Supplementary Information

Tb(HSO₄)(SO₄) – A Green Emitting Hydrogensulfate Sulfate with Second Harmonic Generation Response

Philip Netzsch,^a Harijs Bariss,^a Lkhamsuren Bayarjargal,^b and Henning A. Höppe*,^a

^a Chair of Solid State and Materials Chemistry, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany

^b Institut für Geowissenschaften, Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt, Germany

Table S1: Wyckoff symbol, atomic coordinates x; y; z and equivalent isotropic displacement parameters U_{eq} for Tb(HSO₄)(SO₄) (corresponding standard deviations given in parentheses)

Atom	Wyckoff symbol	x	у	Ζ	U _{eq}
Tb01	2 <i>a</i>	0.35019(4)	0.74999(7)	0.63157(4)	0.00544(8)
S1	2 <i>a</i>	0.7801(2)	0.70420(19)	0.4304(2)	0.0062(3)
S2	2 <i>a</i>	0.2397(2)	0.5805(2)	0.1047(2)	0.0067(3)
011	2 <i>a</i>	0.9877(6)	0.7299(13)	0.5621(7)	0.0106(11)
012	2 <i>a</i>	0.6845(8)	0.9008(7)	0.3641(8)	0.0140(11)
013	2 <i>a</i>	0.7803(7)	0.5722(7)	0.2560(7)	0.0094(9)
014	2 <i>a</i>	0.6455(7)	0.5907(7)	0.5396(7)	0.0092(9)
021	2 <i>a</i>	0.2410(7)	0.7037(6)	0.2819(7)	0.0116(11)
022	2 <i>a</i>	0.3179(8)	0.6908(7)	-0.0441(7)	0.0134(11)
023	2 <i>a</i>	0.3500(8)	0.3905(7)	0.1617(7)	0.0132(10)
024	2 <i>a</i>	0.0144(13)	0.5299(9)	-0.0008(14)	0.0107(13)
H1	2 <i>a</i>	-0.055(11)	0.542(12)	0.102(11)	0.016

Atom	U11	U22	U33	U23	U13	U12
Tb01	0.00601(12)	0.00483(12)	0.00575(12)	-0.0006(2)	0.00201(8)	-0.0005(2)
S1	0.0056(7)	0.0048(9)	0.0090(7)	-0.0003(5)	0.0031(6)	-0.0002(5)
S2	0.0064(7)	0.0079(7)	0.0059(7)	0.0005(6)	0.0018(6)	0.0000(6)
011	0.0053(18)	0.011(3)	0.015(2)	0.000(3)	0.0002(15)	-0.003(2)
012	0.014(3)	0.005(2)	0.023(3)	0.000(2)	0.004(2)	0.0038(18)
013	0.010(2)	0.009(2)	0.010(2)	-0.0013(18)	0.0035(19)	-0.0019(17)
014	0.009(2)	0.009(2)	0.012(2)	-0.0007(18)	0.0062(19)	0.0012(17)
021	0.016(2)	0.011(3)	0.007(2)	-0.0035(16)	0.0012(18)	0.0012(17)
022	0.016(3)	0.018(3)	0.007(2)	0.0041(17)	0.0054(19)	-0.0031(17)
023	0.014(3)	0.012(2)	0.013(3)	0.0011(19)	0.003(2)	0.0048(19)
024	0.007(3)	0.015(4)	0.011(2)	0.002(3)	0.0034(19)	0.000(3)

Table S2: Anisotropic displacement parameters U_{ij} in Å² for Tb(HSO₄)(SO₄) (corresponding standard deviations given in parentheses)

Table S3: ECon derived by MAPLE-calculations for Tb atoms in Tb(HSO₄)(SO₄)

Atom	x	У	Z	Distance / pm	EcoN (1)	Econ(3)
Central atom						
Tb1	0.3502	0.1721	0.6316			
Ligand						
022	0.3179	0.1129	0.9559	230.32	1.154	1.161
012	0.3155	-0.1772	0.6359	231.571	1.122	1.129
023	0.65	0.3125	0.8383	232.307	1.103	1.11
021	0.241	0.1258	0.2819	232.539	1.097	1.104
011	-0.0123	0.1521	0.5621	234.045	1.058	1.065
014	0.6455	0.0128	0.5396	244.356	0.801	0.808
013	0.2197	0.4942	0.744	248.678	0.699	0.706
014	0.3545	0.5128	0.4604	253.396	0.595	0.601
Next Ligand						
012	0.6845	0.3228	0.3641	335.86	0.001	0.001

Figure S1: Group-subgroup relation scheme between Ni_2In and O (protonated oxygen atom from the hydrogensulfate anion), S (sulfur from the sulfate anion) and Tb in Tb(HSO₄)(SO₄).

Figure S2: 3D network formed by $Tb(HSO_4)_{3/3}(SO_4)_{4/4}$ units viewed along [010].

Figure S3: Corrected excitation (black) and emission (green) spectra of $Tb(HSO_4)(SO_4)$; the assignment of the excitation spectrum is listed in table S4

Band	Transition ${}^{7}F_{6} \rightarrow$	Wavelength /nm
а	5 <i>d</i>	224
b	⁵ K ₇	240
С	5 <i>d</i>	258
d	⁵ I ₇	271
е	⁵ ₈	283
f	⁵ H ₅	294
g	${}^{5}H_{6}$	302
h	⁵ H ₇	317
i	⁵ D ₁	326
j	⁵ L ₇ + ⁵ L ₈	339
k	⁵ L9	350
Ι	⁵ G ₅	357
m	⁵ L ₁₀	368
n	${}^{5}G_{6}$	374

Table S4: Assignment	of the excitation	bands in	Tb(HSO ₄)(SO ₄)	according to Car	nall ¹
1001C 34.7.33161111C11C	of the excitation	Sund3 in	15(11504)(504)	according to car	nun

Figure S4: PXRD of a sample of Tb(HSO₄)(SO₄) after thermogravimetric analysis to 1000 °C in comparison to the calculated pattern of $Eu_2O_2(SO_4)$.²

References

- 1 W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 1968, 49, 4447–4449.
- 2 I. Hartenbach and T. Schleid, Z. Anorg. Allg. Chem., 2002, 628, 2171.