Supporting Information

Isomeric Ir(III) complexes for tracking mitochondrial pH fluctuation and inducing mitochondria disfunction during photodynamic therapy

Haijie Chen,^{a‡} Chen Ge,^{a‡} Huiqun Cao,^a Xuepeng Zhang,^b Ling Zhang,^a Linhai Jiang,^a Pingyu Zhang^{*a} and Qianling Zhang ^{*a}

^a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060,

P. R. China. E-mail: p.zhang6@szu.edu.cn (P. Z.); zhql@szu.edu.cn (Q. Z.)

^b Lab of Computational and Drug Design, School of Chemical Biology and Biotechnology. Peking University Shenzhen Graduate School, Shenzhen 518055, China

Contents

Scheme S1. The synthetic routes of the iridium complexes.

- Fig. S1. The separation of 1-4 on preparative thin-layer silica gel plates.
- Fig. S2. The ¹H NMR spectrum of 1.
- Fig. S3. The ¹³C NMR spectrum of 1.
- Fig. S4. The ESI-MS spectrum of 1.
- **Fig. S5.** The ${}^{1}\text{H} {}^{1}\text{H}$ Cozy spectrum of **1**.
- Fig. S6. The 1 H NMR spectrum of 2.
- **Fig. S7.** The 13 C NMR spectrum of **2**.
- Fig. S8. The ESI-MS spectrum of 2.
- Fig. S9. The ¹H-¹H Cozy spectrum of 2.
- Fig. S10. The comparison of the ¹H NMR spectrum of 1 and 2.
- Fig. S11. The ¹H NMR spectrum of **3**.
- Fig. S12. The ¹³C NMR spectrum of **3**.
- Fig. S13. The ESI-MS spectrum of 3.
- Fig. S14. The ¹H-¹H Cozy spectrum of **3**.
- Fig. S15. The ¹H NMR spectrum of 4.
- Fig. S16. The ¹³C NMR spectrum of 4.
- Fig. S17. The ESI-MS spectrum of 4.
- Fig. S18. The ¹H-¹H Cozy spectrum of 4.
- Fig. S19. The comparison of the ¹H NMR spectrum of 3 and 4.
- Fig. S20. The UV-vis spectra and emission spectra of 1-4.
- Fig. S21. The photostability of 1-4.
- Fig. S22. The stability of 1-4 in the PBS solution.
- Fig. S23. The stability of 1-4 in the cell culture medium (DMEM).
- Fig. S24. Change of the phosphorescence spectra of 1-4 with varying pH from 3.0 to 12.1.
- Fig. S25. The linear fitting of luminescence titration curve.
- Fig. S26. The phosphorescence spectra and photographs of 1-4 with varying pH from 5.8 to 7.9.
- Fig. S27. The pH reversibility of the phosphorescence intensity of 1-4.

- Fig. S28. The emission intensities of 1-4 in the presence of kinds of biological molecules.
- Fig. S29. The emission intensities of 1-4 in the presence of kinds of ions.
- Fig. S30. The schematic isomers of 1 and 2 and their respective relative free energies.
- Fig. S31. The iridium concentrations in mitochondria were determined by ICP-MS.
- Fig. S32. EPR signals of ROS.
- **Fig. S33.** Measurement of ${}^{1}O_{2}$ quantum yields.
- Fig. S34. The cellular ROS generation.
- Fig. S35. The normalized emission intensity in Hep-G2 cells after irradiation according to Fig. 6.
- Fig. S36. JC-1 assay in the dark or upon light irradiation.
- Fig. S37. The enlarged images of irradiation treatment in Fig. 7.
- Table S1. Blue shift of 1 and 2 ranging from pH 6.0 to pH 8.0.
- Table S2. The phosphorescence quantum yield of 1-4.
- **Table S3.** Determination of ${}^{1}O_{2}$ quantum yield of 1-4.
- Table S4. The phototoxicity of 1-4 towards Hep-G2 cell line upon different irradiation time.
- Table S5. The dark cytotoxicity and phototoxicity of 1-4 towards normal cell lines.

Scheme S1. The synthetic routes of the iridium complexes.

Fig. S1. The separation of 1-4 on preparative thin-layer silica gel plates with dichloromethane and methanol mixture solution (v:v = 10:1).

Fig. S2. The 500 MHz ¹H NMR spectrum of 1 in the DMSO-d⁶ solution.

Fig. S3. The 500 MHz ¹³C NMR spectrum of 1 in the DMSO-d⁶ solution.

Fig. S4. The ESI-MS spectrum of 1 (CH₃OH, positive mode).

Fig. S5. The 500 MHz ¹H-¹H Cozy spectrum of **1** in the DMSO-d⁶ solution.

Fig. S6. The 500 MHz¹H NMR spectrum of 2 in the DMSO-d⁶ solution.

Fig. S7. The 500 MHz ¹³C NMR spectrum of 2 in the DMSO-d⁶ solution.

Fig. S8. The ESI-MS spectrum of 2 (CH₃OH, positive mode).

Fig. S9. The 500 MHz ¹H-¹H Cozy spectrum of **2** in the DMSO-d⁶ solution.

Fig. S10. The assignment of H atoms of the ¹H NMR spectra of 1 and 2.

Fig. S11. The 500 MHz ¹H NMR spectrum of **3** in the DMSO-d⁶ solution.

Fig. S12. The 500 MHz ¹³C NMR spectrum of **3** in the DMSO-d⁶ solution.

Fig. S13. The ESI-MS spectrum of 3 (CH₃OH, positive mode).

Fig. S14. The 500 MHz ¹H-¹H Cozy spectrum of 3 in the DMSO-d⁶ solution.

Fig. S15. The 500 MHz ¹H NMR spectrum of 4 in the DMSO-d⁶ solution.

Fig. S16. The 500 MHz ¹³C NMR spectrum of 4 in the DMSO-d⁶ solution.

Fig. S17. The ESI-MS spectrum of 4 (CH₃OH, positive mode).

Fig. S18. The 500 MHz ¹H-¹H Cozy spectrum of **4** in the DMSO-d⁶ solution.

Fig. S19. The assignment of H atoms of the ¹H NMR spectra of 3 and 4.

Fig. S20. The UV-vis spectra and emission spectra of 1-4 (5 μ M) in PBS solution (pH=7.4). The excitation wavelength of the emission spectra was 405 nm.

Fig. S21. The UV-vis spectra and emission spectra of **1-4** (5 μ M) in PBS solution before and after laser irradiation for 1 h (465 nm, 6.5 mW/cm²). The excitation wavelength of the emission spectra was 405 nm.

Fig. S22. The UV-vis spectra of 1-4 (5 µM) in PBS solution for 48 h at room temperature.

Fig. S23. The UV-vis spectra of 1-4 (5 μ M) in cell culture medium (DMEM) for 48 h at room temperature.

Fig. S24. Change of the phosphorescence spectra of 5 μ M 1-4 in PBS solution with varying pH values from 3.0 to 12.1.

Fig. S25. Linear fitting was used in titration jump discontinuity region of luminescence titration curve in **Fig. 2** and the acid/base transition widths were calculated.

Fig. S26. The phosphorescence emission spectra and photographs of 1-4 with varying pH values from 5.8 to 7.9 ($\lambda_{ex} = 405$ nm).

Fig. S27. The pH reversibility of the phosphorescence intensity of **1-4** between pH 5.0 and 9.0 in PBS solution.

Fig. S28. The emission intensities of 1-4 (5 μ M) in the presence of 50 μ M amino acids or 1 equiv. DNA and RNA. 1-control, 2-Ala, 3-Arg, 4-Asn, 5-Cys, 6-Gln, 7-Glu, 8-Gly, 9-GSH, 10-GSSH, 11-His, 12-IIe , 13-Leu, 14-Lys, 15-Met, 16-Phe, 17-Pro, 18-Ser, 19-Thr, 20-Trp, 21-Tyr, 22-Val, 23-RNA, 24-DNA.

Fig. S29. The emission intensities of **1-4** in the presence of 50 μM ions. 1-control, 2-Ca²⁺, 3-Co²⁺, 4-Cu²⁺, 5-Fe³⁺, 6-K⁺, 7-Li²⁺, 8-Mg²⁺, 9-Mn²⁺, 10-Cl⁻, 11-SO₄²⁻, 12-Br⁻, 13-NO₃⁻.

Fig. S30. The schematic isomers of 1 and 2 and their respective relative free energies (in kcal/mol).

Fig. S31. The iridium concentrations were determined in mitochondria of Hep-G2 cells with exposure to 1-4 (5 μ M) for 1 h by ICP-MS.

Fig. S32. (a-d) EPR signals of ${}^{1}O_{2}$ trapped by TEMP with producing by 1-4 in the dark or upon light irradiation. (e-h) EPR signals of ${}^{\circ}O_{2}$ or ${}^{\circ}OH$ trapped by DMPO with producing by 1-4 in the dark or upon light irradiation. Black lines represent dark and color lines represent 465 nm light irradiation for 5 min.

Fig. S33. Measurement of {}^{1}O_{2} quantum yields. Changes in absorbance of RNO at 440 nm against irradiation time in the presence of Ru(bpy)₃²⁺ or **1-4** in histidine-PBS solution. The irradiation time interval was 5 min. The light source was a 465 nm LED- lamp (6.5 mW/cm²).

Fig. S34. (a) Confocal microscopy imaging of the Hep-G2 cells colabeled with 5 μ M **1-4** for 1 h and singlet oxygen sensor green (SOSG, 5 μ M, 30 min) in the absence or presence of NaN₃ (5 mM, 1 h) in the dark and under light irradiation for 5 min at 465nm. The power of LED-lamp was 6.5 mW/cm². (b) Normalized emission intensity of SOSG after light irradiation for 5 min from (a). The normalized intensity was collected from average per-cell intensity. $\lambda_{ex} = 488$ nm, $\lambda_{em} = 525 \pm 30$ nm. Scale bar: 40 μ m.

Fig. S35. The normalized emission intensity in Hep-G2 cells of 1-4 after irradiation according to Fig. 6.

Fig. S36. Confocal microscopy images of Hep-G2 cells incubated with JC-1 (100 nM, 30 min) in the presence or absence of CCCP (10 μ M, 20 min), then the cells were located in the dark or upon light irradiation, respectively. The lighting group was irradiated under 465 nm light (6.5 mW/cm², 30 min). JC-1 aggregates (red channel): $\lambda_{ex} = 514$ nm, $\lambda_{em} = 595 \pm 20$ nm; JC-1 monomers (green channel): $\lambda_{ex} = 488$ nm, $\lambda_{em} = 530 \pm 20$ nm.

Fig. S37. The enlarged images of irradiation treatment in Fig. 7.

Wavelength/nm						
Complexes	^a pH 6.0	pH 7.0	pH 8.0	$^{b}\!\Delta W_{1}$	$^{c}\Delta W_{2}$	$\Delta W_{l}/\Delta W_{2}$
1	557.0	537.6	515.6	19.4	22.0	~0.9
2	551.0	516.2	510.4	34.8	5.8	~6.0
3	574.8	575.2	575.4	0.4	0.2	2
4	570.6	570.2	569.6	0.4	0.6	~0.7

Table S1. Blue shifts of the complexes at various pH values from pH 6.0 to pH 8.0.

^aThe maximum emission intensity at the pH value. ^b $\Delta W_1 = W_{pH 7.0} - W_{pH 6.0}$; ^c $\Delta W_2 = W_{pH 8.0} - W_{pH 7.0}$.

Table S2. The phosphorescence quantum yields of 1-4 at different pH values.

Complexes	pH 4.0	pH 5.0	pH 6.0	рН 7.0	pH 8.0	pH 9.0	
1	0.0081	0.0071	0.0073	0.0098	0.0138	0.0229	
2	0.0016	0.0025	0.0032	0.0075	0.0119	0.0324	
3	0.0020	0.0034	0.0036	0.0042	0.0057	0.0064	
4	0.0020	0.0021	0.0022	0.0027	0.0030	0.0092	

Table S3. Determination of the ${}^{1}O_{2}$ quantum yields.

Complexes	$\Phi(^{1}O_{2})$
$[Ru(bpy)_3]^{2+}$	0.22
1	0.29
2	0.32
3	0.44
4	0.57

Table S4. The dark cytotoxicity and phototoxicity (IC₅₀, μ M) of the complexes towards Hep-G2 cell line upon different irradiation time.

Complex	Dark	Light 10 min (PI)	Light 20 min (PI)	Light 40 min (PI)
1	>100	48.76 (>2.1)	48.95 (>2.0)	35.26 (>2.84)
2	>100	3.56 (>28.1)	2.91 (>34.4)	2.76 (>36.2)
3	>100	0.55 (>182)	0.54 (>185.2)	0.27 (>370.4)
4	99.72±0.78	0.25 (398.9)	0.13 (767.1)	0.072 (1385)
cisplatin	>100	>100	>100	>100

The cells incubated with the compounds for 1 h, medium replaced with fresh non-drug medium in both 'dark' and 'light' plates. The 'light' plates were irradiated with blue LED (465 nm, 6.5 mW/cm²) for different irradiation time. $PI = IC_{50}(dark)/IC_{50}(light)$.

normal rang (virte b) and not (202) our mes.					
Complexes	MR	C-5	LO2		
	Light	Dark	Light	Dark	
1	36.23±0.83	87.67±1.01	40.30±0.88	95.56±0.97	
2	4.65±0.11	70.24±1.14	3.88±0.07	90.86±0.84	
3	0.12±0.03	>100	0.11 ± 0.04	>100	
4	0.07 ± 0.02	>100	0.09 ± 0.02	>100	
cisplatin	>100	>100	>100	>100	

Table S5. The dark cytotoxicity and phototoxicity (IC₅₀, μ M) of the complexes towards human normal lung (MRC-5) and liver (LO2) cell lines.

The cells incubated with the compounds for 1 h, medium replaced with fresh non-drug medium in both 'dark' and 'light' plates, 'light' plate irradiated with blue (465 nm, 6.5 mW/cm², 1 h). All plates incubated for another 46 h. Data are presented as the means \pm standard deviations.