Ferrocenyl palladacycles derived from unsymmetrical pincer-type ligands: Evidences of Pd(0) nanoparticles generation during Suzuki-Miyaura reaction and applications in direct arylation of thiazole and isoxazole

Ankur Maji, Anshu Singh, Aurobinda Mohanty, Pradip K. Maji*^b and Kaushik Ghosh*^a

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India, E-mail: <u>ghoshfcy@iitr.ac.in</u> ^bDepartment of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. E-mail: <u>pradip.fpt@iitr.ac.in</u>

Table of contents

Figure S1. Electronic absorption spectra of ligands $L^{1}H$, $L^{2}H$ and metal complexes Pd1 and	S 3
Pd2 in dichloromethane solutions	
Table S1. Electronic spectral data in dichloromethane solution of ligands L ¹ H, L ² H and metal	S 3
complexes Pd1 and Pd2	
Figure S2. IR spectrum of ligand L ¹ H	S 4
Figure S3. IR spectrum of complex Pd1	S 4
Figure S4. IR spectrum of ligand L ² H	S5
Figure S5. IR spectrum of complex Pd2	S5
Figure S6 . The ¹ H NMR spectrum of ligand $L^{1}H$ in CDCl ₃	S 6
Figure S7. The ¹³ C NMR spectrum of ligand L^1H in CDCl ₃	S 6
Figure S8. The ¹ HNMR spectrum of complex Pd1 in d ⁶ -DMSO	S 7
Figure S9. The ¹³ CNMR spectrum of complex Pd1 in d ⁶ -DMSO	S 7
Figure S10. The ¹ H NMR spectrum of ligand $L^{2}H$ in CDCl ₃	S 8
Figure S11. The 13 C NMR spectrum of ligand L ² H in CDCl ₃	S 8
Figure S12. The ¹ HNMR spectrum of complex Pd2 in d ⁶ -DMSO	S 9
Figure S13. ESI-MS analysis of L^1H in acetonitrile	S 9
Figure S14. ESI-MS analysis of L ² H in acetonitrile	S 10
Figure S15. ESI-MS analysis of Pd1 in acetonitrile	S 10
Figure S16. ESI-MS analysis of Pd2 in acetonitrile	S 11
Table S2. Crystal data and structural refinement parameters for complexes Pd1 and Pd2	S 11
Table S3. Selected bond lengths and bond angles of complex Pd1 and their theoretical	S12
comparison	

Table S4. Selected bond lengths and bond angles of complex Pd2 and their theoretical	S12
comparison	
DFT calculation	S13
Figure S17. Optimized molecular structures of complexes Pd1 and Pd2. (Pd: Deep red, cyan,	S13
Fe: Blue Cl: green, N: blue, O: red, C: grey	
Table S5. Frontier molecular orbital composition (%) in the ground state for complex Pd1	S13
Table S6. Frontier molecular orbital composition (%) in the ground state for complex Pd2	S14
Scheme 1. Screening of reaction conditions for the direct arylation reaction of 4-methylthiazole	S15
with bromobenzene	
Table S7.Optimization of arylation reaction	S15
Figure S18. XPS survey scan of Pd1	S16
Figure S19. XPS survey scan of SMC reaction mixture in prsence of Pd1	S16
Figure S20. XPS spectrum of 2P3/2 of iron(II) of catalyst Pd1	S17
Figure S21. XPS spectrum of 2P3/2 of iron(II) of catalyst Pd1 during SMC reaction	S17
Details of ¹ H-NMR and ¹³ C-NMR spectra of SMC cross-coupling products	S18-S22
Details of ¹ H-NMR and ¹³ C-NMR spectra of direct arylation products	S22-S26
¹ H-NMR and ¹³ C-NMR spectra of SMC cross-coupling products	S27-S58
¹ H-NMR and ¹³ C-NMR spectra of direct arylation products	S59-S84
GC-MS mass spectrum of some respective direct arylation products	S85
References	S86

Figure S1. Electronic absorption spectra of ligands L^1H , L^2H and metal complexes Pd1 and Pd2 in dichloromethane solutions.

Table S1. Electronic spec	tral data in dichloromethane solution of ligands L ¹ H, L ² H and metal complexes
Pd1 and Pd2 .	
Compound	λ max/nm(ϵ mol ⁻¹ cm ⁻¹)
L ¹ H	484(3825), 332(22690), 290(20850), 251 (23850)
Complex 1	532(2150), 365(5420), 285(14320), 240 (17650)
L ² H	435(1430), 325(29300), 255(17350)
Complex 2	535(1350), 355(2590), 243(21700).

Figure S13. ESI-MS analysis of L¹H in acetonitrile.

Figure S14. ESI-MS analysis of L²H in acetonitrile.

Figure S15. ESI-MS analysis of Pd1 in acetonitrile.

Table S2. Crystal	data and struct	ural refinement	parameters for compl	exes Pd1 and Pd2.	
Empirical formula	C22 H18 Cl Fe N3 Pd	C23 H20 Cl Fe N3 Pd	Z	4	2
Color	red	red	$\rho_{calc}(gcm^{-3})$	1.757	1.782
Formula weight	522.09	536.12	F(000)	1040	536
Temperature (K)	296(2)	293(2)	θ range for data collection	2.125 - 30.043	1.808-28.397
λ (Å) (Mo-Kα)	0.71073	0.71073	Index ranges	-14 <h<14, -17<k<17 -22<l<22< th=""><th>-11<h<11, -14<k<13 -15<l<12< th=""></l<12<></k<13 </h<11, </th></l<22<></k<17 </h<14, 	-11 <h<11, -14<k<13 -15<l<12< th=""></l<12<></k<13 </h<11,
Crystal system	'monoclinic'	'triclinic'	Refinement method	Full matrix least- squares on F ²	Full matrix least- squares on F ²
Space group	P 21/n	P- 1	Data/restraint/ parameters	5599/0/ 254	4886/0/262
a(Å)	10.4053(7)	8.8740(7)	GOF ^a on F ²	1.277	1.193

b(Å)	12.1239(8)	10.5965(8)	$R_1^b[I > 2\sigma(I)]$	0.0412	0.0306
c(Å)	15.8095(11)	11.6557(9)	R1 (all data)	0.0504	0.0375
α(°)	90	85.319(4)	$w\mathbf{R}_{2^{c}}(\mathbf{I} > 2\sigma(\mathbf{I}))$	0.1408	0.0908
β(°)	98.272(2)	75.046(4)	wR ₂ (all data)	0.1571	0.1116
γ(°)	90	70.671(4)			
^a GOF = $[\Sigma[w(F_o^2 -$	$-F_c^2)^2]/M-N)]^{1/2}$	$^{2}(M = number of M)$	of reflections, N = nur	mber of parameters	refined). ${}^{b}R_{1} =$
$\Sigma \ F_o - F_c / \Sigma $	F_o , $^c wR_2 = [\Sigma$	$[w(F_o^2 - F_c^2)^2]/\Sigma$	$[w(F_o^2)^2]]^{1/2}$	-	

Table S3. Selected	ed bond lengths and	bond angles of co	mplex Pd1 and their theorem	retical comparison.	
F	Bond lengths (Å))	Bo	nd angles (°)	
	Experiment	Theoretical		Experimental	Theoretical
	al				
Pd1—C11	1.968(6)	1.98675	C11—Pd1—N3	81.29(22)	81.901
Pd1—N3	1.986(5)	2.03894	C11—Pd1—N1	160.27(22)	158.600
Pd1—N1	2.125(5)	2.19720	N3—Pd1—N1	78.99(21)	76.699
Pd1—Cl1	2.290(2)	2.33925	C11—Pd1—Cl1	97.01(19)	98.803
			N3—Pd1—Cl1	176.48(15)	178.784
			N1—Pd1—Cl1	102.70(17)	102.593

Table S4. Selec	S4. Selected bond lengths and bond angles of complex Pd2 and their theoretical comparison.						
	Bond lengths (Å)	Bo	ond angles (°)	angles (°)		
	Experimental	Theoretical		Experimental	Theoretical		
Pd1—C11	1.972(4)	1.98745	C11—Pd1—N3	80.82(14)	80.475		
Pd1—N3	2.015(6)	2.08000	C11—Pd1—N1	171.53(12)	170.708		
Pd1—N1	2.155(4)	2.22064	N3—Pd1—N1	90.83(11)	90.321		
Pd1—Cl1	2.306(7)	2.35950	C11—Pd1—Cl1	92.72(11)	93.950		
			N3—Pd1—Cl1	173.13(8)	174.126		
			N1—Pd1—Cl1	95.69(8)	95.206		

DFT calculation Optimized structure:

Complexes **Pd1** and **Pd2** are diamagnetic at room temperature indicating their singlet ground state. The geometry optimization of these complexes was performed using their crystallographic coordinates in gas phase in their singlet spin state without any ligand simplification by DFT method using the (R)B3LYP hybrid functional¹ approach incorporated in GAUSSIAN 09 program package.² In the ground state (S₀), HOMO of all the complexes mainly on metal centre (Fe-71% for **Pd1** and Fe-80% for **Pd2**) and ligand moity (L-26% for Pd1 and L-15% for **Pd2**). Ongoing to the more stabilized H-1 contribution iron Fe-76% for **Pd1** and Fe-71% for **Pd2**) and d orbital of Pd (15%). On the other hand, first vacant orbital LUMO mainly composed of π^* orbital delocalized mainly ligands (L-84% for **Pd1** and L-79% for **Pd2**) and d orbital of Pd (Pd-43% for **Pd1** and Pd-24% for **Pd2**). The energy difference between HOMO and LUMO are ~3.72 eV (Complex **Pd1**) and 3.82 eV (Complex **Pd2**).

Figure S17. Optimized molecular structures of complex Pd1 and Pd2. (Pd: Deep red, cyan, Fe: Blue Cl: green, N: blue, O: red, C: grey.

Table S5. Fr	ontier Molecular	Orbital C	ompositior	n (%) in the g	ground state for co	omplex Pd1 .
				Complex 1		
Orbital	Energy(eV)	Pd	Fe	Cl	L	Main orbital contribution
L+5	-0.33	7	54	0	40	dz2(Fe)
L+4	-0.49	0	3	0	97	π* (L)
L+3	-0.72	5	1	1	94	π*(L)
L+2	-1.03	1	4	0	95	π*(L)
L+1	-1.52	43	2	10	45	$dxy (Pd) + \pi^*(L)$
L	-1.75	6	10	0	84	π*(L)
Н	-5.47	2	71	1	26	$dx2-y2(Fe)+\pi(L)$
H-1	-5.55	4	76	0	19	dx2-y2(Fe)
H-2	-5.81	9	26	0	65	$dx2-y2(Fe)+\pi(L)$

Н-3	-6.38	42	31	8	19	dz2 (Fe) +dz2 (Pd)
H-4	-6.48	26	8	11	55	dyz (Pd)_ π (L)
Н-5	-6.69	34	53	4	10	dz2 (Fe) +dz2 (Pd)

Table S6. Fro	ontier Molecular	Orbital C	omposition	(%) in the g	round state for	complex Pd2 .
				Complex 2		
Orbital	Energy(eV)	Pd	Fe	Cl	L	Main orbital contribution
L+5	-0.29	1	14	0	85	π*(L)
L+4	-0.41	7	52	0	42	$dz2(Fe)+\pi^*(L)$
L+3	-0.75	2	0	0	98	π*(L)
L+2	-1.24	24	5	5	67	π*(L)
L+1	-1.46	24	2	6	69	$dx2-y2 (Pd) + \pi^*(L)$
L	-1.74	7	13	1	79	π*(L)
Н	-5.56	4	80	1	15	dxy(Fe)
H-1	-5.62	4	71	0	25	dx2-y2(Fe)
Н-2	-5.87	9	21	2	69	π(L)
Н-3	-6.4	48	11	4	38	dyz (Pd)
H-4	-6.46	35	16	5	45	dyz (Pd)+ π (L)
Н-5	-6.56	36	6	28	31	dz2 (Fe) + dz2 (Pd)

Entry	Base	Solvent	% Yield
1	NaOAc	DMA	80
2	KF	DMA	22
3	K ₃ PO ₄	DMA	41
4	КОН	DMA	55
5 6	Na ^t OBu	DMA	12
	K ^t OBu	DMA	25
7	K ₂ CO ₃	DMA	94
8	Na ₂ CO ₃	DMA	90
9	KOAc	DMA	12
10 11 12	NaHCO ₃	DMA	62
	K ₂ CO ₃	Toluene	75
	K ₂ CO ₃	NMP	65
13	K ₂ CO ₃	DMF	55
14	K ₂ CO ₃	Dioxane	60
15	K ₂ CO ₃	DMSO	74
16	K ₂ CO ₃	DMA	NR ^{a,b}
17	K ₂ CO ₃	DMA	NR ^c
18	K ₂ CO ₃	DMA	43 ^d

0 1200 1000 800 600 400 200 Binding Energy (eV)

0

Figure S19. XPS survey scan of SMC reaction mixture in the presence of Pd1.

Figure S21. XPS spectrum of 2p3/2 of iron(II) of catalyst Pd1 during SMC reaction.

[1,1'-biphenyl]-4-carbaldehyde]³(**3aa**) White colored solid, Yield 167.6 mg 92% (Complex **Pd1**), 173 mg 95% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 2H), 7.47 (t, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H). ¹³C-NMR (400 MHz, CDCl₃) δ 192.15, 147.29, 139.78, 135.23, 130.41, 129.15, 128.60, 127.80, 127.48.

1-([1,1'-biphenyl]-4-yl)ethanone (3ab) White colored solid, Yield 184.4 mg 92% (Complex **Pd1**), 188.4 mg 95% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 7.3 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 2.62 (s, 3H). ¹³C-NMR (400 MHz, CDCl₃) δ 198.01, 145.87, 139.92, 135.86, 129.07, 129.03, 128.35, 127.37, 127.32, 26.85.

4-nitro-1,1'-biphenyl (3ac) Off-white colored solid, Yield 181.3 mg 91% (Complex **Pd1**), 185.2 mg 93% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.28 (d, *J* = 8.8 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 7.3 Hz, 2H), 7.46 (dt, *J* = 13.6, 7.1 Hz, 3H) ¹³C-NMR (500 MHz, CDCl₃) δ 129.25, 129.01, 127.90, 127.48, 127.47, 124.21, 124.20.

2-nitro-1,1'-biphenyl (3ad) Off-white colored solid, Yield 151.4 mg 76% (Complex **Pd1**), 151.4 mg 76% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 7.50 – 7.45 (m, 4H), 7.40 – 7.37 (m, 1H), 7.19 (dd, J = 17.0, 7.8 Hz, 2H), 6.87 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 143.50, 139.53, 130.47, 129.11, 128.83, 128.51, 127.66, 127.18, 118.67, 115.62.

[1,1'-biphenyl]-4-carbonitrile⁴ (3ae) White colored solid, Yield 167.6 mg 92% (Complex Pd1), 170.1 mg 95% (Complex Pd2); ¹H-NMR (400 MHz, CDCl₃) δ 7.69 (q, *J* = 8.6 Hz, 4H), 7.57 (d, *J* = 7.0 Hz, 2H), 7.47 (t, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 6.6 Hz, 1H).¹³C-NMR (101 MHz, CDCl₃) δ 145.77, 139.27, 132.68, 129.19, 128.74, 127.82, 127.31, 119.02, 111.00.

2-phenylquinoline (3af) White colored solid, Yield 133.40 mg 65% (Complex **Pd1**), 158.0 mg 77% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.21 (d, *J* = 8.6 Hz, 1H), 8.15 (t, *J* = 8.5 Hz, 3H), 7.86 (d, *J* = 8.6 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.71 (t, *J* = 7.0 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 3H), 7.45 (t, *J* = 7.3 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 157.40, 148.32, 139.72,136.76, 129.76, 129.64, 129.31, 128.83, 127.58, 127.45, 127.20, 126.28, 119.01.

2-phenylpyridine³ (**3ag**) Oil liquid, Yield 116.4 mg 75% (Complex **Pd1**), 121.1 mg 78% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 8.66(d, J= 4.81H), 8.00-7.98 (m,2H), 7.65-7.59 (m, 2H), 7.46-7.42 (m, 2H) 7.38-7.36 (m, 1H) 7.14- 7.10 (m, 1H) ¹³C-NMR (126 MHz, CDCl₃) δ 157.47, 149.66, 139.40, 136.80, 128.99, 128.78, 126.95, 122.13, 120.60.

2,6-diphenylpyridine (3ah) White colored solid, Yield 152.6 mg 66% (Complex **Pd1**), 164.2 mg 71% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 7.9 Hz, 4H), 7.84 (t, *J* = 7.4 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 4H), 7.52 – 7.48 (m, 2H).¹³C- NMR (126 MHz, CDCl₃) δ 156.85, 139.54, 137.48, 129.00,128.71,127.02, 118.67

1-phenylnaphthalene(**3ak**) White colored liquid Yield 176.5 mg 86% (Complex **Pd1**), 194 mg 95% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.98 (t, J = 9.4 Hz, 2H), 7.93 (d, J = 8.2 Hz, 1H), 7.62 – 7.53 (m, 6H), 7.49 (t, J = 6.9 Hz, 3H).¹³C-NMR (101 MHz, CDCl₃) δ 140.94, 140.44, 133.98, 131.80, 130.27, 128.46, 127.83, 127.42, 127.12, 126.22, 125.96, 125.57

4'-ethyl-[1,1'-biphenyl]-4-carbaldehyde] **(3al)** White colored solid, Yield 176.5 mg 84% (Complex Pd1), 180.7 mg 86% (Complex Pd2); ¹H-NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.94 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.73 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 192.07, 147.22, 144.98, 137.09, 135.06, 130.40, 128.76, 128.66, 127.52, 127.41, 28.70, 15.68.

1-(4'-ethyl-[1,1'-biphenyl]-4-yl)ethanone) (**3am**) White colored solid, Yield 190.6 mg 85% (Complex **Pd1**), 195.1 mg 87% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.27 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 197.96, 145.86, 144.69, 137.27, 135.64, 129.01, 128.60, 127.29, 127.09, 28.65, 26.78, 15.65.

4'-ethyl-4-nitro-1,1'-biphenyl (3an) Yellow colored solid, Yield 171.1 mg 86% (Complex **Pd1**), 177.1 mg 89% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 2.71 (q, *J* = 7.6 Hz, 2H), 1.27 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 146.32 (s), 145.76 (s),137.30, 133.25, 129.35, 128.18, 127.84, 119.73, 111.22, 29.23, 16.21.

4'-ethyl-2-nitro-1,1'-biphenyl (3ao) Yellow colored solid, Yield 195.4 mg 86% (Complex **Pd1**), 202.2 mg 89% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 7.8 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.17 (dd, *J* = 12.2, 7.6 Hz, 2H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.80 (d, *J* = 7.9 Hz, 1H), 2.72 (t, *J* = 6.5 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 143.58, 143.18, 136.74, 130.49, 129.01, 128.30, 127.70, 118.65, 115.56, 28.60, 15.57.

4'-ethyl-[1,1'-biphenyl]-4-carbonitrile (**3ap**) White colored solid, Yield 178.2 mg 86% (Complex **Pd1**), 188.6 mg 91% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.68 (q, *J* = 8.7 Hz, 4H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.27

(t, J = 7.6 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 145.72, 145.16, 136.59, 132.65, 128.75, 127.58, 127.24, 119.11, 110.62, 28.66, 15.57.

2-(4-ethylphenyl)quinolone (3aq) White colored solid, Yield 158.6 mg 68% (Complex **Pd1**), 167.9 mg 72% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 8.2, 5.4 Hz, 2H), 8.09 (d, *J* = 8.3 Hz, 2H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.81 (d, *J* = 9.3 Hz, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 2.73 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H).¹³C-NMR (101 MHz, CDCl₃) δ 157.51, 148.37, 145.85, 137.24, 136.86, 128.40, 127.72, 127.53, 127.18, 119.04, 28.83, 15.73.

2-(4-ethylphenyl)pyridine (3ar) Off-white colored solid, Yield 130.0 mg 71% (Complex **Pd1**), 139.3 mg 76% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.68 (d, *J* = 4.6 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.74 – 7.69 (m, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.20 (ddd, *J* = 6.8, 4.9, 2.2 Hz, 1H), 2.71 (q, *J* = 7.6 Hz, 2H), 1.28 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 157.60, 149.61, 145.39, 136.88, 128.52, 128.29, 126.97, 122.01, 120.44, 28.70, 15.61.

2,6-bis(4-ethylphenyl)pyridine (3as) White colored solid, Yield 186.8 mg 65% (Complex **Pd1**), 201.2 mg 70% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.3 Hz, 4H), 7.79 – 7.74 (m, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 4H), 2.71 (q, *J* = 7.6 Hz, 4H), 1.28 (t, *J* = 7.6 Hz, 6H). ¹³C-NMR (101 MHz, CDCl₃) δ 156.87, 145.45, 137.43, 137.15, 128.31, 127.05, 118.21, 28.81, 15.74.

1-(4-ethylphenyl)naphthalene (**3at**) White colored liquid, Yield 197.0 mg 85% (Complex **Pd1**), 211.2 mg 91% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.3 Hz, 1H), 8.03 (d, *J* = 7.3 Hz, 1H), 7.97 (d, *J* = 10.3 Hz, 1H), 7.68 – 7.52 (m, 6H), 7.46 (d, *J* = 7.8 Hz, 2H), 2.93 – 2.85 (m, 2H), 1.47 (t, *J* = 6.8 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 143.45, 140.54, 138.30, 134.06, 131.99, 130.28, 128.51, 128.03, 127.70, 127.17, 126.40, 126.18, 125.97, 125.67, 28.90, 15.88.

3-phenylpyridine (**3au**) White colored liquid, Yield 122.6 mg 79% (Complex **Pd1**), 127.2 mg 82% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 3.1 Hz, 1H), 8.55 (dd, *J* s= 4.8, 1.6 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.53 (dd, *J* = 5.3, 3.3 Hz, 2H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.29 (dd, *J* = 8.6, 4.8 Hz, 1H). ¹³C-NMR (101 MHz, CDCl₃) δ 148.37, 137.85, 136.69, 134.43, 129.13, 128.17, 127.20, 123.71.

3-(4-ethylphenyl)pyridine (**3av**) White colored liquid, Yield 125.7 mg 81% (Complex **Pd1**), 131.9 mg 85% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 3.1 Hz, 1H), 8.54 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.84 – 7.79 (m, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.28 (dd, *J* = 8.1, 2.5 Hz, 3H), 2.67 (q, *J* = 7.6 Hz, 2H), 1.25 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 148.29, 144.43, 136.63, 135.21, 134.21, 128.78, 127.10, 123.57, 28.51, 15.77.

1-(4'-chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (3ba) White colored solid, Yield 205.3 mg 89% (Complex **Pd1**), 209.9 mg 91% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 2.62 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 197.79, 144.55, 138.36, 136.15, 134.54, 129.28, 128.83, 127.14, 26.66.

4'-chloro-[1,1'-biphenyl]-4-carbonitrile (**3bb**) White colored solid, Yield 196.5 mg 92% (Complex **Pd1**), 202.9 mg 95% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.9 Hz, 2H), 7.44 (d, *J* = 8.9 Hz, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 144.48, 137.67, 135.05, 132.79, 129.40, 128.55, 127.65, 118.84, 111.35.

3-(4-chlorophenyl)pyridine (3bc) White colored liquid, Yield 162.1 mg 85% (Complex **Pd1**), 168.7 mg 89% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.61 (s, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.4 Hz, 2H), 7.40 – 7.34 (m, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 148.74, 148.07, 136.25, 135.52, 134.28, 129.29, 128.39, 123.63.

2-(4-chlorophenyl)quinoline (3bd) White colored solid, Yield 174.9 mg 73% (Complex **Pd1**), 184.56 mg 77% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.6 Hz, 1H), 8.13 (dd, *J* = 14.3, 8.8 Hz, 3H), 7.83 (dd, *J* = 7.9, 3.6 Hz, 2H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.51 (dd, *J* = 20.7, 7.8 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 156.12, 148.31, 138.14, 137.06, 135.63, 129.77, 129.01, 127.57, 126.60, 118.67.

4'-chloro-3-nitro-1,1'-biphenyl (3be) Yellow colored solid, Yield 165.9 mg 71% (Complex **Pd1**), 179.9 mg 79% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 2H), 7.48 (d, *J* = 7.8 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 148.77, 141.61, 137.09, 134.85, 132.84, 129.90, 129.37, 128.42, 122.34, 121.76.

4'-chloro-2-nitro-1,1'-biphenyl (3bf) Yellow colored solid, Yield 163.55 mg 70% (Complex Pd1), 179.9 mg 77% (Complex Pd2) ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 6.8 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.41 – 7.38 (m, 3H), 7.24 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.15, 135.99, 135.31, 134.55, 132.57, 131.91, 129.37, 129.00, 128.64 124.36.

1-(4'-fluoro-[1,1'-biphenyl]-4-yl)ethan-1-one (3ca) White colored solid, Yield 197.1 mg 92% (Complex **Pd1**), 203.52 mg 95% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.64 – 7.59 (m, 2H), 7.18 (t, J = 8.1 Hz, 2H), 2.66 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 197.68, 144.75, 135.87, 128.98, 127.07, 116.01, 26.64.

4'-fluoro-[1,1'-biphenyl]-4-carbonitrile (3cb) White colored solid, Yield 183.4 mg 93% (Complex **Pd1**), 187.34 mg 95% (Complex **Pd2**);¹H-NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.55 (dd, *J* = 8.5, 4.9 Hz, 2H), 7.16 (t, *J* = 8.7 Hz, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 164.51, 162.04, 144.70, 135.37, 132.74, 129.09, 127.66, 118.92, 116.12, 111.03.

3-(4-fluorophenyl)pyridine (3cc) White colored oil, Yield 150.6 mg 87% (Complex **Pd1**), 155.87 mg 90% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 8.61 (s, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.39 (s, 1H), 7.18 (t, *J* = 8.2 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 163.92, 161.95, 148.42, 135.81, 134.25, 133.92, 128.85, 123.64, 116.16.

2-(4-fluorophenyl)quinoline (3cd) White colored solid, Yield 167.43 mg 75% (Complex **Pd1**), 180.83 mg 81% (Complex **Pd2**);¹H-NMR (400 MHz, CDCl₃) δ 8.22 – 8.13 (m, 4H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 6.9 Hz, 1H), 7.20 (t, *J* = 8.7 Hz, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.12, 162.65, 156.32, 148.30, 136.98, 135.91, 129.84, 127.57, 126.43, 118.72, 115.80.

4'-fluoro-3-nitro-1,1'-biphenyl (3ce) Yellow colored solid, Yield 175.23 mg 75% (Complex **Pd1**), 207.9 mg 79% (Complex **Pd2**) ¹H-NMR (500 MHz, CDCl₃) δ 8.43 (s, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.63 (dd, *J* = 14.5, 7.4 Hz, 3H), 7.21 (t, *J* = 8.2 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 141.92, 134.85, 132.87, 129.80, 128.87, 122.06, 121.83, 116.26, 116.09.

4'-fluoro-2-nitro-1,1'-biphenyl (3cf) Yellow colored solid, Yield 156.37mg 72% (Complex **Pd1**), 169.33 mg 78% (Complex **Pd2**) ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.1 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.28 (dd, *J* = 8.8, 5.2 Hz, 2H), 7.10 (t, *J* = 8.7 Hz, 2H).

4-methyl-5-phenylthiazole⁵ (**6a**) Off-white colored solid, Yield 149 mg 85% (Complex **Pd1**), 156 mg 89% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.45 – 7.38 (m, 5H), 7.35 (dd, *J* = 5.9, 2.9 Hz, 1H), 2.52 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 150.46, 148.56, 132.02, 129.41, 128.79, 127.98, 126.39, 16.15.

5-(4-chlorophenyl)-4-methylthiazole⁵ (**6b**) Off-white colored solid, Yield 186.6 mg 89% (Complex **Pd1**), 192.8 mg 92% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.45 – 7.30 (m, 4H), 2.50 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 150.73, 148.94, 134.07, 130.79, 130.49, 129.11, 128.99, 16.18.

5-(4-fluorophenyl)-4-methylthiazole⁵ (**6c**) Off-white colored solid, Yield 175.8 mg 91% (Complex Pd1), 181.6 mg 94% (Complex Pd2); ¹H-NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H),

7.39 (dd, J = 8.8, 5.3 Hz, 2H), 7.10 (d, J = 8.7 Hz, 2H), 2.49 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 163.75, 161.28, 150.40, 148.68, 131.13, 127.97, 115.91, 16.01.

1-(4-(4-methylthiazol-5-yl)phenyl)ethanone⁵ (**6d**) Off-white colored solid, Yield 195.5 mg 90% (Complex **Pd1**), 206.4 mg 95% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 2.62 (s, 3H), 2.55 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 197.51, 151.29, 149.66, 136.91, 136.21, 130.95, 129.37, 128.85, 26.77, 16.47.

5-(4-methoxyphenyl)-4-methylthiazole⁵ (**6e**) Off-white colored solid, Yield 154 mg 75% (Complex **Pd1**), 162.1 mg 79% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.34 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H), 2.49 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 159.45, 149.80, 147.99, 131.82, 130.63, 124.25, 114.25, 55.43, 16.03.

4-methyl-5-(p-tolyl)thiazole⁵ (**6f**) Off-white colored solid, Yield 145.7 mg 77% (Complex **Pd1**), 153.3 mg 81% (Complex **Pd2**);¹H-NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 2.52 (s, 3H), 2.38 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 150.07, 148.27, 137.94, 132.06, 129.50, 129.26, 129.05, 21.28, 16.12.

4-(4-methylthiazol-5-yl)benzaldehyde⁵ (**6g**) White colored solid, Yield 181.2 mg 89% (Complex **Pd1**), 184.9 mg 91% (Complex **Pd2**);¹H-NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.74 (s, 1H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.61 (d, *J* = 8.3 Hz, 2H), 2.57 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 191.61, 151.53, 149.97, 138.33, 135.47, 130.83, 130.17, 129.77, 16.53.

4-methyl-5-(pyridin-3-yl)thiazole⁶ (**6h**) Off-white colored solid, Yield 155.0 mg 88% (Complex **Pd1**), 162.1 mg 92% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.67 (s, 1H), 8.56 (d, *J* = 4.9 Hz, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 3.9 Hz, 1H), 2.51 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 151.35, 149.79, 148.98, 136.52, 128.35, 128.13, 123.51, 21.60, 16.06.

5-(3-methoxyphenyl)-4-methylthiazole⁵ (**6i**) Off-white colored solid, Yield 143.7 mg 70% (Complex **Pd1**), 153.9 mg 75% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.33 – 7.29 (m, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.95 (s, 1H), 6.88 (d, *J* = 9.1 Hz, 1H), 3.81 (s, 3H), 2.52 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 159.76, 150.41, 148.68, 133.28, 131.84, 129.83, 121.86, 115.14, 113.43, 55.40, 16.25.

4-methyl-5-(3-nitrophenyl)thiazole⁵ (**6j**) Off-white colored solid, Yield 165.2 mg 75% (Complex **Pd1**), 178.4 mg 81% (Complex **Pd2**); ¹H- NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.30 (t, *J* = 2.0 Hz, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 2.56 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 151.48, 150.10, 135.15, 133.92, 129.88, 129.48, 124.05, 122.76, 16.22.

4-(4-methylthiazol-5-yl)benzonitrile⁵ (**6k**) White colored solid, Yield 176.2 mg 88% (Complex Pd1),190.2 mg 95% (Complex Pd2); ¹H-NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 2.55 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 151.68, 150.13, 136.95, 132.60, 130.18, 129.80, 118.55, 111.58, 16.43.

4-methyl-5-(4-nitrophenyl)thiazole⁵ (**6l**) Yellow colored solid, Yield 198.2 mg 90% (Complex **Pd1**), 211.4 mg 96% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.28 (d, *J* = 8.9 Hz, 2H), 7.61 (d, *J* = 8.9 Hz, 2H), 2.58 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 151.96, 150.46, 147.18, 138.87, 129.91, 126.33, 124.14, 16.50.

4-methyl-5-(naphthalen-1-yl)thiazole⁵ (**6m**) White colored solid, Yield 193.7 mg 86% (Complex **Pd1**), 207.2 mg 92% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.90 (d, *J* = 10.6 Hz, 2H), 7.67 (d, *J* = 10.7 Hz, 1H), 7.48 (dt, *J* = 11.3, 8.5 Hz, 4H), 2.28 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 151.67, 150.92, 133.78, 132.57, 129.44, 129.30, 129.14, 128.94, 128.55, 126.82, 126.30, 125.66, 125.26, 15.85.

3,5-dimethyl-4-phenylisoxazole⁷ (**8a**) Yellow colored solid, Yield 138.5 mg 80% (Complex **Pd1**),143.7 mg 83% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.43 (t, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 7.0 Hz, 2H), 2.40 (s, 3H), 2.27 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.26, 158.79, 130.56, 129.17, 128.86, 127.58, 116.73, 11.62, 10.87.

4-(4-chlorophenyl)-3,5-dimethylisoxazole (**8b**)⁶ Off-white colored solid, Yield 176.5 mg 85% (Complex **Pd1**), 184.7 mg 89% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.7 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 2.37 (s, 3H), 2.23 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.45, 158.55, 133.69, 130.44, 129.15, 129.00, 11.60, 10.81.

4-(4-fluorophenyl)-3,5-dimethylisoxazole⁷ (**8c**) Off-white colored solid, Yield 162.5 mg 85% (Complex **Pd1**), 174 mg 91% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.20 (dd, J = 8.8, 5.3 Hz, 2H), 7.11 (t, J = 8.7 Hz, 2H), 2.36 (s, 3H), 2.23 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.30, 163.52, 161.06, 158.70, 130.83, 115.83, 11.55, 10.78.

1-(4-(3,5-dimethylisoxazol-4-yl)phenyl)ethanone⁷ (**8d**) Off-white colored solid Yield 180.8 mg 84% (Complex **Pd1**), 191.5 mg 89% (Complex **Pd2**); ¹H-NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 2.61 (s, 3H), 2.41 (s, 3H), 2.27 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.10, 158.89, 137.42, 129.61, 129.08, 127.57, 116.64, 21.31, 11.63, 10.90.

4-(4-methoxyphenyl)-3,5-dimethylisoxazole⁷ (**8e**) Off-white colored solid, Yield 142.2 mg 70% (Complex **Pd1**), 152.4 mg 75% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.16 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.37 (s, 3H), 2.24 (s, 3H). ¹³C-NMR

(101 MHz, CDCl₃) δ 164.92, 159.07, 158.93, 130.34, 122.70, 116.34, 114.34, 55.40, 11.59, 10.87.

3,5-dimethyl-4-(p-tolyl)isoxazole⁷ (**8f**) Off-white colored solid, Yield 121.7 mg 65% (Complex **Pd1**),136.7 mg 73% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.8 Hz, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 2.38 (d, *J* = 1.5 Hz, 6H), 2.25 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.10, 158.89, 137.42, 129.61, 129.08, 127.57, 116.64, 21.31, 11.63, 10.90.

4-(3,5-dimethylisoxazol-4-yl)benzaldehyde⁷ (**8g**) Off-white colored solid, Yield 157 mg 78% (Complex **Pd1**), 163 mg 81% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.93 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 2.42 (s, 3H), 2.28 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 191.67, 166.11, 158.37, 137.00, 135.37, 130.24, 129.58, 115.93, 11.85, 10.98. **3,5-dimethyl-4-(pyridin-3-yl)isoxazole**⁶ (**8h**) Off-white colored solid, Yield 139.3 mg 80% (Complex **Pd1**), 144.6 mg 83% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.59 (dd, *J* = 4.8, 1.7 Hz, 1H), 8.52 (d, *J* = 3.0 Hz, 1H), 7.59 – 7.56 (m, 1H), 7.38-7.35 (1H), 2.41 (s, 3H), 2.26 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 166.24, 158.27, 148.69, 135.01, 132.45, 129.99, 123.86, 122.56, 114.98, 11.74, 10.85.

4-(3-methoxyphenyl)-3,5-dimethylisoxazole⁷ (**8i**) Off-white colored solid, Yield 132.0 mg 65% (Complex **Pd1**), 144.3 mg 71% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 1H), 6.89 (d, *J* = 5.8 Hz, 1H), 6.83 (d, *J* = 8.6 Hz, 1H), 6.77 (d, *J* = 4.1 Hz, 1H), 3.83 (s, 3H), 2.40 (s, 3H), 2.27 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.38, 159.88, 158.76, 131.89, 129.90, 121.58, 116.63, 115.18, 112.68, 55.36, 11.66, 10.89.

3,5-dimethyl-4-(3-nitrophenyl)isoxazole⁷ (**8j**) Off-white colored solid, Yield 154.9 mg 71% (Complex **Pd1**),165.8 mg 76% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 8.12 (t, *J* = 1.9 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 1H), 7.59 (dt, *J* = 7.7, 1.5 Hz, 1H), 2.44 (s, 3H), 2.29 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 166.14, 158.59, 149.95, 148.89, 136.36, 126.68, 123.70, 113.56, 11.64, 10.80.

4-(3,5-dimethylisoxazol-4-yl)benzonitrile⁷ (**8k**) Off-white colored solid, Yield 160.5 mg 81% (Complex Pd1), 170.5 mg 86% (Complex Pd2); ¹H-NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 2.42 (s, 3H), 2.27 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 166.23, 158.22, 135.63, 132.75, 129.70, 118.60, 115.54, 111.52, 11.83, 10.93.

3,5-dimethyl-4-(4-nitrophenyl)isoxazole⁷ (**8l**) Off-white colored solid, Yield 183.3 mg 84% (Complex **Pd1**),194.2 mg 89% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.9 Hz, 2H), 7.43 (d, *J* = 8.9 Hz, 2H), 2.44 (s, 3H), 2.29 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 166.35, 158.09, 147.06, 137.50, 129.68, 124.13, 115.16, 11.78, 10.86.

3,5-dimethyl-4-(naphthalen-1-yl)isoxazole⁷ (**8m**) Off-white colored solid, Yield 176.3 mg 79% (Complex **Pd1**), 189.7 mg 85% (Complex **Pd2**); ¹H-NMR (400 MHz, CDCl₃) δ 7.91 (t, *J* = 7.0 Hz, 2H), 7.60 – 7.44 (m, 4H), 7.32 (d, *J* = 7.0 Hz, 1H), 2.25 (s, 3H), 2.09 (s, 3H).). ¹³C-NMR (101 MHz, CDCl₃) δ 191.67, 166.11, 158.37, 137.00, 135.37, 130.24, 129.58, 115.93, 11.85, 10.98.

Figure S23. ¹³C-NMR spectrum of 3aa in CDCl₃.

Figure S27. ¹³C-NMR spectrum of 3acin CDCl₃.

S31

²⁴⁰ ²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻¹⁰ **Figure S33.** ¹³C-NMR spectrum of 3af in CDCl₃.

$\begin{array}{c} 8.6766\\ 8.6772\\ 8.66192\\ 8.66577\\ 8.6577\\ 8.6577\\ 8.6577\\ 8.6577\\ 8.6577\\ 8.6577\\ 8.6577\\ 8.6577\\ 8.6577\\ 7.6293\\ 7.6323\\ 7.63233\\ 7.63233\\ 7.63233\\ 7.63233\\ 7.63233\\ 7.63233\\ 7.63233\\ 7.6493\\ 7.63233\\ 7.6493\\ 7.6612\\ 7.7493\\ 7.762333\\ 7.7493\\ 7.762333\\ 7.75333\\ 7.762333\\ 7.763333\\ 7.763333\\ 7.763333\\ 7.763333\\ 7.7335\\ 7.73353\\ 7.73352\\$

Figure S41. ¹³C-NMR spectrum of 3al in CDCl₃.

Figure S43. ¹³C-NMR spectrum of 3am in CDCl₃.

Figure S45. ¹³C-NMR spectrum of 3anin CDCl₃.

Figure S53. ¹³C-NMR spectrum of 3ar in CDCl₃.

Figure S57. ¹³C-NMR spectrum of 3at in CDCl₃.

Figure S87. ¹³C-NMR spectrum of 6a in CDCl₃.

Figure S89. ¹⁴C-NMR spectrum of 6b in CDCl₃.

Figure 591. C-INVIK spectrum of oc in CDC13.

~2.6158 ~2.5541

S63

S64

S65

Figure S105. ¹³C-NMR spectrum of 6j in CDCl₃.

9.5

0

Figure S111. ¹³C-NMR spectrum of 6m in CDCl₃.

Figure S113. ¹³C-NMR spectrum of 8a in CDCl₃.
$< \frac{7.4012}{7.3794}$ $< \frac{7.1742}{7.1523}$

-2.3679 -2.2303

Figure S115. ¹³C-NMR spectrum of 8b in CDCl₃.

Figure S117. ¹³C-NMR spectrum of 8c in CDCl₃.

Figure S121. ¹³C-NMR spectrum of 8e in CDCl₃.

Figure S123. ¹³C-NMR spectrum of 8f in CDCl₃.

Figure S125. ¹³C-NMR spectrum of 8g in CDCl₃.

Figure S129. ¹³C-NMR spectrum of 8i in CDCl₃.

Figure S135. ¹³C-NMR spectrum of 8l in CDCl₃.

Figure S137. ¹³C-NMR spectrum of 8m in CDCl₃.

Figure S138. GC-MS mass spectrum of 6k.

Figure S139. GC-MS mass spectrum of 6l.

Figure S141. GC-MS mass spectrum of 8k.

References

- (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09 (Revision A.02); Gaussian, Inc., Wallingford, CT, **2009**.
- G. Liu, F. Han, C. Liu, H. Wu, Y. Zeng, R. Zhu, X. Yu, S. Rao, G. Huang and J. Wang Organometallics, 2019, 38, 1459.
- 4. V. Arumugam, W. Kaminsky, N. S. P. Bhuvanesh and D. Nallasamy, RSC Adv., 2015, 5, 59428.
- 5. F. M. Chen, D. D. Lu, L.-Q. Hu, J. Huang, F. S. Liu, Org. Biomol. Chem., 2017, 15, 5731.
- L. Q. Hu, R. L. Deng, Y. F. Li, C. J. Zeng, D. S. Shen and F. S. Liu, Organometallics, 2018, 37, 214.
- 7. Y. Fall, C. Reynaud, H. Doucet and M.Santelli, Eur. J. Org. Chem. 2009, 4041.

-:END:-