Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Synthesis, Structure, and Reactivity of Pincer-type Iridium Complexes Having Gallyl- and Indyl-Metalloligands Utilizing 2,5-Bis(6-phosphino-2-pyridyl)pyrrolide as a New Scaffold for Metal–Metal Bonds

Jun Takaya,^{*a,b} Mayuko Hoshino,^a Kanako Ueki,^a Narumasa Saito^a and Nobuharu Iwasawa^{*a}

^{*a*}Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan ^{*b*}JST, PRESTO, Honcho, Kawaguchi, Saitama, 332-0012, Japan

Table of Contents

S2	General
S3	Preparation of 2,5-bis(6-phosphino-2-pyridyl)pyrrole derivative 1
S3-S4	Preparation of group 13 metal pyrrolides 2
S5-S6	Preparation of Ir ^{III} dichloride complexes 3 having group 13 metalloligands
S6-S7	AIM analysis on Ir^{III} dichloride complexes 3
S7	Preparation of BH ₃ -coordinate In–Ir ^{III} dihydride complex 4 ^{In}
S8	DFT calculation on 4 ^{In}
S9	Formation of In–Ir ^{III} dihydride complex 5 ^{In} (NMR experiment)
S10	DFT calculation on 5 ^{In}
S11	References
S12–S37	NMR spectra

General: All operations were performed under an argon atmosphere. ¹H, ¹³C and ³¹P NMR spectra were recorded on an ECX-500 (500 MHz for ¹H, 125 MHz for ¹³C and 202 MHz for ³¹P), an ECZ-500 (500 MHz for ¹H, 125 MHz for ¹³C and 202 MHz for ³¹P), or an ECS-400 (400 MHz for ¹H, 100 MHz for ¹³C and 160 MHz for ³¹P) in CDCl₃, CD₂Cl₂, THF-*d*₈, and C₆D₆. Chemical shifts are expressed in parts per million (ppm) downfield from TMS ($\delta_{\rm H}$ 0.00, $\delta_{\rm C}$ 0.00) and H₃PO₄ aq. ($\delta_{\rm P}$ 0.00) and referenced to residual solvents (δ_H 7.26 and δ_C 77.0 for chloroform, δ_H 5.32 and δ_C 53.1 for dichloromethane, δ_H 3.58 for tetrahydrofuran, and δ_H 7.15 and δ_C 128.6 for benzene). IR spectra were recorded on an FT/IR-VIR-200 (JASCO Co., Ltd.) with ATR PRO450-S accessory (JASCO Co., Ltd.). High resolution mass spectra (HRMS) were recorded on a JEOL JMS-T100 GSV mass spectrometer or a BRUKER micrOTOF II. Crystal data were collected by a Rigaku Saturn CCD system or a Rigaku XtaLAB Synergy R DW HyPix system equipped with a Rigaku GNNP low-temperature device. Silica Gel 60 (Kanto Chemical Co., Inc.) was used for flash column chromatography. Merck Kieselgel 60 F_{254} (0.25 mm thickness, coated on glass 20×20 cm²) plate was used for analytical thin layer chromatography (TLC). THF, Et₂O, pentane and toluene were purified by solvent purification system of Glass-Contour. Benzene- d_6 and THF- d_8 were purchased from Kanto chemicals and dried and degassed by benzophenone ketyl. Other deuterated solvents were purchased from Kanto Chemicals and degassed by freeze-dry technique. 2,5-Bis(6-bromo-2-pyridyl)pyrrole was prepared according to a literature procedure.¹ CCDC 1915112 (2^{Ga}), 1915113 (2^{In}), 1915114 (3^{Ga}), 1915115 (3^{In}), and 1915116 (4^{In}) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Preparation of 2,5-bis(6-phosphino-2-pyridyl)pyrrole derivative 1

Scheme S1

Pd(OAc)₂ (58.0 mg, 0.258 mmol) and DIPPF (116.0 mg, 0.277 mmol) were added to a two neck flask and dissolved in dry 1,4-dioxane (37.0 mL). 2,5-Bis(6-bromo-2-pyridyl)pyrrole (1.40 g, 3.69 mmol), Cs_2CO_3 (2.50 g, 7.75 mmol) and HP^{*i*}Pr₂ (1.50 g, 12.9 mmol) were added to the mixture, and the mixture was stirred at reflux untill complete consumption of the starting material. The solution was filtered through a silica gel, and the solvent was evaporated under reduced pressure to give a crude product. Recrystallization from Et₂O/pentane at -50°C gave **1** as pale yellow solids (1.40 g, 3.09 mmol) in 84% yield.

¹H NMR (500 MHz, C₆D₆) δ = 11.0 (s, 1H), 7.23 (t, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 6.97 (td, *J* = 7.8, 2.0 Hz, 2H), 6.70 (d, *J* = 3.0 Hz, 2H), 2.54-2.46 (m, 4H), 1.24-1.20 (m, 12H), 1.13-1.08 (m, 12H); ¹³C NMR (125 MHz, C₆D₆) δ = 161.0 (d, *J* = 18 Hz), 150.3, 135.2 (d, *J* = 13 Hz), 133.8, 129.4 (d, *J* = 38 Hz), 117.6, 109.4, 23.4 (d, *J* = 12 Hz), 20.0 (d, *J* = 18 Hz), 19.1 (d, *J* = 8.4 Hz); ³¹P NMR (200 MHz, C₆D₆) δ = 14.2 (s); IR (ATR) 3449, 2951, 2924, 2863, 1580 cm⁻¹; HRMS (FD⁺): Calcd for C₂₆H₃₇N₃P₂ [M⁺]: 453.24627; Found: 453.24685.

Preparation of group 13 metal pyrrolides 2

Scheme S2

<u>Preparation of 2^{Al} (M = Al)</u>

In a glovebox, KHMDS (0.5 M sol. in toluene, 1.45 mL, 0.73 mmol) was added to a solution of **1** (0.30 g, 0.66 mmol) in dry THF (40 mL) to form potassium pyrrolide. Then, AlCl₃ (0.26 g, 2.0 mmol) was added to the reaction mixture at room temperature. After 4.5 h, the mixture was concentrated under reduced pressure, and the crude product was purified by recrystallization from THF/Et₂O to give 2^{Al} as yellow solids (0.30 g, 0.055 mmol) in 83% yield.

¹H NMR (500 MHz, C₆D₆) δ = 6.88-6.83 (m, 6H), 6.72 (s, 2H), 1.91-1.85 (m, 4H), 1.16-1.09 (m, 24H); ¹³C NMR (125 MHz, C₆D₆) δ = 166.1 (d, *J* = 23 Hz), 151.1 (d, *J* = 12 Hz), 137.7, 136.5, 125.3, 117.7, 111.3, 27.2 (d, *J* = 17 Hz), 21.5 (d, *J* = 14 Hz), 20.2 (d, *J* = 20 Hz); ³¹P NMR (200 MHz, C₆D₆) δ = 3.2 (s); IR (ATR) 2966, 2949, 2922, 2866, 1586, 1480 cm⁻¹. Satisfactory data for elemental analysis and high resolution mass spectroscopy were not obtained due to instability.

Preparation of 2^{Ga} (M = Ga)

 2^{Ga} was prepared according to the procedure described above using 1 (0.30 g, 0.66 mmol) and GaCl₃ (0.35 g, 2.0 mmol). The crude product was purified by recrystallization from THF/pentane to give 2^{Ga} as yellow solids (0.38 g, 0.64 mmol) in 97% yield.

¹H NMR (500 MHz, THF-*d*₈) δ = 7.82 (t, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 6.92 (s, 2H), 2.25-2.15 (m, 4H), 1.25 (dd, *J* = 14.0, 7.0 Hz, 12H), 1.03 (dd, *J* = 13.0, 7.5 Hz, 12H); ¹³C NMR (125 MHz, C₆D₆) δ = 165.2 (d, *J* = 9.5 Hz), 150.0 (d, *J* = 16 Hz), 137.4, 136.0, 125.3, 117.9, 111.5, 26.6 (d, *J* = 14 Hz), 21.1 (d, *J* = 12 Hz), 20.1 (d, *J* = 17 Hz); ³¹P NMR (200 MHz, THF-*d*₈) δ = 7.4 (s); IR (ATR) 2951, 2866, 1585, 1438 cm⁻¹; HRMS (FD⁺): Calcd for C₂₆H₃₇N₃P₂GaCl₂ [M⁺]: 592.10956; Found: 592.10777.

Preparation of 2^{In} (M = In)

2^{In} was prepared according to the procedure described above using 1 (0.40 g, 0.88 mmol) and InCl₃ (0.39 g, 1.8 mmol). The crude product was purified by recrystallization from THF/pentane to give
2^{In} as yellow solids (0.52 g, 0.82 mmol) in 93% yield.

¹H NMR (500 MHz, C₆D₆) δ = 6.95-6.93 (m, 2H), 6.86-6.82 (m, 4H), 6.71 (d, *J* = 7.5 Hz, 2H), 1.90-1.82 (m, 4H), 1.13-1.07 (m, 24H); ¹³C NMR (125 MHz, C₆D₆) δ = 164.0 (d, *J* = 19 Hz), 150.8 (d, *J* = 12 Hz), 137.8, 135.5, 124.4, 118.7, 112.0, 26.5 (d, *J* = 16 Hz), 21.0 (d, *J* = 14 Hz), 20.0 (d, *J* = 19 Hz); ³¹P NMR (200 MHz, C₆D₆) δ = 16.3 (s); IR (ATR) 2949, 2919, 2866, 1583, 1436 cm⁻¹; HRMS (FD⁺): Calcd for C₂₆H₃₇N₃P₂InCl₂ [M⁺]: 637.08003; Found: 637.07977.

<u>Preparation of Ir^{III} dichloride complexes 3 having group 13 metalloligands</u> Scheme S3

Preparation of $\mathbf{3}^{Ga}$ (M = Ga)

In a glovebox, 2^{G_a} (100 mg, 0.168 mmol) and [IrCl(coe)₂]₂ (75.4 mg, 0.0841 mmol) were placed in a round bottom flask and dissolved in dry THF (25.0 mL). After stirring for 4 h at room temperature, the mixture was filtered through a silica gel, and the solvent was evaporated in vacuo to give a crude product. The crude product was recrystallized from THF/Et₂O to give 3^{G_a} as orange solids (99.1 mg, 0.121 mmol) in 72% yield.

¹H NMR (400 MHz, CD₂Cl₂) δ = 7.85 (t, *J* = 7.4 Hz, 2H), 7.56 (d, *J* = 7.4 Hz, 2H), 7.36 (d, *J* = 7.4 Hz, 2H), 6.78 (s, 2H), 3.36-3.18 (m, 4H), 1.58-1.48 (m, 6H), 1.42-1.36 (m, 6H), 1.28-1.20 (m, 12H); ¹³C NMR (125 MHz, CD₂Cl₂) δ = 149.7, 148.1, 138.6, 132.4, 123.8, 118.9, 111.4, 25.8 (t, *J* = 6 Hz), 20.2 (t, *J* = 14 Hz), 19.6, 19.5, 18.5 (t, *J* = 4 Hz), 16.1; ³¹P NMR (200 MHz, CD₂Cl₂) δ = 50.1 (s); IR (ATR) 2957, 2916, 2864, 1578, 1440 cm⁻¹; HRMS (FD⁺): Calcd for C₂₆H₃₇N₃P₂GaIrCl₃ [M⁺]: 819.03351; Found: 819.03203.

Preparation of 3^{In} (M = In)

 3^{In} was prepared according to the procedure described above using 2^{In} (100.0 mg, 0.157 mmol) in dry CH₂Cl₂ at 60 °C. The crude product was purified by recrystallization from THF/Et₂O to give 3^{In} as brown solids (83.8 mg, 0.0968 mmol) in 62% yield.

¹H NMR (500 MHz, CD₂Cl₂) δ = 7.79 (t, *J* = 7.6 Hz, 2H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 6.73 (s, 2H), 3.29-3.20 (m, 2H), 3.19-3.11 (m, 2H), 1.56-1.51 (m, 6H), 1.37-1.33 (m, 6H), 1.30-1.22 (m, 12H); ¹³C NMR (125 MHz, CD₂Cl₂) δ = 151.8, 148.7 (t, *J* = 28 Hz), 138.4, 135.1, 120.5, 118.8, 113.6, 25.3 (t, *J* = 12 Hz), 20.0 (t, *J* = 14 Hz), 19.8, 19.7, 18.5, 15.8; ³¹P NMR (200 MHz, CD₂Cl₂) δ = 58.1 (s); IR (ATR) 2956, 2912, 1586, 1440 cm⁻¹; HRMS (FD⁺): Calcd for C₂₆H₃₇N₃P₂InIrCl₃ [M⁺]: 865.01181; Found: 865.01369.

Concerning the preparation of 2^{Al} (M = Al)

We also attempted to synthesize the corresponding Al–Ir complex 3^{Al} . However, the X-ray analysis was unsuccessful, and the structure was deduced by similarities of ¹H NMR spectra to those of 3^{Ga} and 3^{In} .

Scheme S4

The reaction was carried out according to the procedure for 3^{Ga} using 2^{Al} (20.0 mg, 0.0363 mmol). Recrystallization of the crude product from THF/Et₂O afforded an Ir complex, which was deduced to be 3^{Al} , as orange solids (12.3 mg, 0.0158 mmol) in 44% yield.

¹H NMR (500 MHz, CD₂Cl₂) δ = 7.9 (t, *J* = 7.7 Hz, 2H), 7.60 (d, *J* = 7.7 Hz, 2H), 7.36 (d, *J* = 7.7 Hz, 2H), 6.77 (s, 2H), 3.33-3.25 (m, 2H), 3.10-3.00 (m, 2H), 1.55-1.49 (m, 6H), 1.40-1.36 (m, 6H), 1.20-1.13 (m, 12H); ³¹P NMR (200 MHz, CD₂Cl₂) δ = 43.9 (s).

AIM analyses on Ir^{III} dichloride complexes 3

The structures were optimized by density functional theory (DFT) using the B3PW91 hybrid functional with tight SCF convergence and ultrafine integration grids (Gaussian 16, revision A.03).² Empirical dispersion correction was included. The LANL2DZ basis set, including a double-z valence basis set with the Hay and Wadt effective core potential (ECP), was used for aluminum, gallium and iridium and the 6-31G(d,p) basis set was used for carbon, hydrogen, phosphorous, nitrogen, and chlorine. Each of the stationary points was adequately characterized by normal coordinate analysis (no imaginary frequency for an equilibrium structure). In all calculations, the temperature was set to 298.15 K. A quantum theory of atoms in molecules (QTAIM) analyses were carried out using the AIMALL software package.^{3,4}

The AIM analysis on 3^{Ga} and 3^{In} showed the bond critical points (bcp) for the Ir–Cl2 bonds, but not between group 13 metals and Cl2 as shown in Figure S1. These results clearly support that these are pincer-type Ir^{III} dichloride complexes bearing gallyl- and indyl-metalloligands (anionic Ga^I and In^I) in terms of formal oxidation state.

Figure S1. AIM analysis of a) $\mathbf{3}^{Ga}$ and b) $\mathbf{3}^{In}$. Selected bond critical points and bond paths with $\rho(bcp) > 0.05$ e bohr⁻³ are depicted as green spheres and black solid lines. The values of electron density at the selected bcp are depicted as red number.

<u>Preparation of BH₃-coordinate In–Ir^{III} dihydride complex 4^{In}</u> Scheme S5

In a glovebox, a THF solution (50.0 mL) of 3^{In} (100 mg, 0.115 mmol) was added to a solution of BH₃•thf in THF (0.9 M, 2.60 mL, 2.34 mmol) at room temperature, and then the mixture was stirred at 60 °C for 4 h. The solution was concentrated in vacuo to give a crude product, which was recrystallized from THF/hexane to give 4^{In} as pale brown solids (61.5 mg, 0.0758 mmol) in 66% yield.

¹H NMR (500 MHz, CD₂Cl₂) δ = 7.78 (t, *J* = 7.6Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 6.73 (s, 2H), 2.84-2.78 (m, 2H), 2.72-2.68 (m, 2H), 1.43-1.38 (m, 6H), 1.32-1.27 (m, 6H), 1.21-1.15 (m, 6H), 0.64-0.58 (m, 6H), -5.8 (br, 1H), -8.9, (br, 1H), -20.5, (td, *J* = 15.5, 8.5 Hz, 1H); ¹³C NMR (125 MHz, CD₂Cl₂) δ =139.7, 136.6, 122.7, 119.5, 113.4, 30.0, 26.0-25.4 (m), 21.3, 20.5, 17.1 (2C are missing due to gradual decomposition in the solution.); ³¹P NMR (200 MHz, CD₂Cl₂) δ = 79.8 (s); IR (ATR) 2959, 2929, 2861, 2108, 1570, 1463 cm⁻¹; HRMS (FD⁺): Calcd for C₂₆H₄₂N₃P₂InIrBC1 [M⁺]: 811.12253; Found: 811.12189.

DFT calculation on 4^{In}

The structure was optimized according to the same calculation method for **3**. The structural data were almost identical to those of the X-ray diffraction analysis. Selected bond lengths and angles are depicted in Figure S2.

Figure S2. a) The optimized structure of 4^{In}. b) Selected bond length and angles obtained from theoretical calculation (blue) and X-ray diffraction (red).

Formation of In–Ir^{III} dihydride complex 5^{In} (NMR experiment)

Scheme S6

The BH₃-coordinated In–IrH₂ complex 4^{In} was converted to an iridium dihydride complex as a major product in pyridine- d_5 at room temperature. The characteristic three hydridic resonances of 4^{In} ($\delta = -20.5$, -8.9 and -5.8 in CD₂Cl₂) disappeared, and new resonances at $\delta = -10.4$ (1H, td, J = 13.5, 3.5 Hz) and -26.8 (1H, td, J = 16.5, 3.5 Hz) appeared as a major product, which are attributed to H–Ir–H (Figure S3). These data are highly indicative of the formation of an In–IrH₂ complex 5^{In} via dissociation of the BH₃ from 4^{In} .

¹H NMR (500 MHz, Pyridine- d_5) δ = 7.62 (t, J = 7.6 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 7.6 Hz, 2H), 6.87 (s, 2H), 3.60-3.45 (m, 2H), 2.54-2.49 (m, 2H), 1.43-1.36 (m, 6H), 1.18-1.12 (m, 6H), 1.12-1.06 (m, 6H), 0.63-0.56 (m, 6H), -10.4 (td, J = 13.5, 3.5 Hz, 1H), -26.8 (td, J = 16.5, 3.5 Hz, 1H); ³¹P NMR (200 MHz, Pyridine- d_5) δ = 88.1 (s).

Figure S3. ¹H NMR of 4^{In} in pyridine- d_5 , which was converted to 5^{In} via dissociation of BH₃.

DFT calculation on 5^{In}

There are three possible isomers for the In–Ir dihydride as shown in Figure S3. DFT calculations suggested that the *trans* dihydride structure **A** having the In-metalloligand at an apical position is most stable among them.

Figure S4. Optimized structures of three possible isomers of In–Ir dihydride complexes and their relative energy differences.

References

1) Z. Zhang, J. Lim, M. Ishida, V. Roznyatovskiy, V. Lynch, H.-Y. Gong, X. Yang, D. Kim, and J. Sessler, *J Am Chem Soc*, 2012, **134**, 4076–4079.

2) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09*, Revision C.01; Gaussian, Inc., Wallingford CT, 2010.

3) R. F. W. Bader, In *Atoms In Molecules -A Quantum Theory*; Oxford University Press: New York, **1990**.

4) AIMAll (Version 14.11.23), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2014 (aim.tkgristmill.com).

