Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Protonation and Electrochemical Properties of Bisphosphide Diiron Hexacarbonyl Complex Bearing Amino Groups on the Bridge

Takehiko Shimamura,^a Yuki Maeno,^a Kazuyuki Kubo,^a Shoko Kume,^a Claudio Greco,^b

and Tsutomu Mizuta^a*

a Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima 739-8526, Japan.

b Department of Earth and Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1,
20126, Milan, Italy.

Table of Contents

- 1. Fig. S1. ³¹P{¹H}NMR spectra of the reaction mixture recorded after (a) 1h, (b) 12h, (c) 24h.
- 2. Fig. S2. ³¹P{¹H} NMR spectra of the reaction mixture between ligand A and Fe₂(CO)₉.
- 3. Fig. S3. ³¹P{¹H} NMR spectra of **3** (a), after addition of 3 eq of TsOH (b), and the same sample recorded at -55 °C (c).
- Fig. S4. ³¹P NMR spectrum of an equilibrium mixture between an 1H⁺/1 couple and an HPMePh₂⁺/ PMePh₂,couple
- Fig. S5. ³¹P NMR spectrum of an equilibrium mixture between an 3H⁺/3 couple and an [HFe(CO)₃(PPh₃)₂]⁺/ Fe(CO)₃(PPh₃)₂ couple.
- 6. Fig. S6. Molecular structures of **3**' obtained by DFT calculation.
- 7. Fig. S7. Molecular structures of **1**' obtained by DFT calculation.
- 8. Fig. S8. Molecular structures of $3' H^+$ obtained by DFT calculation.
- 9. Fig. S9. Molecular structures of $\mathbf{1}' H^+$ obtained by DFT calculation.
- 10. Fig. S10. A ¹H NMR spectrum of naphthylene-1,8-Et₂NP–PNEt₂ **5**.
- 11. Fig. S11. A ${}^{13}C{}^{1}H$ NMR spectrum of naphthylene-1,8-Et₂NP-PNEt₂ **5**.
- 12. Fig. S12. A ${}^{31}P{}^{1}H$ NMR spectrum of naphthylene-1,8-Et₂NP-PNEt₂ **5**.
- 13. Fig. S13. A ¹H NMR spectrum of $(\mu$ -**5**')[Fe(CO)₃]₂ **3**.

- 14. Fig. S14. A ${}^{13}C{}^{1}H$ NMR spectrum of (μ -**5**')[Fe(CO)₃]₂ **3**.
- 15. Fig. S15. A ${}^{31}P{}^{1}H$ NMR spectrum of (μ -**5**')[Fe(CO)₃]₂ **3**.
- 16. Fig. S16. Plots of TsOH concentration vs increment of the current.

Fig. S1. ³¹P{¹H} NMR spectra of the reaction mixture recorded after (a) 1h, (b) 12h, (c) 24h.

Fig. S2. ${}^{31}P{}^{1}H$ NMR spectra of the reaction mixture between ligand A and Fe₂(CO)₉.

Figure S3. ³¹P{¹H} NMR spectra of **3** (a), after addition of 3 eq of TsOH (b), and the same sample recorded at -55 °C (c).

Fig. S4. ³¹P NMR spectrum (NNE mode) of an equilibrium mixture between an [H-1]⁺/1 couple and an HPMePh₂⁺/ PMePh₂,couple

Fig. S5. ³¹P NMR spectrum (NNE mode) of an equilibrium mixture between an $3H^+/3$ couple and an $[HFe(CO)_3(PPh_3)_2]^+/Fe(CO)_3(PPh_3)_2$ couple.

Fig. S6. Molecular structures of 3' obtained by DFT calculation. (a): a side view of energy minimum structure and torsion angle (inset), (b) a top view. (c): a side view of energy maximum structure and torsion angle (inset), (d) a top view.

Fig. S7. Molecular structures of 1' obtained by DFT calculation. (a): a side view of energy minimum structure and torsion angle (inset), (b) a top view. (c): a side view of energy maximum structure and torsion angle (inset), (d) a top view.

Fig. S8. Molecular structures of [H-**3**']⁺ obtained by DFT calculation. (a): a side view of energy minimum structure and torsion angle (inset), (b) a top view. (c): a side view of energy maximum structure and torsion angle (inset), (d) a top view.

Figure S9. Molecular structures of [H-1']⁺ obtained by DFT calculation. (a): a side view of energy minimum structure and torsion angle (inset), (b) a top view. (c): a side view of energy maximum structure and torsion angle (inset), (d) a top view.

Fig. S10. A ¹H NMR spectrum of naphthylene-1,8-Et₂NP-PNEt₂ **5**

Fig. S11. A ${}^{13}C{}^{1}H$ NMR spectrum of naphthylene-1,8-Et₂NP-PNEt₂ **5**

Fig. S12. A ${}^{31}P{}^{1}H$ NMR spectrum of naphthylene-1,8-Et₂NP-PNEt₂ **5**

Fig. S13. A ¹H NMR spectrum of (μ -5')[Fe(CO)₃]₂ **3**

Fig. S14. A $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of (µ-5')[Fe(CO)_3]_2 $\mathbf{3}$

Fig. S15. A ${}^{31}P{}^{1}H$ NMR spectrum of $(\mu$ -5')[Fe(CO)₃]₂ **3**

Fig. S16. Plots of TsOH concentration vs increment of the current around -2.2 V (open square) and -1.5 V (closed square).