Supplementary Information

In situ synthesis of CuO nanoparticles over functionalized mesoporous silica and their application in catalytic syntheses of symmetrical diselenides

Trisha Das,^a Rana Chatterjee,^b Adinath Majee,^b Hiroshi Uyama,^c David Morgan^d and Mahasweta Nandi^{* a}

^aIntegrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India Email: mahasweta.nandi@visva-bharati.ac.in ^bDepartment of Chemistry, Siksha Bhavana, Visva-Bharati University, Santiniketan 731235, India

^cDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan

^dCardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT

1,2-diphenyldiselane (**3a**)¹: (243 mg, Yield: 78%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.65-7.63 (m, 4H), 7.32-7.27 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 131.6, 131.0, 129.3, 127.8; ⁷⁷Se NMR (CDCl₃, 76.28 MHz): δ (ppm) 463.09.

Fig. s1 ¹H NMR of 3a in CDCl₃

Fig. s2 ¹³C NMR of 3a in CDCl₃

Fig. s3 ⁷⁷Se NMR of 3a in CDCl₃

1,2-di-p-tolyldiselane (**3b**)¹: (261 mg, Yield: 77%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.52-7.50 (m, 4H), 7.10-7.04 (m, 4H), 2.37 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 138.1, 134.2, 132.4, 127.4, 21.2.

Fig. s4 ¹H NMR of 3b in CDCl₃

Fig. s5¹³C NMR of **3b** in CDCl₃

1,2-di-m-tolyldiselane (3c)¹: (255 mg, Yield: 75%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.43-7.41 (m, 4H), 7.18-7.14 (m, 2H), 7.07-7.05 (m, 2H), 2.32 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 139.1, 133.6, 132.3, 129.1, 128.8, 128.7, 21.4.

Fig. s6 ¹H NMR of **3c** in CDCl₃

Fig. s7 ¹³C NMR of 3c in CDCl₃

13C of VBRC-3

1,2-bis(4-fluorophenyl)diselane (3d)²: (248 mg, Yield: 74%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.58-7.52 (m, 4H), 7.02-6.95 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 163.2 (d, $J_{C-F} = 244$ Hz), 135.0 (d, $J_{C-F} = 7$ Hz), 116.6 (d, $J_{C-F} = 4$ Hz), 116.4 (d, $J_{C-F} = 3$ Hz).

Fig. s8 ¹H NMR of **3d** in CDCl₃

Fig. s9¹³C NMR of 3d in CDCl₃

10

1,2-bis(4-chlorophenyl)diselane (3e)¹**:** (289 mg, Yield: 76%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.52-7.49 (m, 4H), 7.25-7.22 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 134.4, 133.4, 129.7, 129.5.

Fig. s10 ¹H NMR of 3e in CDCl₃

Fig. s11 ¹³C NMR of 3e in CDCl₃

1,2-bis(4-bromophenyl)diselane (3f)¹: (353 mg, Yield: 75%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.45-7.37 (m, 8H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 134.7, 133.5, 132.4, 122.4.

Fig. s12 ¹H NMR of 3f in CDCl₃

Fig. s13 ¹³C NMR of 3f in CDCl₃

14

1,2-bis(3-(trifluoromethyl)phenyl)diselane (3g)³: (323mg, Yield: 72%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.92-7.88 (m, 1H), 7.82-7.77 (m, 2H), 7.62-7.55 (m, 3H), 7.47-7.41 (m, 2H), ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 136.4, 135.0, 131.5 (2C), 130.0, 129.8, 129.6, 128.5 (q, $J_{C-F} = 11$ Hz), 125.0 (2C), 124.8 (2C), 122.3, 119.6.

Fig. s14 ¹H NMR of 3g in CDCl₃

Fig. s15¹³C NMR of 3g in CDCl₃

13C of VBRC-3

1,2-di(thiophen-2-yl)diselane (3h)⁴: (237 mg, Yield: 73%); ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.50-7.48 (m, 2H), 7.24-7.23 (m, 2H), 7.02-7.00 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 137.1, 134.8, 131.1, 128.0.

Fig. s16 ¹H NMR of 3h in CDCl₃

Fig. s17 13 C NMR of 3h in CDCl₃

Fig. s18 Mass spectra of 3a

Fig. s19 Mass spectra of 3b

References

1.	Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues, O. E. D.; Braga, A. L. An
	Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO
	Nanopowder/Se ⁰ or Te ⁰ /Base. Org. Lett. 2010 , 12, 3288-3291.
2.	Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Synthesis of disulfides and diselenides by
	copper-catalyzed coupling reactions in water. Org. Biomol. Chem. 2013, 11, 2943-2946.
3.	Curran, S.P.; Connon, S.J. Selenide Ions as Catalysts for Homo- and Crossed-Tishchenko Reactions
	of Expanded Scope. Org. Lett. 2012, 14, 1074-1077.
4.	Balkrishna, S.J.; Bhakuni, B.S.; Kumar, S. Copper catalyzed/mediated synthetic methodology for
	ebselen and related isoselenazolones. Tetrahedron 2011, 67, 9565-9575.