 ⁱⁱ —Zn2—O42 ^{iv}	134.9 (3)	O35—Zn10—O44 ⁱⁱⁱ	115.7 (3)
O41 ^{iv} —Zn2—O4 ⁱⁱ	94.3 (3)	O44 ⁱⁱⁱ —Zn10—O37	114.7 (3)
O41 ^{iv} —Zn2—O42 ^{iv}	56.4 (3)	O9—Zn11—O19	103.3 (2)
O41 ^{iv} —Zn2—O65	110.1 (4)	O17—Zn11—O9	101.9 (2)
O65—Zn2—O4 ⁱⁱ	121.3 (3)	O17—Zn11—O19	107.9 (2)
O65—Zn2—O42 ^{iv}	102.0 (3)	O25—Zn11—O9	128.5 (2)
O77—Zn2—O4 ⁱⁱ	92.8 (3)	O25—Zn11—O17	106.8 (3)
O77—Zn2—O41 ^{iv}	131.4 (4)	O25—Zn11—O19	107.2 (3)
O77—Zn2—O42 ^{iv}	85.9 (3)	O10—Zn12—O13 ^{xi}	94.8 (3)
O77—Zn2—O65	106.6 (3)	O10—Zn12—O14 ^{xi}	111.4 (3)
O45—Zn3—O11 ^v	106.8 (3)	O10—Zn12—O20	115.4 (3)
O45—Zn3—O61	122.5 (3)	O14 ^{xi} —Zn12—O13 ^{xi}	57.5 (3)
O61—Zn3—O11 ^v	97.5 (4)	O14 ^{xi} —Zn12—O20	89.2 (3)
O80—Zn3—O11 ^v	105.3 (5)	O20—Zn12—O13 ^{xi}	142.3 (3)
O80—Zn3—O45	117.8 (5)	O26—Zn12—O10	107.5 (4)
O80—Zn3—O61	104.0 (5)	O26—Zn12—O13 ^{xi}	87.2 (3)
O46—Zn4—O12 ^v	106.4 (4)	O26—Zn12—O14 ^{xi}	128.4 (4)
O46—Zn4—O55	111.2 (4)	O26—Zn12—O20	103.5 (3)
O46—Zn4—O62	119.0 (4)	O15 ^{xi} —Zn13—O31 ^{vi}	150.1 (2)
O55—Zn4—O12 ^v	94.9 (3)	O15 ^{xi} —Zn13—O32 ^{vi}	94.2 (2)
O55—Zn4—O62	115.0 (3)	O16 ^{vi} —Zn13—O15 ^{xi}	100.9 (2)

Table S3 The selected bond angles of 1.

O62—Zn4—O12 ^v	107.1 (3)	O16 ^{vi} —Zn13—O31 ^{vi}	86.6 (3)
O47—Zn5—O70 ^{vi}	94.7 (2)	O16 ^{vi} —Zn13—O32 ^{vi}	123.1 (3)
O51—Zn5—O47	113.9 (2)	O21—Zn13—O15 ^{xi}	104.2 (2)
O51—Zn5—O70 ^{vi}	105.64 (18)	O21—Zn13—O16 ^{vi}	116.2 (2)
O69 ^{iv} —Zn5—O47	118.9 (3)	O21—Zn13—O31 ^{vi}	98.0 (3)
O69 ^{iv} —Zn5—O51	114.8 (2)	O21—Zn13—O32 ^{vi}	112.3 (2)
O69 ^{iv} —Zn5—O70 ^{vi}	105.4 (2)	O32 ^{vi} —Zn13—O31 ^{vi}	58.5 (3)
O36 ⁱⁱⁱ —Zn6—O38 ⁱⁱⁱ	99.2 (4)	O5—Zn14—O33 ^{xii}	104.3 (3)
O36 ⁱⁱⁱ —Zn6—O43	107.7 (3)	O5—Zn14—O34 ^{xii}	101.5 (3)
O36 ⁱⁱⁱ —Zn6—O73	127.8 (4)	O5—Zn14—O60 ^{xiii}	104.1 (3)
O36 ⁱⁱⁱ —Zn6—O79	86.9 (6)	O7—Zn14—O5	109.1 (3)
O38 ⁱⁱⁱ —Zn6—O79	173.5 (6)	O7—Zn14—O33 ^{xii}	100.6 (3)
O43—Zn6—O38 ⁱⁱⁱ	92.1 (4)	O7—Zn14—O34 ^{xii}	147.1 (3)
O43—Zn6—O79	84.0 (5)	O7—Zn14—O60 ^{xiii}	93.6 (3)
O73—Zn6—O38 ⁱⁱⁱ	87.5 (3)	O33 ^{xii} —Zn14—O34 ^{xii}	59.2 (2)
O73—Zn6—O43	123.9 (3)	O60 ^{xiii} —Zn14—O33 ^{xii}	141.8 (3)
O73—Zn6—O79	90.4 (5)	O60 ^{xiii} —Zn14—O34 ^{xii}	90.5 (2)
O6 ^{vii} —Zn7—O34 ⁱⁱⁱ	103.0 (2)	O3—Zn15—O66 ^{xv}	120.7 (3)
O6 ^{vii} —Zn7—O74	161.6 (3)	O3—Zn15—O81	104.8 (4)
O6 ^{vii} —Zn7—O75	85.8 (3)	O29 ^{xiv} —Zn15—O3	113.3 (3)
O6 ^{vii} —Zn7—O76	89.6 (3)	O29 ^{xiv} —Zn15—O66 ^{xv}	95.1 (4)
O34 ⁱⁱⁱ —Zn7—O74	94.9 (3)	O29 ^{xiv} —Zn15—O81	126.1 (4)
O34 ⁱⁱⁱ —Zn7—O75	171.0 (3)	O81—Zn15—O66 ^{xv}	96.8 (5)
O59 ^{vi} —Zn7—O6 ^{vii}	91.3 (3)	O1—Zn16—O2 ^{xvi}	159.0 (2)
O59 ^{vi} —Zn7—O34 ⁱⁱⁱ	88.5 (2)	O1—Zn16—O53 ^{xiii}	89.0 (2)
O59 ^{vi} —Zn7—O74	93.2 (3)	O1—Zn16—O54 ^{xiv}	87.5 (2)
O59 ^{vi} —Zn7—O75	93.3 (3)	O2 ^{xvi} —Zn16—O53 ^{xiii}	89.6 (2)
O59 ^{vi} —Zn7—O76	173.5 (3)	O2 ^{xvi} —Zn16—O54 ^{xiv}	86.3 (2)
O74—Zn7—O75	76.2 (3)	O53 ^{xiii} —Zn16—O54 ^{xiv}	158.7 (2)
O76—Zn7—O34 ⁱⁱⁱ	85.0 (4)	O78—Zn16—O1	97.5 (2)
076—Zn7—074	87.9 (4)	O78—Zn16—O2 ^{xvi}	103.0 (2)
O76—Zn7—O75	93.2 (4)	O78—Zn16—O53 ^{xiii}	105.5 (2)

O39—Zn8—O49 ^{viii}	108.7 (3)	O78—Zn16—O54 ^{xiv}	95.7 (2)
O39—Zn8—O58	112.7 (3)		
O39—Zn8—O71	116.6 (3)		
O58—Zn8—O49 ^{viii}	109.1 (3)		
O71—Zn8—O49 ^{viii}	91.2 (2)		
O71—Zn8—O58	115.9 (3)		

Symmetry codes: (i) -x+3, -y+1, -z+2; (ii) x+1, y, z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+2, y-1/2, -z+3/2; (v) x+1, -y+3/2, z+1/2; (vi) x, -y+3/2, z-1/2; (vii) x+1, y, z; (viii) x, -y+3/2, z+1/2; (ix) -x+2, y+1/2, -z+3/2; (x) -x+2, -y+2, -z+1; (xi) -x+1, y+1/2, -z+1/2; (xi) -x+1, -y+1, -z+1; (xiii) x-1, -y+3/2, z-1/2; (xiv) -x+1, y-1/2, -z+1/2; (xv) x-1, y, z-1; (xvi) -x, -y+1, -z; (xvii) x-1, y, z.

Zn1—Zn1 ^{xxiv}	3.0025(0)	Zn7—Zn14 ^{xix}	3.4338(0)
Zn2—Zn15 ^{xvii}	3.8743(1)	Zn8—Zn9 ^{xx}	3.2925(0)
Zn3—Zn4	3.4128(0)	Zn11—Zn12	3.3062(0)
Zn5—Zn5 ^{xviii}	3.8882(0)	Zn13—Zn13 ^{xxii}	4.0280(0)
Zn6—Zn10 ^{xviii}	3.5449(0)	Zn16—Zn16 ^{xxiii}	2.9834(0)

Table S4 The calculated $Zn \cdots Zn$ distance in the dinuclear [Zn2] unit of 1.

Symmetry codes: (v) -x+3, 1-y, 3-z; (xvii) x-1, y, z; (xviii) -x+2, -y+1, -z+2; (xix) x-1, y, z; (xx) -x+2, y+1/2, -z+5/2; (xxii) -x+1, -y+2, -z+1; (xxiii) -x, -y+1, -z+1; ; (xxiv) -x+3, 1-y, 3-z.

Table S5 The calculated coordination geometry of each metal centre of **1** by Shape 4.0, based on the simaller Continuous Shape Measures (CShM) value. Coordination geometry: SPY-5 = Spherical square pyramid, vOC-5 = Vacant octahedron, T-4 = Tetrahedron, SS-4 = Seesaw, TBPY-5 = Trigonal bipyramid, OC-6 = Octahedron, TPR-6 = Trigonal prism. The preferred geometries with lower CShM values are highlighted in blue.

Metal ions	Coordination Numbers	Geometry	CShM value
Zn1	-	SPY-5	0.242
	5	vOC-5	0.836
7.0		T-4	2.947
Zn2	4	SS-4	4.930
7.2		T-4	0.709
Zn3	4	SS-4	6.507
7.04	4	T-4	0.621
Zn4	4	SS-4	8.319
7.5	4	T-4	0.738
Zno	4	SS-4	7.565
7(5	TBPY-5	0.573
Zno	3	SPY-5	4.186
77	6	OC-6	0.995
ΖΠ/		TPR-6	12.341
7.09	4	T-4	0.916
2110		Seesaw	8.408
Zn9	4	T-4	0.698
		Seesaw	5.640
Zn10	1	T-4	0.475
	Т	Seesaw	8.434
7.11	1	T-4	0.922
ZIITT	7	Seesaw	5.108
7n12	5	SPY-5	2.943
21112	3	vOC-5	5.386
7n13	5	SPY-5	3.238
21115	5	TBPY-5	3.553
7.14	5	SPY-5	1.750
2.1114	5	vOC-5	3.522
7n15	4	T-4	1.978
2.111.3		Seesaw-4	5.840
7n16	5	SPY-5	0.339
Znl6	5	vOC-5	0.856

Figure S1 The photos of crystals of 1 synthesized under traditional solvothermal reaction.

Figure S2 (a) The photo of crystals of **1** (0.96 g) synthesized by microwave-assisted solvothermal reaction on gram scale. The presented bottle of crystals were generated in 2.5 hours including 30 min thermal reaction and 2 hour cooling, using 12 microwave autoclaves. (b) The photo of crystals of **1** synthesized under microwave-assisted solvothermal synthesis, which shows high phase homogeneity comparing to the traditional solvothermal reaction excepting decresased crystal size.

Figure S3 View of the nine tetrahedral Zn^{2+} ions of 1 and their coordination geometries with noticeable differences.

Figure S4 View of the six penta-coordinated Zn^{2+} ions of 1 and their coordination geometries with noticeable differences.

Figure S5 View of the octahedral Zn^{2+} ion and its coordination geometry.

(a) Four-metal-coordinated linkers

Figure S6 View of the coordination models of the twelve linkers in the asymmetric unit of **1**. The linkers are divided into three categories of (a) four-metal-coordinated with three linkers in two different models, (b) five-metal-coordinated with seven linkers in three different models, (c) six-metal-coordinated with two linkers.

Figure S7 Structural view of all the fourteen [Zn2] dinuclear units and the corresponding $Zn \cdots Zn$ distance in the dinuclear unit.

Figure S8 Perspective view of the pillared-layer structure of **1** with perpendicular distance of 16.8 Å bwtween adjacent layers. The layer are highlighted in space-filling modle, while the metal nodes in pillars are shown in polyhedron model for charity.

Figure S9 (a) Perspective view of the structure of layer in 1, which are constructed from [Zn2] metal node and parallel-arranged linkers. (b) A simplified representation of the connectivity between the metal nodes and linkers within the layer.

Figure S10 View of the asymmetric unit of the reported Zn(II)-btc-MOFs with polynuclear composition containing (a) seven Zn^{2+} ions, and (b) nine Zn^{2+} ions.

Figure S11 The thermogravimetric curves of **1** under N₂ atmosphere with a heating rate of 5 °C/min in the temperature range of 30-800 °C. The compound exhibits continuous weight loss without evident platform. There is a weigh loss of 24.2% before the spinodal at 230 °C, which is attributed to the departure of guest DMA (Cal. 26.0%). Under further heating, continuous weight loss was observed, indicating the decomposition of the negative framework.

Figure S12 The PXRD patterns of **1** as simulated (black), synthesized by traditional solvothermal reaction (green), and synthesized by microwave-assisted solvothermal reaction (blue). The measured patterns are consistent to the simulated data with matched diffraction peaks, excepting the difference in intensity of each peak due to anisotropy of the crystals.

Figure S13 The photograph of the solid state fluorescence of H₃btc and **1** under exication of 365 nm using a ultraviolet lamp.

Figure S14 The photograph of the solid state fluorescence of **1** under different excitation of 300, 350, 400, and 420 nm, using the light from a fluorescence spectrophotometer. The crystals of **1** show white light emission under the wide range radiation of 300-400 nm.

Figure S15 The fluorescence emission spectra with the peak position (E_p) of **1** under different excitation (E_x) . The region of full width at half maxima of each spectra is highlighted in light blue.

E _x / nm	E _p ^a / nm	E _{m1^b / nm}	E _{m2} ^c / nm	FWHM / nm
300	521	425	639	214
310	529	419	644	225
320	532	413	643	230
330	535	406	646	240
340	526	397	644	247
350	511	394	649	255
360	495	398	642	244
370	464	406	637	231
380	474	414	631	217

Table S6 Statistics of the full width at half maxima (FWHM) for the emission spectra of 1 underdifferent excitation from 300 to 380 nm.

^a Location of the emission spectrum with the maximum intensity. ^b The start point of emission spectrum with half maxima intensity. ^c The end point of emission spectrum with half maxima intensity.

Table S7 Statistics of the correlated color temperature (CCT) for the emission spectra of 1 underdifferent excitation from 300 to 420 nm.

E _x / nm	CCT / K	E _x / nm	CCT / K
300	5749	370	6016
310	5750	380	6016
320	5750	390	5913
330	5765	400	5913
340	5810	410	5821
350	5885	420	5736
360	6020		

Figure S16 The fluorescence excitation spectra of 1 detected at different emission.

Figure S17 The decay time dependent emission intensity (black square) of **1**, giving the fitted (red line) fluorescence lifetime of 6.75 ns for **1**.

Figure S18 (a) The emission spectra of de-solvated **1** under different excitation. The as-synthesized MOFs were exchanged with dichloromethane and acetonitrile for more than 1 week until the original guest solvent of DMA was exchanged. The guest-exchanged samples were degassed at 323 K for 10 h to get the desolvated phase for fluorescence measurements. (b) The fluorescence excitation spectrum of de-solvated **1** detected at different emission.

Figure S19 The photographs of the solution fluorescence of desolvated **1** in different organic solvents of DMA, DMF, CH₃OH, C₂H₅OH, CH₃CN and CH₂Cl₂, under excitation of 365 nm using a ultraviolet lamp. The suspensions were prepared by dispersing 5 mg fine-ground crystals of desolvated **1** into 3 mL solvent, followed by ultrasonic treatment for 20 minutes.

Figure S20 The emission spectra for suspension of desolvated **1** in DMA, DMF, CH₃OH, C₂H₅OH, CH₃CN, and CH₂Cl₂, which exhibits continuous and broadband spectra.

Figure S21 The (a) emission and (b) excitation spectra of the free ligand H₃btc.

Figure S22 The decay time dependent emission intensity (black square) of the free ligand of H₃btc, giving the fitted (red line) fluorescence lifetime of 2.25 ns for H₃btc.

Refference:

- 1. G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- 3. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- 4. A. L. Spek, Acta Cryst. 2015, C71, 9.
- X.-R. Hao, X.-L. Wang, K.-Z. Shao, G.-S. Yang, Z.-M. Su and G. Yuan, *CrystEngComm*, 2012, 14, 5596.