## **Supporting Information**

# Exploring Different Coordination Modes of the First Tetradentate NHC/1,2,3-Triazole Hybrid Ligand for Group 10 Complexes

Jonas F. Schlagintweit,<sup>[a]</sup> Linda Nguyen,<sup>[a,b]</sup> Florian Dyckhoff,<sup>[a]</sup> Felix Kaiser,<sup>[a]</sup> Robert M. Reich,<sup>[a]</sup> Fritz E. Kühn\*<sup>[a]</sup>

### **Table of Contents**

| 1. | Synthesis of 1,1'-Methylenebisimidazole              | 3  |
|----|------------------------------------------------------|----|
| 2. | NMR spectroscopy                                     | 4  |
| 3. | Variable Temperature <sup>1</sup> H-NMR Spectroscopy | 17 |
| 4. | Crystallographic data                                | 19 |
| 5. | References                                           | 19 |

#### 1. Synthesis of 1,1'-Methylenebisimidazole

Imidazole (50 g, 734 mmol, 1.00 eq.) and tetrabutylammonium bromide (7.10 g, 22.0 mmol, 0.03 eq.) are dissolved in 500 mL concentrated NaOH. Subsequently,  $CH_2CI_2$  (500 mL, 9.53 mol, 10.6 eq.) is added. The mixture is refluxed overnight.  $CH_2CI_2$  is removed under reduced pressure. The suspension is filtered to obtain a pale yellow residue. After washing with cold  $CH_2CI_2$  (-40 °C, 4x50 mL) and drying of the solid at 60 °C it is extracted with 500 mL  $CH_2CI_2$  using Soxhlet extractor overnight. The resulting suspension is concentrated to 150 mL, cooled to -40 °C and filtered. The filtrate is concentrated to 50 mL, cooled to -40 °C and filtered again. After drying of the combined residues 1,1'-methylenebisimidazole (47.3 g, 319 mmol, 87%) is obtained as a white crystalline solid.

<sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ , 296 K):  $\delta$  7.92 (t, <sup>3</sup>J = 1.2 Hz, 2H, NC*H*N), 7.39 (d, <sup>3</sup>J = 1.2 Hz, 2H, NC*H*C), 6.90 (t, <sup>3</sup>J = 1.2 Hz, 2H, NC*H*C), 6.21 (s, 2H, CH<sub>2</sub>).

<sup>13</sup>C-NMR (101 MHz, DMSO-*d*<sub>6</sub>, 296 K): δ 137.31 (NCHN), 129.16 (NCHC), 119.16 (NCHC), 54.82 (CH<sub>2</sub>).

Anal. calcd. for C<sub>7</sub>H<sub>8</sub>N<sub>4</sub>: C 56.74; H 5.44; N 37.81. Found: C 56.79; H 5.61; N 37.55.

#### 2. NMR spectroscopy



Figure 1. <sup>1</sup>H-NMR of 1,1'-Methylenebisimidazole in DMSO-d<sub>6</sub>.







Figure 3. <sup>1</sup>H-NMR of 1 in DMSO-d<sub>6</sub>.



Figure 4. <sup>13</sup>C-NMR of 1 in DMSO-d<sub>6</sub>.



Figure 5. <sup>1</sup>H-NMR of 2 in DMSO-d<sub>6</sub>.



Figure 6. <sup>13</sup>P-NMR of 2 in DMSO-d<sub>6</sub>.



Figure 8. <sup>1</sup>H-NMR of 3 in CD<sub>3</sub>CN.



Figure 9. <sup>13</sup>C-NMR of 3 in CD<sub>3</sub>CN.



Figure 10. <sup>1</sup>H-NMR of 3 in DMSO-d<sub>6</sub>.



Figure 11. <sup>31</sup>P-NMR of 3 in DMSO-d<sub>6</sub>.



Figure 12. <sup>1</sup>H-NMR of 4 in CD<sub>3</sub>CN.







Figure 14. <sup>1</sup>H-NMR of 4 in DMSO-d<sub>6</sub>.



Figure 15. <sup>31</sup>P-NMR of 4 in DMSO-d<sub>6</sub>.



Figure 16. <sup>1</sup>H-NMR of 5 in CD<sub>3</sub>CN.



Figure 18. <sup>1</sup>H-NMR of 5 in DMSO-d<sub>6</sub>.





Figure 19. <sup>13</sup>C-NMR of 5 in DMSO-d<sub>6</sub>.

Figure 20. <sup>31</sup>P-NMR of 5 in DMSO-d<sub>6</sub>.



Figure 21. <sup>1</sup>H-NMR of 6 in CD<sub>3</sub>CN.



Figure 22. <sup>13</sup>C-NMR of 6 in CD<sub>3</sub>CN.



Figure 23. <sup>1</sup>H-NMR of 6 in DMSO-d<sub>6</sub>.



Figure 24. <sup>13</sup>C-NMR of 6 in DMSO-d<sub>6</sub>.



Figure 25. <sup>31</sup>P-NMR of 6 in DMSO-d<sub>6</sub>.

#### 3. Variable Temperature <sup>1</sup>H-NMR Spectroscopy









Figure 28. <sup>1</sup>H-NMR of 5 in CD<sub>3</sub>CN at various temperatures.



Figure 29.  $^1\text{H-NMR}$  of 6 in CD\_3CN at various temperatures.

#### 4. Crystallographic data

| Substance identification                              | Compound 3                      | Compound 4                      | Compound 6                          |
|-------------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------|
| CCDC                                                  | 1923376                         | 1923375                         | 1923374                             |
| Chemical formula                                      | $C_{37}H_{46}F_{12}N_{10}P_2Pd$ | $C_{74}H_{92}F_{12}N_{20}NiP_2$ | $C_{82}H_{112}F_{12}N_{20}O_2P_2Pd$ |
| Fw [g mol <sup>-1</sup> ]                             | 1027.18                         | 1610.31                         | 1806.25                             |
| т [К]                                                 | 100(2)                          | 100(2)                          | 100(2)                              |
| Crystal system                                        | triclinic                       | triclinic                       | triclinic                           |
| Space group                                           | <i>P</i> -1                     | <i>P</i> -1                     | <i>P</i> -1                         |
| a [Å]                                                 | 15.1615(18)                     | 9.9082(15)                      | 10.2595(19)                         |
| b [Å]                                                 | 15.3391(19)                     | 11.862(2)                       | 11.748(2)                           |
| c [Å]                                                 | 23.869(3)                       | 19.211(3)                       | 20.722(4)                           |
| α [deg]                                               | 104.258(3)                      | 97.837(5)                       | 104.056(6)                          |
| β [deg]                                               | 92.735(3)                       | 93.258(5)                       | 92.793(6)                           |
| γ [deg]                                               | 116.887(3)                      | 106.980(5)                      | 111.557(5)                          |
| V [ų]                                                 | 4716.5(10)                      | 2128.1(6)                       | 2226.8(7)                           |
| Z                                                     | 4                               | 2                               | 1                                   |
| Density (calcd) [g cm <sup>-3</sup> ]                 | 1.478                           | 1.256                           | 1.347                               |
| μ [mm <sup>-1</sup> ]                                 | 0.549                           | 0.343                           | 0.326                               |
| F (000)                                               | 2138                            | 842                             | 944                                 |
| Crystal size (mm <sup>3</sup> )                       | 0.040 × 0.042 × 0.128           | 0.064 × 0.129 × 0.206           | 0.095 × 0.131 ×0.345                |
| $\boldsymbol{\theta}$ range for data collection [deg] | 1.99 to 25.35                   | 2.26 to 25.35                   | 1.93 to 25.35                       |
| Reflections collected                                 | 120771                          | 73359                           | 65958                               |
| Independent reflections                               | 17268                           | 7782                            | 8134                                |
| Data/restrains/parameters                             | 17268 / 619 / 1388              | 7782 / 139 / 561                | 8134 / 651 / 781                    |
| GOF on F <sup>2</sup>                                 | 1.015                           | 1.024                           | 1.097                               |
| Final R1                                              | R1 = 0.0467                     | R1 = 0.0398                     | R1 = 0.0851                         |
| wR2 [l > 2σ(l)]                                       | wR2 = 0.0982                    | wR2 = 0.0903                    | wR2 = 0.2143                        |
| Largest diff. peak and hole [eÅ-³]                    | 2.423 and -0.631                | 0.819 and -0.389                | 3.078 and -1.480                    |

 Table 1. Crystallographic data and structure refinement parameters.

For the refinement of compound **4** the squeeze function was applied due to large voids within the crystal structure. These voids most likely stem from evaporation of co-crystallized solvent. The crystal structure of compound **6** exhibits slight twinning due to the constitution of the measured crystal. **6** (and **3**) crystallize in adhered plates, therefore, no pristine single-crystal could be used in the measurement.

#### 5. References

<sup>1</sup>Allen, F. H.(2004). ENCIFER. J. Applied Cryst. 37, 335-338.

<sup>2</sup>Bruker (2015). APEX suite of crystallographic software. APEX 3 Version 2015.5-2. Bruker AXS Inc., Madison, Wisconsin, USA.

<sup>3</sup>Bruker (2016). SAINT, Version 8.38A and SADABS Version 2016/2. Bruker AXS Inc., Madison, Wisconsin, USA.

<sup>4</sup>Flack, H.D. (1983). Acta Cryst. A39, 876-881.

<sup>5</sup>Huebschle, C. B.; Sheldrick, G. M.; Dittrich, B. (2011). SHELXLE. J. Appl. Cryst., 44, (2011) 1281 - 1284.

<sup>6</sup>Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

<sup>7</sup>Sheldrick, G. M. (2014). SHELXL2014. University of Göttingen, Germany.

<sup>8</sup>Spek, A. L. (2011). PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

<sup>9</sup>Spek, A.L. (2003). J. Appl. Cryst. 36, 7-13.

<sup>10</sup>Wilson, A.J.C. (1992). Ed. International Tables for Crystallography, Volume C, Kluwer Academic Publishers, Dordrecht, The Netherlands.