Supplementary Information

Cul incorporated cobalt ferrite nanoparticle as magnetically separable

catalyst for oxidative amidation reaction

Mintu Maan Dutta, Hrishikesh Talukdar, Prodeep Phukan* Department of Chemistry, Gauhati University, Guwahati -781014, Assam, India

E-mail: pphukan@gauhati.ac.in

Contents:-

Spectroscopic Data	S2-S4
References	S4
¹ H and ¹³ C Spectra of Compounds	S5-S17

Experimental Data:

¹H NMR and ¹³C spectra were recorded in Bruker Advance 300 MHz instrument. Chemical shifts are given in δ units relative to the tetramethylsilane (TMS) signal as an internal reference in CDCl₃. Coupling constants (*J*) are reported in hertz (Hz). Silica gel (230-400 mesh) was used for column chromatography.

Sl No.	NMR Data	Structure
1	<i>N</i> -(pyridin-2-yl)benzamide (3a): [1]	н
	White crystalline solid, ¹ H NMR (300 MHz, CDCl ₃) δ :	N N
	9.29 (s,1H), 8.41 (d, 8.4Hz, 1H), 8.11 (d, 4.2Hz, 1H), 7.93	Ö
	(d, 2H, 7.2Hz), 7.77-7.71 (m, 1H), 7.57-7.44 (m, 3H),	
	7.03-6.99 (m, 1H); ¹³ C NMR (75 MHz, CDCl ₃) δ: 166.0,	
	151.7, 147.7, 138.5, 134.3, 132.1, 128.7, 119.8, 114.3.	
2	4-methyl-N-(pyridin-2-yl)benzamide (3b): [1]	н
	White Solid, ¹ H NMR (300 MHz, CDCl ₃) δ : 8.74 (s, 1H),	_ N _ Ň _ ↓ _ ↓
	8.40 (d, 8.4Hz, 1H), 8.27 (d, 1H, 3.9Hz), 7.84 (d, 7.8Hz,	Ö
	2H), 7.31 (d, 7.8Hz, 2H), 7.78-7.73 (m, 1H), 7.30 (d,	
	8.4Hz, 1H), 2.43 (s, 3H); ¹³ C NMR (75 MHz, CDCl ₃) δ:	
	165.7, 151.6, 147.8, 142.9, 138.5, 131.3, 129.5, 127.2,	
	119.8, 114.1, 21.5.	
3	3-methyl_N-(nyridin_2-yl)benzamide (3c): [2]	
5	White solid ¹ H NMR (300 MHz CDCl ₂) δ : 9.76 (s. 1H)	N N
	8.45 (d 1H 8.4 Hz) 8.11 (d 1H 4.8 Hz) $7.78_{-}7.74$ (m	Ο
	3H) 7 36-7 33 (m 2H) 7 01 (t 1H 6 9 Hz) 2 38 (s 3H).	~
	13 C NMR (75 MHz CDCl ₂) & 166 3 151 8 147 1 138 6	
	138 3 134 0 132 8 128 1 124 5 119 6 114 6 21 9	
Δ	4 -chloro-N-(nyridin-2-yl)benzamide (3d): [1]	
-	White crystalline solid ¹ H NMR (300 MHz CDCl ₂) δ :	
	9.76 (s 1H) 8.37 (d 8.4 Hz 1H) 7.99 (d 3.9 Hz 1H)	
	7.86 (d 8.4Hz 2H) 7.71 (t 8.4Hz 1H) 7.38 (d 2H)	
	8 /Hz) 6 99 (t 1H 5 1 Hz)· ¹³ C NMP (75 MHz CDCl ₂)	
	8.1651 151 6 147 5 138 5 138 3 132 7 128 8 110 0	
	11/ 6	
	114.0.	

5	3-chloro-N-(pyridin-2-yl)benzamide (3e): [4]	н
	White solid, ¹ H NMR (300 MHz, CDCl ₃) δ : 8.94 (s, 1H),	
	8.38 (d, 8.1Hz, 1H), 8.25 (d, 3.6Hz, 1H), 7.89 (d, 2H,	Ö
	8.4Hz), 7.77 (t, 1H, 7.5Hz), 7.47 (d, 2H, 8.4Hz), 7.09 (t,	
	6.6Hz, 1H); ¹³ C NMR (75 MHz, CDCl ₃) δ: 164.7, 151.4,	
	147.7, 138.6, 132.5, 129.1, 128.7, 120.1, 114.3.	
6	4-bromo-N-(pyridin-2-yl)benzamide (3f): [1]	Br
	White crystalline solid, ¹ H NMR (300 MHz, CDCl ₃) δ :	
	9.42 (s,1H), 8.38 (d, 8.4Hz,1H), 8.10 (d, 3.9Hz, 1H),	Ö
	7.81-7.72 (m, 3H), 7.58 (d, 8.4Hz, 2H), 7.04 (t,	
	6.3Hz,1H); ¹³ C NMR (75 MHz, CDCl ₃) δ: 165.1, 151.5,	
	147.6, 138.6, 133.1, 131.9, 128.9, 126.9, 120.0, 114.5.	
7	2-bromo-N-(pyridin-2-yl)benzamide (3g): [1]	H
	White crystalline solid, ¹ H NMR (300 MHz, CDCl ₃) δ :	N N
	10.60 (s, 1H), 8.39 (d, 8.1Hz, 1H), 7.69 (t, 7,5Hz, 1H),	Ü Br
	7.57-7.52 (m, 2H), 7.40-7.29 (m, 3H), 6.86-6.82 (m, 1H);	
	¹³ C NMR (75 MHz, CDCl ₃) δ: 166.6, 151.6, 146.9, 138.6,	
	138.0, 133.3, 131.3, 129.0, 127.5, 119.8, 119.5, 114.7	
8	4-methoxy-N-(pyridin-2-yl)benzamide (3h): [1]	OCH ₃
	Yellow solid, ¹ H NMR (300 MHz, CDCl ₃) δ: 9.52 (s, 1H),	
	8.41 (d, 8.4 Hz, 1H), 8.17 (s, 1H), 7.94 (d, 8.7Hz, 2H),	Ö
	7.76-7.71 (m, 1H), 7.03-6.99 (m, 1H), 6.93 (d, 8.7Hz,	
	2H), 3.83 (s, 3H); ¹³ C NMR (75 MHz, CDCl ₃) δ: 165.6,	
	162.6, 151.9, 147.2, 138.6, 131.8, 129.4, 126.2, 119.5,	
	114.5, 113.8, 113.4, 55.3.	
9	4-nitro-N-(pyridin-2-yl)benzamide (3i): [3]	NO ₂
	White solid, ¹ H NMR (300 MHz, CDCl ₃) δ : 11.20 (s, 1H),	
	8.40-8.16 (m, 6H), 7.86 (t, 8.1Hz, 1H), 7.21-7.17 (m, 1H);	Ů ∎
	¹³ C NMR (75 MHz, CDCl ₃) δ: 164.7, 151.9, 149.3, 148.2,	
	139.9, 138.4, 129.7, 123.5, 120.4, 114.9.	

10	3-nitro-N-(pyridin-2-yl)benzamide (3j): [4]	н
	Pale yellow solid, ¹ H NMR (300 MHz, CDCl ₃) δ: 9.76 (s,	
	1H), 8.77 (s, 1H), 8.37-8.22 (m, 4H), 8.14 (d, 3.6Hz, 1H),	Ö
	7.79-7.55 (m, 3H), 7.06 (t, 6Hz, 1H); ¹³ C NMR (75 MHz,	
	CDCl ₃) δ: 163.7, 151.2, 147.7, 138.7, 139.9, 133.3, 129.9,	
	126.5, 122.5, 120.4, 114.7.	
11	N-(pyridin-2-yl)furan-2-carboxamide (3k): [1]	H O
	White solid, ¹ H NMR (300 MHz, CDCl ₃) δ : 8.83 (s, 1H),	
	8.33 (d, 8.7Hz, 2H), 7.77-7.74 (m, 1H), 7.54 (s, 1H), 7.28	0
	(d, 3.3Hz, 1H), 7.09-7.05 (m, 1H), 6.58-6.57 (m, 1H); ¹³ C	
	NMR (75 MHz, CDCl ₃) δ: 156.2, 150.9, 147.9, 144.7,	
	138.4, 119.9, 115.9, 114.1, 112.6.	
12	N-(pyridin-2-yl) anthracene-9-carboxamide (3l):	
	Yellow crystal, ¹ H NMR (300 MHz, CDCl ₃) δ: 9.88	Ň
	(s,1H), 8.54 (d, 2H, 6Hz), 8.13 (d, 2H, 8.1Hz), 8.03 (d,	O _, ∕NH
	8.1Hz, 2H), 7.71-7.65 (m, 1H), 7.57-7.47 (m, 4H), 7.21	
	(d, 4.2Hz, 1H), 6.78-6.74 (m, 1H); ¹³ C NMR (75 MHz,	
	CDCl ₃) δ: 168.4, 151.4, 147.2, 138.4, 130.9, 128.7, 128.5,	
	127.9, 127.2, 126.9, 125.6, 124.7, 119.8, 114.3. HRMS	
	(ES) m/z 299.1188 [M+H, 100].	

References

- S. Yang, H. Yan, X. Ren, X. Shi, J. Li, Y. Wang and G. Huang, Tetrahedron, 2013, 69, 6431.
- K. Yan, D. Yang, W. Wei, G. Li, M. Sun, Q. Zhang, L. Tian and H. Wang, RSC Adv., 2015, 5, 100102.
- 3. E. S. Devi, A. Alanthadka, A. Tamilselvi, S. Nagarajan, V. Sridharana and C. U. Maheswari, Org. Biomol. Chem., 2016, **14**, 8228.
- 4. V. Pappula, C. Ravi, S. Samanta and S. Adimurthy, ChemistrySelect, 2017, 2, 5887.

-9.760 -9.760 -9.760 -7.71 -7.885 -7.71 -7.782 -7.738 -7.7386 -7.74866 -7.7486 -7.7486 -7.74866 -7.74866 -7.74866 -7.74866 -7.74866 -7

S15

S17