## **Electronic Supplementary Information (ESI)**

for

## Nickel Complexes of Ligands Derived from (*o*-Hydroxyphenyl) Dichalcogenide: Delocalised Redox States of Nickel and *o*-Chalcogenophenolate Ligand

Sridhar Banerjee,<sup>a</sup> Debobrata Sheet,<sup>a,b</sup> Subhash Sarkar,<sup>a</sup> Partha Halder<sup>a,c</sup> and Tapan Kanti Paine<sup>\*,a</sup>

<sup>a</sup>School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India. *E-mail:* <u>ictkp@iacs.res.in</u>

<sup>b</sup>Present Address: Department of Chemistry, Presidency University, 86/1 College Street, Kolkata-700073, India.

<sup>c</sup>Present Address: Department of Chemistry, Scottish Church College, 1 & 3 Urquhart Square, Kolkata-700 006, India.



**Figure 1.** ESI-mass spectra (negative ion mode in acetonitrile) of complex (a) **1** and (b) **2**. Insets: ion peaks along with the isotope distribution patterns. The red bards indicate the calculated isotope distribution patterns.



**Figure S2.** Crystal structures of the complex anion of  $Bu_4N[Ni(L^{SO})_2]$  (2). The counter cations, solvent molecules and all the hydrogen atoms have been omitted for clarity.



**Figure S3.** X-band EPR spectral changes during the conversion of  $1^{red}$  to 1. Temperature = 77 K, microwave frequency = 9.14 GHz, microwave power = 0.998 mW, modulation amplitude = 0.1 mT.



**Figure S4.** Optical spectral changes during the conversion of 1<sup>red</sup> to 1 upon exposure to air in dichloromethane at 298 K.



**Figure S5.** One-electron oxidation of (a) **1** and (b) **2** in dichloromethane with ferrocenium hexafluorophosphate (1.5 equiv) at 298 K.



LUMO

**Figure S6.** Frontier orbitals of complex 1 ( $[(L^{SeO})_2Ni]^-$ ). Isosurface cut off value: 0.02. In HOMO, % contribution of Ni = 32 and of ligand = 68. In LUMO, % contribution of Ni = 46 and of ligand = 54.



LUMO

**Figure S7.** Frontier orbitasl of complex **2** ([( $L^{SO}$ )<sub>2</sub>Ni]<sup>-</sup>). Isosurface cut off value: 0.02. In HOMO, % contribution of Ni = 18, ligand = 82. In LUMO, % contribution of Ni = 47, of ligand = 53.



**Figure S8.** Spin density plot for complex 1 ( $[(L^{SeO})_2Ni]^-$ ). 37.4% of total spin density is on the Ni centre and 62.6% is on the ligands.



**Figure S9.** Spin density plot for complex **2** ( $[(L^{SO})_2Ni]^-$ ). 36.3% of total spin density is on the Ni centre and 63.7% is on the ligands.



**Figure S10.** Optical transition predicted for complex 1 ( $[(L^{SeO})_2Ni]$ ) by TDDFT calculations and assignment of the lowest energy transition.



Figure S11. Optical transition predicted for complex 2 ( $[(L^{SO})_2Ni]^-$ ) by TDDFT calculations and assignment of the lowest energy transition.



HOMO



LUMO

**Figure S12.** Frontier orbitals of  $1^{\text{red}}$  ([(L<sup>SeO</sup>)<sub>2</sub>Ni]<sup>2-</sup>). Isosurface cut off value: 0.02. In HOMO, % contribution of Ni = 39 and of ligand = 61. In LUMO, % contribution of Ni = 48, and of ligand = 52.



НОМО



LUMO

**Figure S13.** Frontier orbitals of  $2^{\text{red}}$  ([(L<sup>SO</sup>)<sub>2</sub>Ni]<sup>2-</sup>). Isosurface cut off value: 0.02. In HOMO, % contribution of Ni = 61 and of ligand = 39. In LUMO, % contribution of Ni = 55 and of ligand = 45.



**Figure S14.** Optical transition predicted for complex  $1^{\text{red}}$  ([(L<sup>SeO</sup>)<sub>2</sub>Ni]<sup>2-</sup>) by TDDFT calculations and assignment of the transition with highest oscillator strength (f).



**Figure S15.** Optical transition predicted for complex  $2^{red}$  ([(L<sup>SO</sup>)<sub>2</sub>Ni]<sup>2-</sup>) by TDDFT calculations and assignment of the transition with highest oscillator strength (f).



Figure S16. Spin density plot for the open shell singlet configuration of complex  $1^{ox}$  ([( $L^{SeO}$ )<sub>2</sub>Ni]).



Figure S17. Spin density plot for the open shell singlet configuration of complex  $2^{ox}$  ([(L<sup>SO</sup>)<sub>2</sub>Ni]).

| Parameters                             | 1                                                                 | 2                            |
|----------------------------------------|-------------------------------------------------------------------|------------------------------|
| Empirical formula                      | C <sub>44</sub> H <sub>76</sub> NNiO <sub>2</sub> Se <sub>2</sub> | $C_{92}H_{158}N_2Ni_2O_5S_4$ |
| Formula weight                         | 867.68                                                            | 1617.85                      |
| Crystal system                         | 'Triclinic'                                                       | 'Triclinic'                  |
| Space group                            | 'P-1'                                                             | 'P-1'                        |
| <i>a</i> , Å                           | 12.2167(9)                                                        | 11.7642(12)                  |
| b, Å                                   | 17.5848(13)                                                       | 17.6359(15)                  |
| <i>c</i> , Å                           | 22.4459(17)                                                       | 24.949(2)                    |
| $\alpha$ , deg                         | 102.464(3)                                                        | 102.301(3)                   |
| $\beta$ , deg                          | 92.731(3)                                                         | 96.756(3)                    |
| γ, deg                                 | 101.164(3)                                                        | 103.944(3)                   |
| Volume, Å <sup>3</sup>                 | 4599.1(6)                                                         | 4829.8(8)                    |
| Z                                      | 4                                                                 | 2                            |
| $D_{\text{calcd-}}, \text{Mg/m}^3$     | 1.253                                                             | 1.112                        |
| $\mu$ Mo K $\alpha$ , mm <sup>-1</sup> | 2.038                                                             | 0.523                        |
| F(000)                                 | 1836                                                              | 1768                         |
| Temperature/K                          | 293(2)                                                            | 100(2)                       |
| $\theta$ range, deg                    | 1.21 - 22.85                                                      | 2.52-27.088                  |
| Reflections collected                  | 42950                                                             | 13155                        |
| Reflns unique                          | 12543                                                             | 9682                         |
| R(int)                                 | 0.0528                                                            | 0.0893                       |
| Data $(I > 2\sigma(I))$                | 8169                                                              | 8469                         |
| Parameters refined                     | 933                                                               | 975                          |
| Goodness-of-fit on F <sup>2</sup>      | 1.023                                                             | 1.016                        |
| wR2                                    | 0.1211                                                            | 0.2145                       |

 Table S1. Crystallographic data for 1 and 2.

 Table S2. Selected bond lengths (Å) and angles (°) for 2.

| Ni(1)-O(1)      | 1.841(5)   | C(1)-C(2)   | 1.398(11) |
|-----------------|------------|-------------|-----------|
| Ni(1)-O(2)      | 1.839(5)   | C(2)-C(3)   | 1.411(10) |
| Ni(1)-S(1)      | 2.125(2)   | C(3)-C(4)   | 1.386(11) |
| Ni(1)-S(2)      | 2.142(2)   | C(4)-C(5)   | 1.427(12) |
| C(2)-O(1)       | 1.326(9)   | C(5)-C(6)   | 1.370(11) |
| C(8)-O(2)       | 1.322(8)   | C(6)-C(1)   | 1.403(11) |
| C(1)-S(1)       | 1.764(8)   | C(7)-C(8)   | 1.393(11) |
| C(7)-S(2)       | 1.762(8)   | C(9)-C(10)  | 1.380(11) |
| O(1)-Ni(1)-S(2) | 176.92(19) | C(10)-C(11) | 1.425(12) |
| O(2)-Ni(1)-S(1) | 175.77(17) | C(11)-C(12) | 1.369(12) |

|                  | 1         | 1 <sup>red</sup> | 1 <sup>ox</sup> |
|------------------|-----------|------------------|-----------------|
| Ni(1)-O(1)       | 1.88906   | 1.87618          | 1.91936         |
| Ni(1)-O(2)       | 1.89264   | 1.88052          | 1.91893         |
| Ni(1)-Se(1)      | 2.29461   | 2.27145          | 2.32323         |
| Ni(1)-Se(2)      | 2.29593   | 2.27236          | 2.32348         |
| C(1)-C(2)        | 1.42183   | 1.43736          | 1.44833         |
| C(2)-C(3)        | 1.43400   | 1.44212          | 1.45147         |
| C(3)-C(4)        | 1.39873   | 1.41000          | 1.38276         |
| C(4)-C(5)        | 1.41370   | 1.42693          | 1.42987         |
| C(5)-C(6)        | 1.39720   | 1.41002          | 1.39448         |
| C(6)-C(1)        | 1.39764   | 1.40104          | 1.39578         |
| C(7)-C(8)        | 1.42035   | 1.43767          | 1.44599         |
| C(8)-C(9)        | 1.43894   | 1.44602          | 1.45272         |
| C(9)-C(10)       | 1.39302   | 1.41266          | 1.37923         |
| C(10)-C(11)      | 1.41946   | 1.43288          | 1.43526         |
| C(11)-C(12)      | 1.39205   | 1.42006          | 1.38828         |
| C(12)-C(7)       | 1.40282   | 1.40609          | 1.40212         |
| Bond Angle       |           |                  |                 |
| O(1)-Ni(1)-Se(2) | 178.51083 | 179.51154        | 177.46252       |
| O(2)-Ni(1)-Se(1) | 178.67870 | 179.70017        | 177.58533       |
| O(1)-Ni(1)-Se(1) | 88.85806  | 89.16748         | 88.05161        |
| O(2)-Ni(1)-Se(2) | 88.69007  | 88.97882         | 88.00807        |

Table S3. DFT optimised bond lengths (Å) and angles (°) for 1,  $1^{red}$  and  $1^{ox}$ .

Table S4. Cartesian coordinates for the optimized structure for complex 1 ( $[(L^{SeO})_2Ni]^-$ ).

| Cente | er Ato | omic Ato | omic      | Coordinates | s (Ang | stroms) |
|-------|--------|----------|-----------|-------------|--------|---------|
| Nı    | umber  | Number   | Туре      | Х           | Y      | Z       |
|       |        |          |           |             |        |         |
| 1     | 34     | 0        | -1.596603 | -2.308027   | -0.00  | 0215    |
| 2     | 34     | 0        | 1.630459  | -2.288978   | -0.00  | 0148    |
| 3     | 28     | 0        | 0.007524  | -0.735363   | -0.00  | 0216    |
| 4     | 6      | 0        | 4.407158  | -1.317276   | 0.000  | 0004    |
| 5     | 1      | 0        | 4.700150  | -2.378235   | -0.000 | 0055    |
| 6     | 6      | 0        | 3.568841  | 1.410380    | 0.000  | 0202    |

| 7  | 6 | 0 | 5.382118  | -0.301404 | 0.000102  |
|----|---|---|-----------|-----------|-----------|
| 8  | 6 | 0 | 4.926014  | 1.039982  | 0.000208  |
| 9  | 1 | 0 | 5.673222  | 1.841621  | 0.000322  |
| 10 | 6 | 0 | 3.044564  | -0.992811 | -0.000007 |
| 11 | 6 | 0 | 2.588278  | 0.358487  | 0.000057  |
| 12 | 8 | 0 | 1.284850  | 0.615822  | 0.000018  |
| 13 | 8 | 0 | -1.287212 | 0.599867  | -0.000350 |
| 14 | 6 | 0 | -3.025862 | -1.030387 | -0.000008 |
| 15 | 6 | 0 | -3.581275 | 1.366758  | -0.000181 |
| 16 | 6 | 0 | -4.387214 | -1.377007 | 0.000199  |
| 17 | 1 | 0 | -4.660963 | -2.440546 | 0.000302  |
| 18 | 6 | 0 | -3.157419 | 2.850249  | -0.000468 |
| 19 | 6 | 0 | -2.586371 | 0.324009  | -0.000170 |
| 20 | 6 | 0 | -5.369970 | -0.374397 | 0.000256  |
| 21 | 6 | 0 | -6.882315 | -0.680857 | 0.000498  |
| 22 | 6 | 0 | -4.368665 | 3.808946  | -0.000427 |
| 23 | 1 | 0 | -5.003861 | 3.672376  | -0.898737 |
| 24 | 1 | 0 | -4.005830 | 4.856437  | -0.000649 |
| 25 | 1 | 0 | -5.003587 | 3.672675  | 0.898125  |
| 26 | 6 | 0 | -4.928413 | 0.976203  | 0.000054  |
| 27 | 1 | 0 | -5.694111 | 1.764068  | 0.000069  |
| 28 | 6 | 0 | -2.309740 | 3.147787  | -1.267353 |
| 29 | 1 | 0 | -1.422270 | 2.491739  | -1.297349 |
| 30 | 1 | 0 | -1.972186 | 4.205321  | -1.264059 |
| 31 | 1 | 0 | -2.907039 | 2.979647  | -2.186049 |

| 32 | 6 | 0 | -2.309301 | 3.148189  | 1.266021  |
|----|---|---|-----------|-----------|-----------|
| 33 | 1 | 0 | -2.906249 | 2.980268  | 2.184984  |
| 34 | 1 | 0 | -1.971814 | 4.205743  | 1.262312  |
| 35 | 1 | 0 | -1.421781 | 2.492199  | 1.295865  |
| 36 | 6 | 0 | -7.172881 | -2.198263 | 0.000706  |
| 37 | 1 | 0 | -6.751095 | -2.694088 | 0.896959  |
| 38 | 1 | 0 | -6.751442 | -2.694270 | -0.895606 |
| 39 | 1 | 0 | -8.267966 | -2.372646 | 0.000929  |
| 40 | 6 | 0 | -7.541178 | -0.066536 | -1.264028 |
| 41 | 1 | 0 | -8.635066 | -0.256923 | -1.269995 |
| 42 | 1 | 0 | -7.107181 | -0.506370 | -2.183194 |
| 43 | 1 | 0 | -7.385846 | 1.028376  | -1.310976 |
| 44 | 6 | 0 | 3.126568  | 2.888893  | 0.000350  |
| 45 | 6 | 0 | 2.275243  | 3.177076  | -1.266311 |
| 46 | 1 | 0 | 2.874819  | 3.017406  | -2.185061 |
| 47 | 1 | 0 | 1.924171  | 4.230274  | -1.262298 |
| 48 | 1 | 0 | 1.396108  | 2.509911  | -1.297400 |
| 49 | 6 | 0 | 7.207102  | -1.516637 | -1.264021 |
| 50 | 1 | 0 | 7.004067  | -0.933938 | -2.183865 |
| 51 | 1 | 0 | 6.592251  | -2.435564 | -1.308192 |
| 52 | 1 | 0 | 8.275723  | -1.818751 | -1.272095 |
| 53 | 6 | 0 | 7.207013  | -1.517058 | 1.263951  |
| 54 | 1 | 0 | 8.275654  | -1.819099 | 1.272042  |
| 55 | 1 | 0 | 6.592227  | -2.436049 | 1.307722  |
| 56 | 1 | 0 | 7.003828  | -0.934694 | 2.183976  |

| 57 | 6 | 0 | 7.802637  | 0.563060  | 0.000333  |
|----|---|---|-----------|-----------|-----------|
| 58 | 1 | 0 | 8.863891  | 0.241580  | 0.000352  |
| 59 | 1 | 0 | 7.639558  | 1.192425  | 0.897190  |
| 60 | 1 | 0 | 7.639686  | 1.192673  | -0.896375 |
| 61 | 6 | 0 | 6.880538  | -0.676659 | 0.000094  |
| 62 | 6 | 0 | 4.325146  | 3.863497  | 0.000529  |
| 63 | 1 | 0 | 4.962099  | 3.735543  | 0.898838  |
| 64 | 1 | 0 | 3.948307  | 4.906107  | 0.000674  |
| 65 | 1 | 0 | 4.962200  | 3.735826  | -0.897750 |
| 66 | 6 | 0 | 2.275148  | 3.176845  | 1.266997  |
| 67 | 1 | 0 | 1.396032  | 2.509647  | 1.297964  |
| 68 | 1 | 0 | 1.924030  | 4.230028  | 1.263086  |
| 69 | 1 | 0 | 2.874669  | 3.017097  | 2.185766  |
| 70 | 6 | 0 | -7.540840 | -0.066256 | 1.265070  |
| 71 | 1 | 0 | -7.385502 | 1.028668  | 1.311733  |
| 72 | 1 | 0 | -7.106609 | -0.505894 | 2.184219  |
| 73 | 1 | 0 | -8.634726 | -0.256646 | 1.271360  |

**Table S5.** Mulliken charges on complex 1 with hydrogens summed into heavy atoms.

| Centre no. | atom N | Mulliken charge |
|------------|--------|-----------------|
| 1          | Se     | -0.398479       |
| 2          | Se     | -0.401613       |
| 3          | Ni     | 0.931407        |
| 4          | С      | -0.148910       |
| 5          | Н      | 0.000000        |

| 6  | С | 0.132993  |
|----|---|-----------|
| 7  | С | 0.202869  |
| 8  | С | -0.201907 |
| 9  | Н | 0.000000  |
| 10 | С | -0.033383 |
| 11 | С | 0.280842  |
| 12 | 0 | -0.615376 |
| 13 | 0 | -0.614666 |
| 14 | С | -0.037662 |
| 15 | С | 0.133188  |
| 16 | С | -0.146675 |
| 17 | Н | 0.000000  |
| 18 | С | 0.095107  |
| 19 | С | 0.282596  |
| 20 | С | 0.203710  |
| 21 | С | 0.077221  |
| 22 | С | -0.091897 |
| 23 | Н | 0.000000  |
| 24 | Н | 0.000000  |
| 25 | Н | 0.000000  |
| 26 | С | -0.199988 |
| 27 | Н | 0.000000  |
| 28 | С | -0.040538 |
| 29 | Н | 0.000000  |
| 30 | Н | 0.000000  |

| 31 | Н | 0.000000  |
|----|---|-----------|
| 32 | С | -0.040533 |
| 33 | Н | 0.000000  |
| 34 | Н | 0.000000  |
| 35 | Н | 0.000000  |
| 36 | С | -0.069273 |
| 37 | Н | 0.000000  |
| 38 | Н | 0.000000  |
| 39 | Н | 0.000000  |
| 40 | С | -0.056852 |
| 41 | Н | 0.000000  |
| 42 | Н | 0.000000  |
| 43 | Н | 0.000000  |
| 44 | С | 0.095813  |
| 45 | С | -0.041872 |
| 46 | Н | 0.000000  |
| 47 | Н | 0.000000  |
| 48 | Н | 0.000000  |
| 49 | С | -0.053511 |
| 50 | Н | 0.000000  |
| 51 | Н | 0.000000  |
| 52 | Н | 0.000000  |
| 53 | С | -0.053514 |
| 54 | Н | 0.000000  |
| 55 | Н | 0.000000  |

S21

| 56 | Н | 0.000000  |
|----|---|-----------|
| 57 | С | -0.075558 |
| 58 | Н | 0.000000  |
| 59 | Н | 0.000000  |
| 60 | Н | 0.000000  |
| 61 | С | 0.076801  |
| 62 | С | -0.091617 |
| 63 | Н | 0.000000  |
| 64 | Н | 0.000000  |
| 65 | Н | 0.000000  |
| 66 | С | -0.041873 |
| 67 | Н | 0.000000  |
| 68 | Н | 0.000000  |
| 69 | Н | 0.000000  |
| 70 | С | -0.056851 |
| 71 | Н | 0.000000  |
| 72 | Н | 0.000000  |
| 73 | Н | 0.000000  |

Sum of Mulliken charges= -1.00000

 Table S6. Mulliken spin density for complex 1.

| Metal ion (Ni)    | Ligand            |
|-------------------|-------------------|
| 0.374284 (37.43%) | 0.625716 (62.57%) |

| Center Atomic |      | mic Ator | mic       | Coordinates (Angstroms) |           |  |
|---------------|------|----------|-----------|-------------------------|-----------|--|
| Nur           | nber | Number   | Туре      | Х                       | Y Z       |  |
|               |      |          |           |                         |           |  |
| 1             | 34   | Se       | -1.651863 | -2.360424               | -0.000915 |  |
| 2             | 34   | Se       | 1.688141  | -2.338609               | 0.001232  |  |
| 3             | 28   | Ni       | 0.007847  | -0.799163               | 0.000160  |  |
| 4             | 6    | С        | 4.451421  | -1.282492               | 0.000403  |  |
| 5             | 1    | Н        | 4.768518  | -2.338865               | 0.000729  |  |
| 6             | 6    | С        | 3.563363  | 1.410232                | -0.000347 |  |
| 7             | 6    | С        | 5.418224  | -0.246054               | -0.000098 |  |
| 8             | 6    | С        | 4.938159  | 1.080962                | -0.000450 |  |
| 9             | 1    | Н        | 5.663606  | 1.904473                | -0.000867 |  |
| 10            | 6    | С        | 3.081867  | -1.002386               | 0.000490  |  |
| 11            | 6    | С        | 2.593982  | 0.345592                | 0.000115  |  |
| 12            | 8    | 0        | 1.291544  | 0.584852                | 0.000193  |  |
| 13            | 8    | 0        | -1.292548 | 0.568548                | 0.000061  |  |
| 14            | 6    | С        | -3.062453 | -1.041371               | -0.000512 |  |
| 15            | 6    | С        | -3.575462 | 1.364202                | 0.000286  |  |
| 16            | 6    | С        | -4.430509 | -1.344979               | -0.000764 |  |
| 17            | 1    | Н        | -4.725788 | -2.404525               | -0.001147 |  |
| 18            | 6    | С        | -3.115816 | 2.838009                | 0.000937  |  |
| 19            | 6    | С        | -2.591612 | 0.309508                | -0.000059 |  |
| 20            | 6    | С        | -5.406607 | -0.322322               | -0.000593 |  |
| 21            | 6    | С        | -6.923594 | -0.604883               | -0.000389 |  |

Table S7. Cartesian coordinates for the optimized structure for complex 1<sup>red</sup>.

| 22 | 6 | С | -4.296142 | 3.834637  | 0.001236  |
|----|---|---|-----------|-----------|-----------|
| 23 | 1 | Н | -4.936808 | 3.714602  | -0.896588 |
| 24 | 1 | Н | -3.903040 | 4.872970  | 0.001684  |
| 25 | 1 | Н | -4.936942 | 3.713882  | 0.898868  |
| 26 | 6 | С | -4.941237 | 1.013736  | 0.000057  |
| 27 | 1 | Н | -5.686893 | 1.823666  | 0.000494  |
| 28 | 6 | С | -2.255377 | 3.111687  | -1.262533 |
| 29 | 1 | Н | -1.405572 | 2.405921  | -1.285807 |
| 30 | 1 | Н | -1.864437 | 4.152582  | -1.254922 |
| 31 | 1 | Н | -2.860403 | 2.974954  | -2.182524 |
| 32 | 6 | С | -2.255628 | 3.110645  | 1.264804  |
| 33 | 1 | Н | -2.860945 | 2.973554  | 2.184551  |
| 34 | 1 | Н | -1.864352 | 4.151418  | 1.257927  |
| 35 | 1 | Н | -1.406042 | 2.404609  | 1.287884  |
| 36 | 6 | С | -7.241530 | -2.117177 | -0.003505 |
| 37 | 1 | Н | -6.821987 | -2.619426 | 0.890147  |
| 38 | 1 | Н | -6.820784 | -2.615896 | -0.898568 |
| 39 | 1 | Н | -8.340763 | -2.277395 | -0.004516 |
| 40 | 6 | С | -7.581008 | 0.020099  | -1.261515 |
| 41 | 1 | Н | -8.681587 | -0.146184 | -1.271186 |
| 42 | 1 | Н | -7.152741 | -0.427328 | -2.180067 |
| 43 | 1 | Н | -7.397417 | 1.110812  | -1.306781 |
| 44 | 6 | С | 3.084230  | 2.878217  | -0.000820 |
| 45 | 6 | С | 2.220424  | 3.140635  | -1.264476 |
| 46 | 1 | Н | 2.827316  | 3.011330  | -2.184332 |

| 47 | ' 1        | Н | 1.815951  | 4.176435  | -1.257551 |
|----|------------|---|-----------|-----------|-----------|
| 48 | 1          | Н | 1.379727  | 2.424083  | -1.287940 |
| 49 | 6          | С | 7.264404  | -1.438900 | -1.261941 |
| 50 | 1          | Н | 7.058963  | -0.854263 | -2.180475 |
| 51 | 1          | Н | 6.647282  | -2.356044 | -1.308666 |
| 52 | 1          | Н | 8.335978  | -1.740051 | -1.270268 |
| 53 | 6          | C | 7.264868  | -1.436765 | 1.263004  |
| 54 | - 1        | Н | 8.336225  | -1.738705 | 1.271036  |
| 55 | 5 1        | Н | 6.647050  | -2.353330 | 1.311908  |
| 56 | 5 1        | Н | 7.060616  | -0.850238 | 2.180599  |
| 57 | 6          | C | 7.827768  | 0.649522  | -0.001414 |
| 58 | 1          | Н | 8.896392  | 0.346508  | -0.001513 |
| 59 | ) 1        | Н | 7.649460  | 1.277808  | 0.893582  |
| 60 | ) 1        | Н | 7.648846  | 1.276338  | -0.897317 |
| 61 | 6          | С | 6.919817  | -0.600838 | -0.000111 |
| 62 | 2 6        | С | 4.250466  | 3.891569  | -0.001215 |
| 63 | 5 1        | Н | 4.893105  | 3.781361  | 0.896478  |
| 64 | - 1        | Н | 3.842290  | 4.924174  | -0.001637 |
| 65 | 5 1        | Н | 4.893112  | 3.780632  | -0.898813 |
| 66 | 6 6        | C | 2.220513  | 3.141506  | 1.262715  |
| 67 | <b>7</b> 1 | Н | 1.379873  | 2.424909  | 1.286767  |
| 68 | 8 1        | Н | 1.815982  | 4.177277  | 1.255068  |
| 69 | ) 1        | Н | 2.827491  | 3.012902  | 2.182613  |
| 70 | ) 6        | С | -7.579377 | 0.014780  | 1.264217  |
| 71 | 1          | Н | -7.395412 | 1.105251  | 1.313785  |

| 72 | 1 | Н | -7.149948 | -0.436628 | 2.180273 |
|----|---|---|-----------|-----------|----------|
| 73 | 1 | Н | -8.679987 | -0.151321 | 1.274694 |

Table S8. Atomic charges on  $1^{red}$  with hydrogens summed into heavy atoms.

| Centre no. | Atom | Mulliken charge |
|------------|------|-----------------|
| 1          | Se   | -0.555543       |
| 2          | Se   | -0.555282       |
| 3          | Ni   | 0.802619        |
| 4          | С    | -0.197772       |
| 5          | Н    | 0.000000        |
| 6          | С    | 0.112109        |
| 7          | С    | 0.196983        |
| 8          | С    | -0.248353       |
| 9          | Н    | 0.000000        |
| 10         | С    | -0.019311       |
| 11         | С    | 0.277541        |
| 12         | Ο    | -0.626792       |
| 13         | Ο    | -0.627577       |
| 14         | С    | -0.024509       |
| 15         | С    | 0.113660        |
| 16         | С    | -0.192819       |
| 17         | Н    | 0.000000        |
| 18         | С    | 0.108132        |
| 19         | С    | 0.278967        |
| 20         | С    | 0.195336        |

| 21 | С | 0.089867  |
|----|---|-----------|
| 22 | С | -0.132493 |
| 23 | Н | 0.000000  |
| 24 | Н | 0.000000  |
| 25 | Н | 0.000000  |
| 26 | С | -0.247697 |
| 27 | Н | 0.000000  |
| 28 | С | -0.063206 |
| 29 | Н | 0.000000  |
| 30 | Н | 0.000000  |
| 31 | Н | 0.000000  |
| 32 | С | -0.063209 |
| 33 | Н | 0.000000  |
| 34 | Н | 0.000000  |
| 35 | Н | 0.000000  |
| 36 | С | -0.095761 |
| 37 | Н | 0.000000  |
| 38 | Н | 0.000000  |
| 39 | Н | 0.000000  |
| 40 | С | -0.091697 |
| 41 | Н | 0.000000  |
| 42 | Н | 0.000000  |
| 43 | Н | 0.000000  |
| 44 | С | 0.108893  |
| 45 | С | -0.064471 |

| 46 | Н | 0.000000  |
|----|---|-----------|
| 47 | Н | 0.000000  |
| 48 | Н | 0.000000  |
| 49 | С | -0.084961 |
| 50 | Н | 0.000000  |
| 51 | Н | 0.000000  |
| 52 | Н | 0.000000  |
| 53 | С | -0.084955 |
| 54 | Н | 0.000000  |
| 55 | Н | 0.000000  |
| 56 | Н | 0.000000  |
| 57 | С | -0.107296 |
| 58 | Н | 0.000000  |
| 59 | Н | 0.000000  |
| 60 | Н | 0.000000  |
| 61 | С | 0.088059  |
| 62 | С | -0.132367 |
| 63 | Н | 0.000000  |
| 64 | Н | 0.000000  |
| 65 | Н | 0.000000  |
| 66 | С | -0.064484 |
| 67 | Н | 0.000000  |
| 68 | Н | 0.000000  |
| 69 | Н | 0.000000  |
| 70 | С | -0.091607 |

| 71          | Н             | 0.000000 |
|-------------|---------------|----------|
| 72          | Н             | 0.000000 |
| 73          | Н             | 0.000000 |
| Sum of Mull | iken charges= | -2.00000 |

| C | enter | Ator | nic A    | tomic  | C    | Coordinates | s (Angsti | roms) |
|---|-------|------|----------|--------|------|-------------|-----------|-------|
|   | Numł  | ber  | Number   | Туре   |      | Х           | Y         | Ζ     |
|   |       |      |          |        |      |             |           |       |
|   | 1     | 34   | 0        | -1.68  | 6917 | -2.331618   | 3 -0.107  | /211  |
|   | 2     | 34   | · 0      | 1.718  | 8210 | -2.312998   | 3 -0.140  | )884  |
|   | 3     | 28   | 0        | 0.00   | 7350 | -0.741640   | -0.106    | 581   |
|   | 4     | 6    | 0        | 4.419  | 9806 | -1.321789   | 0.042     | 583   |
|   | 5     | 1    | 0        | 4.712  | 2739 | -2.366470   | 0.055     | 880   |
|   | 6     | 6    | 0        | 3.606  | 5944 | 1.430553    | -0.009    | 053   |
|   | 7     | 6    | 0        | 5.381  | 1099 | -0.313003   | 0.095     | 907   |
|   | 8     | 6    | 0        | 4.932  | 2775 | 1.044345    | 0.062     | 036   |
|   | 9     | 1    | 0        | 5.685  | 5669 | 1.817691    | 0.096     | 432   |
|   | 10    | 6    | 0        | 3.06   | 1791 | -1.008299   | -0.033    | 8006  |
|   | 11    | 6    | <b>0</b> | 2.61   | 6602 | 0.369896    | -0.040    | )447  |
|   | 12    | 8    | 8 0      | 1.35   | 3147 | 0.626338    | -0.069    | 0233  |
|   | 13    | 8    | 0        | -1.35  | 3063 | 0.610512    | 2 -0.049  | 9659  |
|   | 14    | 6    | 0        | -3.042 | 2261 | -1.043024   | 4 -0.012  | 2349  |
|   | 15    | 6    | <b>0</b> | -3.61  | 8157 | 1.387335    | 5 0.003   | 3738  |
|   | 16    | 6    | 0        | -4.40  | 1514 | -1.380244   | 4 0.055   | 5889  |

Table S9. Cartesian coordinates for the optimized structure for complex 1°x.

| 17 | 1 | 0 | -4.675270 | -2.428293 | 0.068955  |
|----|---|---|-----------|-----------|-----------|
| 18 | 6 | 0 | -3.210677 | 2.871252  | -0.035383 |
| 19 | 6 | 0 | -2.613852 | 0.338005  | -0.022326 |
| 20 | 6 | 0 | -5.369551 | -0.386106 | 0.099542  |
| 21 | 6 | 0 | -6.871957 | -0.686950 | 0.174620  |
| 22 | 6 | 0 | -4.437798 | 3.805364  | -0.014587 |
| 23 | 1 | 0 | -5.092577 | 3.644169  | -0.877875 |
| 24 | 1 | 0 | -4.094196 | 4.844216  | -0.050711 |
| 25 | 1 | 0 | -5.031192 | 3.685889  | 0.898357  |
| 26 | 6 | 0 | -4.934767 | 0.981326  | 0.066711  |
| 27 | 1 | 0 | -5.704159 | 1.741626  | 0.094739  |
| 28 | 6 | 0 | -2.419540 | 3.163620  | -1.336582 |
| 29 | 1 | 0 | -1.511961 | 2.560936  | -1.398427 |
| 30 | 1 | 0 | -2.134983 | 4.221798  | -1.364876 |
| 31 | 1 | 0 | -3.036489 | 2.957167  | -2.218749 |
| 32 | 6 | 0 | -2.338825 | 3.212671  | 1.200551  |
| 33 | 1 | 0 | -2.894769 | 3.032252  | 2.127824  |
| 34 | 1 | 0 | -2.062640 | 4.273172  | 1.174517  |
| 35 | 1 | 0 | -1.423751 | 2.618690  | 1.222961  |
| 36 | 6 | 0 | -7.166744 | -2.199154 | 0.210891  |
| 37 | 1 | 0 | -6.714156 | -2.682715 | 1.083244  |
| 38 | 1 | 0 | -6.808266 | -2.707259 | -0.690712 |
| 39 | 1 | 0 | -8.248575 | -2.355688 | 0.270521  |
| 40 | 6 | 0 | -7.577967 | -0.084035 | -1.067212 |
| 41 | 1 | 0 | -8.653177 | -0.289341 | -1.017993 |

| 42 | 1 | 0 | -7.188465 | -0.526093 | -1.990678 |
|----|---|---|-----------|-----------|-----------|
| 43 | 1 | 0 | -7.448358 | 1.000637  | -1.128997 |
| 44 | 6 | 0 | 3.180720  | 2.908757  | -0.049543 |
| 45 | 6 | 0 | 2.390555  | 3.190904  | -1.353938 |
| 46 | 1 | 0 | 3.013040  | 2.991473  | -2.233801 |
| 47 | 1 | 0 | 2.093780  | 4.245655  | -1.383612 |
| 48 | 1 | 0 | 1.490260  | 2.577723  | -1.418944 |
| 49 | 6 | 0 | 7.265942  | -1.549967 | -1.029906 |
| 50 | 1 | 0 | 7.103575  | -1.006666 | -1.967179 |
| 51 | 1 | 0 | 6.691453  | -2.480024 | -1.072357 |
| 52 | 1 | 0 | 8.327482  | -1.814738 | -0.969103 |
| 53 | 6 | 0 | 7.111469  | -1.487124 | 1.492894  |
| 54 | 1 | 0 | 8.169897  | -1.759832 | 1.571873  |
| 55 | 1 | 0 | 6.524674  | -2.410222 | 1.514075  |
| 56 | 1 | 0 | 6.845569  | -0.895116 | 2.375454  |
| 57 | 6 | 0 | 7.791705  | 0.557721  | 0.216442  |
| 58 | 1 | 0 | 8.833733  | 0.229129  | 0.284512  |
| 59 | 1 | 0 | 7.591925  | 1.199494  | 1.081012  |
| 60 | 1 | 0 | 7.694308  | 1.160170  | -0.692972 |
| 61 | 6 | 0 | 6.871953  | -0.679416 | 0.190915  |
| 62 | 6 | 0 | 4.395113  | 3.859333  | -0.024383 |
| 63 | 1 | 0 | 4.986124  | 3.748863  | 0.891205  |
| 64 | 1 | 0 | 4.037364  | 4.893306  | -0.062896 |
| 65 | 1 | 0 | 5.055644  | 3.706258  | -0.884729 |
| 66 | 6 | 0 | 2.299647  | 3.239441  | 1.183137  |

| 67 | 1 | 0 | 1.391219  | 2.635276  | 1.201863 |
|----|---|---|-----------|-----------|----------|
| 68 | 1 | 0 | 2.011666  | 4.296759  | 1.156013 |
| 69 | 1 | 0 | 2.853889  | 3.065309  | 2.112604 |
| 70 | 6 | 0 | -7.458796 | -0.047761 | 1.459902 |
| 71 | 1 | 0 | -7.328701 | 1.038411  | 1.477491 |
| 72 | 1 | 0 | -6.982139 | -0.461789 | 2.355067 |
| 73 | 1 | 0 | -8.532916 | -0.255662 | 1.518388 |

 Table S10. Mulliken charges on 1<sup>ox</sup> with hydrogens summed into heavy atoms.

| Centre no. |    | Atom | Mulliken charge |
|------------|----|------|-----------------|
| 1          | Se | -0.  | 339071          |
| 2          | Se | -0.2 | 277421          |
| 3          | Ni | 0.2  | 250673          |
| 4          | С  | 0    | 319486          |
| 6          | С  | -0.  | 072418          |
| 7          | С  | -0.  | 196631          |
| 8          | С  | -0.  | 111960          |
| 10         | С  | 0.   | 526901          |
| 11         | С  | -0.4 | 426868          |
| 12         | 0  | -0.  | 374689          |
| 13         | 0  | -0.  | 388501          |
| 14         | С  | 0.   | 087181          |
| 15         | С  | 0.   | 310607          |
| 16         | С  | -0.  | 054364          |
| 18         | С  | 0.   | 458615          |

| 19 | С | -0.245022 |
|----|---|-----------|
| 20 | С | -0.015623 |
| 21 | С | 0.380094  |
| 22 | С | -0.001885 |
| 26 | С | -0.158976 |
| 28 | С | -0.080769 |
| 32 | С | -0.085055 |
| 36 | С | 0.049361  |
| 40 | С | -0.023702 |
| 44 | С | 0.205565  |
| 45 | С | -0.094572 |
| 49 | С | -0.036988 |
| 53 | С | -0.041651 |
| 57 | С | 0.069143  |
| 61 | С | 0.430193  |
| 62 | С | 0.058115  |
| 66 | С | -0.093779 |
| 70 | С | -0.025988 |

Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000

| Table S11. | Cartesian | coordinates | for t | the opt | imized | structure | for com | plex 2 | ([(     | (L <sup>so</sup> | $)_2Ni$ | -). |
|------------|-----------|-------------|-------|---------|--------|-----------|---------|--------|---------|------------------|---------|-----|
|            |           |             |       |         |        |           |         |        | · / L ' | (                | /4 1    |     |

| Center | Atomic | Atomic    | Coordin   | ates (Ang | gstroms) |
|--------|--------|-----------|-----------|-----------|----------|
| Number | Number | Туре      | Х         | Y         | Ζ        |
| 1 28   | 3 0    | -0.009076 | -0.883279 | -0.0001   | <br>69   |

| 2  | 6 | 0 | -4.278124 | -1.648389 | 0.000026  |  |
|----|---|---|-----------|-----------|-----------|--|
| 3  | 1 | 0 | -4.501642 | -2.726044 | 0.000099  |  |
| 4  | 6 | 0 | -3.610282 | 1.128699  | -0.000152 |  |
| 5  | 6 | 0 | -5.311355 | -0.693234 | 0.000114  |  |
| 6  | 6 | 0 | -4.942223 | 0.675598  | 0.000023  |  |
| 7  | 1 | 0 | -5.739631 | 1.427278  | 0.000104  |  |
| 8  | 6 | 0 | -2.935021 | -1.244246 | -0.000113 |  |
| 9  | 6 | 0 | -2.574155 | 0.136727  | -0.000220 |  |
| 10 | 8 | 0 | -1.282099 | 0.455226  | -0.000421 |  |
| 11 | 8 | 0 | 1.279336  | 0.441252  | 0.000158  |  |
| 12 | 6 | 0 | 2.912283  | -1.276191 | -0.000138 |  |
| 13 | 6 | 0 | 3.615682  | 1.088983  | 0.000124  |  |
| 14 | 6 | 0 | 4.253235  | -1.700869 | -0.000195 |  |
| 15 | 1 | 0 | 4.458188  | -2.779635 | -0.000374 |  |
| 16 | 6 | 0 | 3.275430  | 2.593398  | 0.000238  |  |
| 17 | 6 | 0 | 2.566629  | 0.106333  | 0.000039  |  |
| 18 | 6 | 0 | 5.293035  | -0.758798 | -0.000085 |  |
| 19 | 6 | 0 | 6.783847  | -1.158987 | 0.000055  |  |
| 20 | 6 | 0 | 4.537686  | 3.484144  | 0.000193  |  |
| 21 | 1 | 0 | 5.164623  | 3.313580  | 0.898476  |  |
| 22 | 1 | 0 | 4.233105  | 4.550117  | 0.000311  |  |
| 23 | 1 | 0 | 5.164458  | 3.313720  | -0.898233 |  |
| 24 | 6 | 0 | 4.936925  | 0.617677  | 0.000071  |  |
| 25 | 1 | 0 | 5.749116  | 1.356680  | 0.000145  |  |
| 26 | 6 | 0 | 2.443659  | 2.935663  | 1.266451  |  |

| 27 | 1 | 0 | 1.519922  | 2.331375  | 1.291652  |
|----|---|---|-----------|-----------|-----------|
| 28 | 1 | 0 | 2.167966  | 4.011012  | 1.266343  |
| 29 | 1 | 0 | 3.027634  | 2.729448  | 2.185842  |
| 30 | 6 | 0 | 2.443460  | 2.935781  | -1.265809 |
| 31 | 1 | 0 | 3.027270  | 2.729598  | -2.185313 |
| 32 | 1 | 0 | 2.167813  | 4.011142  | -1.265587 |
| 33 | 1 | 0 | 1.519696  | 2.331532  | -1.290889 |
| 34 | 6 | 0 | 6.977091  | -2.691364 | -0.000170 |
| 35 | 1 | 0 | 6.524363  | -3.158618 | -0.896536 |
| 36 | 1 | 0 | 6.524257  | -3.158907 | 0.895999  |
| 37 | 1 | 0 | 8.058658  | -2.936158 | -0.000115 |
| 38 | 6 | 0 | 7.479534  | -0.587625 | 1.264910  |
| 39 | 1 | 0 | 8.559367  | -0.846309 | 1.270868  |
| 40 | 1 | 0 | 7.018634  | -0.999988 | 2.183723  |
| 41 | 1 | 0 | 7.393381  | 0.514921  | 1.312487  |
| 42 | 6 | 0 | -3.252744 | 2.629421  | -0.000267 |
| 43 | 6 | 0 | -2.416733 | 2.962920  | 1.265603  |
| 44 | 1 | 0 | -3.003498 | 2.765428  | 2.185160  |
| 45 | 1 | 0 | -2.127109 | 4.034688  | 1.264403  |
| 46 | 1 | 0 | -1.500787 | 2.346878  | 1.291989  |
| 47 | 6 | 0 | -7.059273 | -2.017328 | 1.264453  |
| 48 | 1 | 0 | -6.894233 | -1.422496 | 2.184190  |
| 49 | 1 | 0 | -6.389119 | -2.896605 | 1.310608  |
| 50 | 1 | 0 | -8.107204 | -2.384902 | 1.271322  |
| 51 | 6 | 0 | -7.059653 | -2.017358 | -1.263696 |

| 52 | 1  | 0 | -8.107564 -2.384992 -1.270192 |  |
|----|----|---|-------------------------------|--|
| 53 | 1  | 0 | -6.389462 -2.896592 -1.310089 |  |
| 54 | 1  | 0 | -6.894979 -1.422527 -2.183494 |  |
| 55 | 6  | 0 | -7.779817 0.021541 0.000438   |  |
| 56 | 1  | 0 | -8.819496 -0.363983 0.000593  |  |
| 57 | 1  | 0 | -7.655381 0.659730 -0.896423  |  |
| 58 | 1  | 0 | -7.655137 0.659815 0.897206   |  |
| 59 | 6  | 0 | -6.784103 -1.159472 0.000326  |  |
| 60 | 6  | 0 | -4.504207 3.535211 -0.000045  |  |
| 61 | 1  | 0 | -5.133297 3.372029 -0.898136  |  |
| 62 | 1  | 0 | -4.186797 4.597484 -0.000109  |  |
| 63 | 1  | 0 | -5.132941 3.372024 0.898293   |  |
| 64 | 6  | 0 | -2.417222 2.962763 -1.266498  |  |
| 65 | 1  | 0 | -1.501333 2.346651 -1.293179  |  |
| 66 | 1  | 0 | -2.127515 4.034507 -1.265535  |  |
| 67 | 1  | 0 | -3.004365 2.765210 -2.185804  |  |
| 68 | 6  | 0 | 7.480036 -0.587208 -1.264320  |  |
| 69 | 1  | 0 | 7.393965 0.515351 -1.311579   |  |
| 70 | 1  | 0 | 7.019513 -0.999223 -2.183481  |  |
| 71 | 1  | 0 | 8.559859 -0.845913 -1.269926  |  |
| 72 | 16 | 0 | -1.564714 -2.365323 -0.000139 |  |
| 73 | 16 | 0 | 1.530603 -2.381556 -0.000245  |  |

**Table S12.** Mulliken spin density for complex **2** ([(L<sup>SO</sup>)<sub>2</sub>Ni]<sup>-</sup>).

| Metal ion (Ni)   | Ligand           |
|------------------|------------------|
| 0.363479 (36.3%) | 0.636521 (63.7%) |

 Table S13. Mulliken charges on complex 2 with hydrogens summed into heavy atoms.

| Centre no. | Atom | Mulliken charge |
|------------|------|-----------------|
| 1          | Ni   | 0.892497        |
| 2          | С    | -0.116279       |
| 4          | С    | 0.133589        |
| 5          | С    | 0.199382        |
| 6          | С    | -0.203817       |
| 8          | С    | -0.162820       |
| 9          | С    | 0.310543        |
| 10         | 0    | -0.618743       |
| 11         | 0    | -0.618314       |
| 12         | С    | -0.169810       |
| 13         | С    | 0.133722        |
| 14         | С    | -0.111775       |
| 16         | С    | 0.094206        |
| 17         | С    | 0.314085        |
| 18         | С    | 0.199577        |
| 19         | С    | 0.078073        |
| 20         | С    | -0.091230       |
| 24         | С    | -0.202128       |
|            |      |                 |

| 26 | С | -0.041163 |
|----|---|-----------|
| 30 | С | -0.041159 |
| 34 | С | -0.068818 |
| 38 | С | -0.057025 |
| 42 | С | 0.094921  |
| 43 | С | -0.042532 |
| 47 | С | -0.053096 |
| 51 | С | -0.053098 |
| 55 | С | -0.075943 |
| 59 | С | 0.076596  |
| 60 | С | -0.090937 |
| 64 | С | -0.042538 |
| 68 | С | -0.057038 |
| 72 | S | -0.305882 |
| 73 | S | -0.303043 |

Sum of Mulliken charges with hydrogens summed into heavy atoms = -1.00000

**Table S14.** Cartesian coordinates for the optimized structure of  $2^{red}$  ([(L<sup>SO</sup>)<sub>2</sub>Ni]<sup>2-</sup>).

| Ce | enter | Ato | omic At | omic      | Coordinate | s (Angstroms) |  |
|----|-------|-----|---------|-----------|------------|---------------|--|
|    | Num   | ber | Number  | Туре      | Х          | Y Z           |  |
|    |       |     |         |           |            |               |  |
|    | 1     | 28  | 0       | -0.009280 | -0.948966  | -0.000427     |  |
|    | 2     | 6   | 0       | -4.327160 | -1.622557  | 0.000109      |  |
|    | 3     | 1   | 0       | -4.575287 | -2.697278  | 0.000164      |  |
|    | 4     | 6   | 0       | -3.607622 | 1.120997   | 0.000119      |  |

| 5  | 6 | 0 | -5.354262 | -0.646149 | 0.000095  |
|----|---|---|-----------|-----------|-----------|
| 6  | 6 | 0 | -4.960983 | 0.709202  | 0.000143  |
| 7  | 1 | 0 | -5.737486 | 1.485103  | 0.000167  |
| 8  | 6 | 0 | -2.974236 | -1.262933 | 0.000110  |
| 9  | 6 | 0 | -2.581569 | 0.116854  | 0.000039  |
| 10 | 8 | 0 | -1.290123 | 0.420902  | -0.000023 |
| 11 | 8 | 0 | 1.285924  | 0.406608  | -0.000667 |
| 12 | 6 | 0 | 2.950813  | -1.295996 | -0.000512 |
| 13 | 6 | 0 | 3.612371  | 1.079309  | -0.000163 |
| 14 | 6 | 0 | 4.301184  | -1.677217 | -0.000188 |
| 15 | 1 | 0 | 4.528598  | -2.753336 | -0.000287 |
| 16 | 6 | 0 | 3.235304  | 2.575988  | -0.000245 |
| 17 | 6 | 0 | 2.573557  | 0.084996  | -0.000436 |
| 18 | 6 | 0 | 5.336117  | -0.714387 | 0.000207  |
| 19 | 6 | 0 | 6.833136  | -1.090942 | 0.000666  |
| 20 | 6 | 0 | 4.468573  | 3.506194  | 0.000088  |
| 21 | 1 | 0 | 5.101402  | 3.350291  | 0.897863  |
| 22 | 1 | 0 | 4.133584  | 4.564776  | 0.000050  |
| 23 | 1 | 0 | 5.101852  | 3.350360  | -0.897382 |
| 24 | 6 | 0 | 4.955964  | 0.648314  | 0.000176  |
| 25 | 1 | 0 | 5.749253  | 1.411124  | 0.000397  |
| 26 | 6 | 0 | 2.389157  | 2.894379  | 1.262629  |
| 27 | 1 | 0 | 1.501914  | 2.235830  | 1.282205  |
| 28 | 1 | 0 | 2.056493  | 3.955558  | 1.257593  |
| 29 | 1 | 0 | 2.983919  | 2.721480  | 2.183133  |

| 30 | 6 | 0 | 2.389819  | 2.894370  | -1.263563 |
|----|---|---|-----------|-----------|-----------|
| 31 | 1 | 0 | 2.985073  | 2.721482  | -2.183753 |
| 32 | 1 | 0 | 2.057129  | 3.955541  | -1.258695 |
| 33 | 1 | 0 | 1.502609  | 2.235793  | -1.283601 |
| 34 | 6 | 0 | 7.054302  | -2.619941 | 0.000640  |
| 35 | 1 | 0 | 6.602833  | -3.091704 | -0.893924 |
| 36 | 1 | 0 | 6.602172  | -3.091821 | 0.894810  |
| 37 | 1 | 0 | 8.140856  | -2.851366 | 0.001031  |
| 38 | 6 | 0 | 7.526844  | -0.511092 | 1.263812  |
| 39 | 1 | 0 | 8.615453  | -0.743599 | 1.273368  |
| 40 | 1 | 0 | 7.071797  | -0.934758 | 2.180789  |
| 41 | 1 | 0 | 7.409329  | 0.588605  | 1.312554  |
| 42 | 6 | 0 | -3.212684 | 2.613385  | 0.000164  |
| 43 | 6 | 0 | -2.363303 | 2.922992  | 1.263167  |
| 44 | 1 | 0 | -2.960608 | 2.758186  | 2.183539  |
| 45 | 1 | 0 | -2.017663 | 3.980113  | 1.257574  |
| 46 | 1 | 0 | -1.483910 | 2.254052  | 1.284223  |
| 47 | 6 | 0 | -7.125485 | -1.947891 | 1.262682  |
| 48 | 1 | 0 | -6.960090 | -1.349605 | 2.180591  |
| 49 | 1 | 0 | -6.451736 | -2.824013 | 1.312992  |
| 50 | 1 | 0 | -8.175908 | -2.316351 | 1.269120  |
| 51 | 6 | 0 | -7.125876 | -1.947694 | -1.262242 |
| 52 | 1 | 0 | -8.176274 | -2.316216 | -1.268336 |
| 53 | 1 | 0 | -6.452097 | -2.823766 | -1.313028 |
| 54 | 1 | 0 | -6.960909 | -1.349242 | -2.180122 |

| 55 | 6  | 0 | -7.812746 | 0.101195  | 0.000399  |
|----|----|---|-----------|-----------|-----------|
| 56 | 1  | 0 | -8.861384 | -0.264943 | 0.000307  |
| 57 | 1  | 0 | -7.670833 | 0.738147  | -0.894981 |
| 58 | 1  | 0 | -7.670936 | 0.737953  | 0.895938  |
| 59 | 6  | 0 | -6.831510 | -1.091981 | 0.000236  |
| 60 | 6  | 0 | -4.434597 | 3.558518  | 0.000242  |
| 61 | 1  | 0 | -5.069665 | 3.410380  | -0.897242 |
| 62 | 1  | 0 | -4.086760 | 4.613014  | 0.000258  |
| 63 | 1  | 0 | -5.069520 | 3.410300  | 0.897813  |
| 64 | 6  | 0 | -2.363337 | 2.922978  | -1.262860 |
| 65 | 1  | 0 | -1.483962 | 2.254018  | -1.283901 |
| 66 | 1  | 0 | -2.017683 | 3.980089  | -1.257352 |
| 67 | 1  | 0 | -2.960668 | 2.758103  | -2.183208 |
| 68 | 6  | 0 | 7.527682  | -0.510948 | -1.261958 |
| 69 | 1  | 0 | 7.410560  | 0.588800  | -1.310450 |
| 70 | 1  | 0 | 7.072968  | -0.934194 | -2.179285 |
| 71 | 1  | 0 | 8.616226  | -0.743786 | -1.271005 |
| 72 | 16 | 0 | -1.623813 | -2.424458 | 0.000407  |
| 73 | 16 | 0 | 1.587318  | -2.443155 | -0.001268 |

Table S15. Mulliken charges on  $2^{red}$  with hydrogens summed into heavy atoms.

| Centre no. | atom | Mulliken charge |
|------------|------|-----------------|
| 1          | Ni   | 0.781158        |
| 2          | С    | -0.167475       |
| 4          | С    | 0.111314        |

| 5  | С | 0.193633  |
|----|---|-----------|
| 6  | С | -0.251354 |
| 8  | С | -0.147292 |
| 9  | С | 0.305549  |
| 10 | 0 | -0.633316 |
| 11 | 0 | -0.634485 |
| 12 | С | -0.154946 |
| 13 | С | 0.112967  |
| 14 | С | -0.160421 |
| 16 | С | 0.107849  |
| 17 | С | 0.308598  |
| 18 | С | 0.191411  |
| 19 | С | 0.091336  |
| 20 | С | -0.132570 |
| 24 | С | -0.251287 |
| 26 | С | -0.065510 |
| 30 | С | -0.065527 |
| 34 | С | -0.096184 |
| 38 | С | -0.092710 |
| 42 | С | 0.108697  |
| 43 | С | -0.066809 |
| 47 | С | -0.085479 |
| 51 | С | -0.085491 |
| 55 | С | -0.108174 |
| 59 | С | 0.088168  |

S42

| 60 | С | -0.132373 |
|----|---|-----------|
| 64 | С | -0.066805 |
| 68 | С | -0.092714 |
| 72 | S | -0.454513 |
| 73 | S | -0.455246 |

Sum of Mulliken charges with hydrogens summed into heavy atoms = -2.00000

| C | enter | Ate | omic | Atom | nic       | Coordinate | es (Ang | gstroms) |
|---|-------|-----|------|------|-----------|------------|---------|----------|
|   | Numł  | ber | Nui  | nber | Туре      | Х          | Y       | Ζ        |
|   | 1     |     | 28   | 0    | 0.00958   | 34 -0.8222 | 271 -(  | 0.000397 |
|   | 2     |     | 6    | 0    | 4.259776  | -1.66986   | 6 -0.(  | 000208   |
|   | 3     |     | 1    | 0    | 4.460841  | -2.73634   | 2 -0.0  | 000283   |
|   | 4     |     | 6    | 0    | 3.649406  | 1.13872    | 0 0.0   | )00011   |
|   | 5     |     | 6    | 0    | 5.292117  | -0.74094   | 1 -0.0  | 000024   |
|   | 6     |     | 6    | 0    | 4.945900  | 0.64569    | 4 0.0   | )00080   |
|   | 7     |     | 1    | 0    | 5.756823  | 1.35898    | 4 0.0   | )00225   |
|   | 8     |     | 6    | 0    | 2.923317  | -1.23930   | 8 -0.0  | 000284   |
|   | 9     |     | 6    | 0    | 2.590417  | 0.16265    | 0 -0.0  | 00171    |
|   | 10    |     | 8    | 0    | 1.331025  | 0.49445    | 0 -0.0  | 000220   |
|   | 11    |     | 8    | 0    | -1.331815 | 0.48079    | 9 -0.0  | 000159   |
|   | 12    |     | 6    | 0    | -2.899759 | -1.27325   | 56 -0.  | 000211   |
|   | 13    |     | 6    | 0    | -3.656619 | 1.09966    | 55 0.0  | 000191   |

**Table S16.** Cartesian coordinates for the optimized structure for complex  $2^{ox}$  ([(L<sup>SO</sup>)<sub>2</sub>Ni]).

| 14 | 6 | 0 | -4.235027 | -1.724452 | -0.000132 |
|----|---|---|-----------|-----------|-----------|
| 15 | 1 | 0 | -4.419062 | -2.792050 | -0.000253 |
| 16 | 6 | 0 | -3.363887 | 2.611261  | 0.000367  |
| 17 | 6 | 0 | -2.583488 | 0.133541  | -0.000063 |
| 18 | 6 | 0 | -5.272275 | -0.808132 | 0.000100  |
| 19 | 6 | 0 | -6.751620 | -1.221290 | 0.000198  |
| 20 | 6 | 0 | -4.658823 | 3.449638  | 0.000565  |
| 21 | 1 | 0 | -5.271421 | 3.263137  | -0.888262 |
| 22 | 1 | 0 | -4.394505 | 4.512186  | 0.000701  |
| 23 | 1 | 0 | -5.271318 | 3.262881  | 0.889409  |
| 24 | 6 | 0 | -4.940624 | 0.588296  | 0.000255  |
| 25 | 1 | 0 | -5.765800 | 1.287836  | 0.000436  |
| 26 | 6 | 0 | -2.557653 | 2.989725  | -1.268313 |
| 27 | 1 | 0 | -1.601578 | 2.464731  | -1.307260 |
| 28 | 1 | 0 | -2.360162 | 4.067898  | -1.272188 |
| 29 | 1 | 0 | -3.125136 | 2.747514  | -2.174187 |
| 30 | 6 | 0 | -2.557481 | 2.989405  | 1.269036  |
| 31 | 1 | 0 | -3.124826 | 2.746932  | 2.174927  |
| 32 | 1 | 0 | -2.360026 | 4.067585  | 1.273174  |
| 33 | 1 | 0 | -1.601384 | 2.464433  | 1.307705  |
| 34 | 6 | 0 | -6.929884 | -2.751657 | -0.000049 |
| 35 | 1 | 0 | -6.486316 | -3.214394 | 0.888118  |
| 36 | 1 | 0 | -6.486547 | -3.214080 | -0.888495 |
| 37 | 1 | 0 | -7.997664 | -2.993340 | 0.000048  |
| 38 | 6 | 0 | -7.444906 | -0.651967 | -1.264224 |

| 39 | 1 | 0 | -8.502774 | -0.937931 | -1.267860 |
|----|---|---|-----------|-----------|-----------|
| 40 | 1 | 0 | -6.981894 | -1.046905 | -2.175096 |
| 41 | 1 | 0 | -7.395720 | 0.440393  | -1.304942 |
| 42 | 6 | 0 | 3.338659  | 2.646951  | 0.000132  |
| 43 | 6 | 0 | 2.527339  | 3.015608  | -1.268370 |
| 44 | 1 | 0 | 3.098672  | 2.782831  | -2.174342 |
| 45 | 1 | 0 | 2.313826  | 4.090816  | -1.271282 |
| 46 | 1 | 0 | 1.579357  | 2.476168  | -1.308031 |
| 47 | 6 | 0 | 7.016339  | -2.077219 | -1.263386 |
| 48 | 1 | 0 | 6.844289  | -1.494396 | -2.174991 |
| 49 | 1 | 0 | 6.369085  | -2.958848 | -1.297716 |
| 50 | 1 | 0 | 8.055770  | -2.424743 | -1.272434 |
| 51 | 6 | 0 | 7.015942  | -2.077645 | 1.263400  |
| 52 | 1 | 0 | 8.055349  | -2.425235 | 1.272623  |
| 53 | 1 | 0 | 6.368619  | -2.959244 | 1.297262  |
| 54 | 1 | 0 | 6.843674  | -1.495109 | 2.175148  |
| 55 | 6 | 0 | 7.763763  | -0.050436 | 0.000465  |
| 56 | 1 | 0 | 8.781941  | -0.452922 | 0.000413  |
| 57 | 1 | 0 | 7.658818  | 0.581029  | 0.889162  |
| 58 | 1 | 0 | 7.658903  | 0.581488  | -0.887917 |
| 59 | 6 | 0 | 6.756967  | -1.217991 | 0.000111  |
| 60 | 6 | 0 | 4.622198  | 3.502689  | 0.000276  |
| 61 | 1 | 0 | 5.237189  | 3.324045  | 0.889052  |
| 62 | 1 | 0 | 4.343531  | 4.561625  | 0.000391  |
| 63 | 1 | 0 | 5.237249  | 3.324257  | -0.888501 |

| 64 | 6  | 0 | 2.527209  | 3.015387  | 1.268616  |  |
|----|----|---|-----------|-----------|-----------|--|
| 65 | 1  | 0 | 1.579208  | 2.475965  | 1.308073  |  |
| 66 | 1  | 0 | 2.313728  | 4.090600  | 1.271709  |  |
| 67 | 1  | 0 | 3.098436  | 2.782422  | 2.174607  |  |
| 68 | 6  | 0 | -7.444616 | -0.652413 | 1.264980  |  |
| 69 | 1  | 0 | -7.395440 | 0.439933  | 1.306064  |  |
| 70 | 1  | 0 | -6.981384 | -1.047661 | 2.175606  |  |
| 71 | 1  | 0 | -8.502479 | -0.938397 | 1.268766  |  |
| 72 | 16 | 0 | 1.578016  | -2.331172 | -0.000494 |  |
| 73 | 16 | 0 | -1.546018 | -2.346231 | -0.000476 |  |

Table S17. Mulliken charges on  $2^{ox}$  with hydrogens summed into heavy atoms.

| Centre no. | atom | Mulliken charge |
|------------|------|-----------------|
| 1          | Ni   | -0.420987       |
| 2          | С    | 0.403290        |
| 4          | С    | -0.013945       |
| 5          | С    | -0.137261       |
| 6          | С    | -0.225232       |
| 8          | С    | -0.044521       |
| 9          | С    | -0.119893       |
| 10         | 0    | -0.383390       |
| 11         | 0    | -0.390146       |
| 12         | С    | -0.344301       |
| 13         | С    | 0.417507        |
| 14         | С    | -0.027836       |

| 16 | С | 0.556154  |
|----|---|-----------|
| 17 | С | 0.098892  |
| 18 | С | 0.117973  |
| 19 | С | 0.509321  |
| 20 | С | -0.033516 |
| 24 | С | -0.222462 |
| 26 | С | -0.079773 |
| 30 | С | -0.079791 |
| 34 | С | 0.019474  |
| 38 | С | -0.026490 |
| 42 | С | 0.410554  |
| 43 | С | -0.075025 |
| 47 | С | -0.035630 |
| 51 | С | -0.035627 |
| 55 | С | 0.058442  |
| 59 | С | 0.519051  |
| 60 | С | 0.011552  |
| 64 | С | -0.075028 |
| 68 | С | -0.026491 |
| 72 | S | 0.024413  |
| 73 | S | -0.349277 |

Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000

| Complex          | Stabilization<br>energy (kcal<br>mol <sup>-1</sup> ) | Complex          | Stabilization<br>energy (kcal<br>mol <sup>-1</sup> ) |
|------------------|------------------------------------------------------|------------------|------------------------------------------------------|
| 1                | 0                                                    | 2                | 0                                                    |
| 1 <sup>red</sup> | 31.49                                                | 2 <sup>red</sup> | 31.62                                                |
| 1°x              | 58.38                                                | 2°×              | 58.66                                                |

 Table S18. Calculated energies for the optimized geometries of the complexes.

.....

.