Electronic Supplementary Information (ESI)

for

Dioxygen Reactivity of Iron(II)-Gentisate/1,4-Dihydroxy-2naphthoate Complexes of N4 Ligands: Oxidative Coupling of 1,4-Dihydroxy-2-naphthoate

Rubina Rahaman,^{a,b} Sandip Munshi,^a Sridhar Banerjee,^a Biswarup Chakraborty,^a Sarmistha Bhunia,^a and Tapan Kanti Paine^{a,*}

^aSchool of Chemical Sciences, Indian Association for the Cultivation of Science,

2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.

^bPresent Address: Department of Chemistry, Krishnagar Government College,

Krishnagar, West Bengal-741101, India.

Compound	$1 \cdot CH_2 Cl_2 \\ \cdot C_4 H_{10} O$	3a	1 ^{0x}	2 ^{0x}	2F
Empirical formula	C ₅₇ H ₆₁ BCl ₂ FeN ₄ O ₅	C ₃₅ H ₂₅ FeClN ₇ O ₈	C ₄₂ H ₃₂ FeN ₄ O ₇	C ₃₈ H ₃₀ FeN ₄ O ₈	C ₂₁ H ₁₀ O ₆
Formula weight	1019.66	762.92	760.56	726.51	358.29
Crystal system	monoclinic	triclinic	triclinic	triclinic	monoclinic
Space group	P2(1)/n	P -1	P -1	P -1	P21/c
<i>a</i> , Å	20.700(3)	13.220(19)	9.0769(15)	9.834(5)	4.7327(17)
<i>b</i> , Å	9.7342(14)	14.16(2)	11.7420(19)	11.435(6)	22.284(8)
<i>c</i> , Å	26.459(4)	14.36(2)	16.983(3)	16.182(8)	14.047(5)
α, deg	90.00	97.572(18)	70.805(5)	82.691(16)	90.00
β , deg	103.576(4)	112.542(17)	75.569(5)	87.388(19)	99.381(12)
γ, deg	90.00	116.508(17)	86.174(6)	74.600(15)	90.00
Volume, Å ³	5182.5(13)	2067(5)	1655.3(5)	1740.0(15)	1461.6(9)
Ζ	4	2	2	2	4
$D_{\text{calcd.}}, \text{Mg/m}^3$	1.307	1.226	1.526	1.387	1.628
μ Mo-K α , mm ⁻¹	0.447	0.482	0.519	0.492	0.121
F(000)	2144	782	788.0	752	736
θ range, deg	1.13-22.98	2.67 - 20.56	2.32-23.45	2.15-22.41	2.35 - 28.01
Reflections	34388	50440	12848	22258	16482
Reflections unique	7096	9134	4065	7289	3615
R(int)	0.0775	0.0795	0.1169	0.0731	0.1428
Data $(I > 2\sigma(I))$	5161	6027	3058	4912	2268
Parameters refined	641	471	490	462	247
Goodness-of-fit on F^2	1.090	0.695	0.986	0.814	1.487
$R_{I}[I>2\sigma(I)]$	0.0825	0.0530	0.0672	0.0450	0.0957
wR ₂	0.2210	0.1733	0.1641	0.1210	0.2661

Table S1. Crystallographic data for 1, 3a, 1^{Ox}, 2^{Ox} and 2F.

Figure S1. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(6-Me₃-TPA)Fe^{II}(GN-H)](BPh₄) (1).

Figure S2. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(6-Me₃-TPA)Fe^{II}(DHN-H)](ClO₄) (1a).

Figure S3. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(BPMEN)Fe^{II}(GN-H)](ClO₄) (**2**). Peaks marked with 'S' originate from residual solvents.

Figure S4. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(BPMEN)Fe^{II}(DHN-H)](ClO₄) (**2a**). Peaks marked with 'S' originate from residual solvents.

Figure S5. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(BPMEN)Fe^{II}(HNA)](ClO₄) (**2b**). Peaks marked with 'S' originate from residual solvents.

Figure S6. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(BPMEN)Fe^{II}(5-OMeSA)](BPh₄) (**2c**). Peaks marked with 'S' indicate peaks from residual solvents.

Figure S7. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(TBimA)Fe^{II}(GN-H)](GN-H) (**3**). Peaks marked with 'S' originate from residual solvents.

Figure S8. ¹H NMR (500 MHz, CD₃CN, 298 K) spectrum of [(TBimA)Fe^{II}(DHN-H)](ClO₄) (**3a**). Peaks marked with 'S' originate from residual solvents.

Figure S9. Optical spectral changes of (a) 2 and (b) 3 (0.5 mM in acetonitrile) in the reaction with dioxygen at 298 K. Inset: Plot of absorbance vs time.

Figure S10. ¹H NMR (300 MHz, DMSO₆ at 298 K) spectrum of the organic compound isolated from the oxidized solution of **3**. The peak marked with * are from solvents.

Figure S11. Optical spectral changes of **2a** (0.5 mM in acetonitrile) in the reaction with dioxygen at 298 K. (a) Reaction in the first 3 min and (b) reaction in the next 2 h. Inset: Plot of absorbance vs time.

Figure S12. UV-vis spectral change of **3a** (0.5 mM in acetonitrile) upon exposure to dioxygen at 298 K. (a) Reaction in the first 15 min and (b) reaction in the next 1.5 h. Inset: Plot of absorbance vs time.

Figure S13. Time dependent X-band EPR spectra (at 77 K) of **2a** during the reaction with dioxygen in acetonitrile. (Experimental conditions for EPR: temperature = 77 K, microwave frequency = 9.12 GHz, microwave power = 10 mW, modulation amplitude = 100 kHz, modulation width = 1.4 mT, time constant = 0.03 s).

Figure S14. ESI-mass spectrum (positive ion mode in acetonitrile) of the oxidized solution of (a) **1a** and (b) **2a**. Insets: Isotope distribution patterns of the ions peaks.

Figure S15. Hydrogen bonding interactions in DNCT (2F). The O1...O4 and O3O5 distances are 2.489 Å and 2.542 Å, respectively.

Figure S16. ESI-mass spectrum (positive ion mode in acetonitrile) of the oxidized complex from 1a in the presence of (a) H_2O and (b) $H_2^{18}O$.

Figure S17. Optical spectral changes of (a) 2b (b) 2c (0.5 mM in acetonitrile) in the reaction with dioxygen at 298 K. Inset: Plot of absorbance vs time.

Figure S18. Optical spectral changes of **2a** (0.5 mM in acetonitrile) (a) in the reaction with Ag^+ under nitrogen atmosphere; (b) decay of the band after reaction with dioxygen at 298 K. Inset: Plot of absorbance vs time.

•••••