Electronic Supporting Information

Linear-shaped Ln^{III}_4 and Ln^{III}_6 clusters constructed by polydentate Schiff base ligand and β -diketone co-ligand: structures, fluorescent properties, magnetic refrigeration and single-molecule magnet behavior

Wen-Min Wang,^{a,b} Li-Yuan He,^a Xin-Xin Wang,^a Ying Shi,^a Zhi-Lei Wu,^{*b} Jian-Zhong Cui^{*b}

List of Contents

Experimental	section				S2
Instrumentati	on				S2
Tables and Fi	gure				S2–S8
Table S1. The	Ln ^{III} geometry an	alysis by SH	APE 2.0 for cluste	ers 6 and 7	S2
Fig. S1 The II	R spectra of H ₂ L light	gand and clu	sters 1-10		
S4					
Fig. S2 The co	pordinate atom lab	els of central	Dy(III) ions in clu	uster 6	S4
Fig. S3 The c	oordinate atom lab	els of centra	l Er(III) ions in clu	uster 7	S4
Fig. S4 Coo	rdination polyhed	lra for Er1,	Er2 and Er3 ic	ons observed ir	1 cluster
7					S5
Fig. S5 Coord	lination modes of I	H ₂ L in 7			S5
Fig. S6 The co	pordinate atom lab	els of central	Lu(III) ions in clu	ster 10	S5
Fig. S7 Coord	lination modes of]	H ₂ L in cluste	er 10		S5
Fig. S8 PXRI) patterns for 1-10	• • • • • • • • • • • • • • • • • • • •			S6-S7
Fig. S9 The	UV-vis spectra of	clusters 1 -	10 and the H ₃ L li	gand were perfe	ormed at
room	temperature	in	ethanol	solution.	
Fig. S10 Plots	s of $\chi_{\rm M}^{-1}$ vs T for 4	4. The solid	line was generated	d from the best f	fit by the
Curie-Weiss	expression.				S7
D. 011 DI		11.001			~-
Fig. SIT The	magetic coupling n	nodel of Gd(III) ions in cluster	4	S7
D: 010 T		0.1			
Fig. S12 Tem	perature dependen	ce of the ac r	nagnetic susceptib	oility for 5	S8

^a Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China.

^bDepartment of Chemistry, Tianjin University, Tianjin, 300072, China.

^{*}Corresponding Authors E-mail : <u>cuijianzhong@tju.edu.cn</u>, <u>wuzhilei03@163.com</u>

Fig. S13 Frequency dependence of χ' and χ'' for 6 at 2.0–16.0 K under a 0 dc field.S8

Experimental section

Instrumentation

Elemental analyses (EA) for C, H, and N were performed on a Perkin-Elmer 240 CHN elemental analyzer. IR spectra were recorded in KBr pellets during the range of 4000–650 cm⁻¹ with a Bruker TENOR 27 spectrophotometer. PXRD data were examined on a Rigaku Ultima IV instrument with Cu K α radiation ($\lambda = 1.54056$ Å), with a scan speed of 5° min⁻¹ in the range of 2 $\theta = 5-50^{\circ}$. TGA measurements were obtained in an air atmosphere on a Labsys NETZSCH TG 209 Setaram apparatus from 40 to 800 °C with a heating rate of 10 °C min⁻¹. UV–vis spectra were measured with a JASCO V-570 spectrophotometer at room temperature. Luminescence properties were recorded on an *F*-4500 FL spectrophotometer with a xenon arc lamp as the light source. The magnetic measurements were carried out with a Quantum Design MPMS-XL7 and a PPMS-9 ACMS magnetometer. The diamagnetic corrections for the complexes were estimated using Pascal's constants, and magnetic data were corrected for diamagnetic contributions of the sample holder.

Tuble 51 The Ell geometry unaryous by Stirli E 2.0 for elasters o una 7.						
Cluster 6	$C_{4\nu}$ JCSAPR	C_{4v} CSAPR	D _{3h} JTCTPR	D_{3h} TCTPR	C _s MFF	
Dy1 ^{III}	1.892	0.683	2.592	0.800	0.924	
	D_{4d} SAPR	D_{2d} TDD	$C_{2\nu}$ JBTPR	$C_{2\nu}$ BTPR	D_{2d} JSD	
Dy2 ^{III}	1.735	0.900	2.049	1.866	2.880	
Cluster 7	D_{4d} SAPR	D_{2d} TDD	$C_{2\nu}$ JBTPR	C_{2v} BTPR	D_{2d} JSD	
Er1 ^{III}	2.635	2.066	2.493	1.542	4.710	
Er2 ^{III}	3.893	2.435	3.123	2.272	3.977	
	D_{5h} PBPY	$C_{3\nu}$ COC	$C_{2\nu}$ CTPR	D _{5h} JPBPY		
Er3 ^{III}	2.184	4.845	3.696	5.529		

Table S1 The Ln^{III} geometry analysis by SHAPE 2.0 for clusters 6 and 7.

SAPR-8 = Square antiprism; TDD-8 = Triangular dodecahedron; JBTPR-8 = Biaugmented trigonal prism J50; BTPR-8 = Biaugmented trigonal prism; JSD-8 = Snub diphenoid J84.

JCSAPR-9 = Capped square antiprism J10; CSAPR-9 = Spherical capped square antiprism; JTCTPR-9 = Tricapped trigonal prism J51; TCTPR-9 = Spherical tricapped trigonal prism; MFF-9 = Muffin.

PBPY-7 = Pentagonal bipyramid; COC-7= Capped octahedron; CTPR-7 = Capped trigonal prism; JPBPY-7 = Johnson pentagonal bipyramid J13.

Fig. S1 The IR spectra of H_2L ligand and clusters 1-10.

Fig. S2 The coordinate atom labels of central Dy(III) ions in cluster 6.

Fig. S3 The coordinate atom labels of central Er(III) ions in cluster 7.

Fig. S4 Coordination polyhedra for Er1, Er2 and Er3 ions observed in cluster 7.

Fig. S5 Coordination modes of H₂L in 7 (green, C; red, O; blue, N; and turquoise, Er).

Fig. S6 The coordinate atom labels of central Lu(III) ions in cluster 10.

Fig. S7 Coordination modes of H_2L in cluster 10.

Fig. S8 PXRD patterns for clusters 1-10.

Fig. S9 The UV-vis spectra of clusters 1-10 and the H_2L ligand were performed at room temperature in ethanol solution.

Fig. S10 Plots of $\chi_{\rm M}^{-1}$ vs *T* for cluster 4. The solid line was generated from the best fit by the Curie-Weiss expression.

Fig. S11 The magetic coupling model of Gd(III) ions in cluster 4.

Fig. S12 Temperature dependence of the in-phase (left) and out-of-phase (right) components of the ac magnetic susceptibility for 5 in zero dc field with an oscillation of 3.0 Oe.

Fig. S13 Frequency dependence of χ' and χ'' for 6 at 2.0–16.0 K under a 0 dc field.