Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Ca₁₀Na₁₀[Te₉O₄₂](H₂O): A Hydrothermally Synthesized Quaternary Tellurium(VI) Oxide Containing Edge-Sharing Octahedral Trimers

Li-Yun Zhang^a and Kwang-Hwa Lii*,a,b

^aDepartment of Chemistry, National Central University, Zhongli, Taiwan 320, R.O.C.

^bInstitute of Chemistry, Academia Sinica, Taipei, Taiwan 115, R.O.C.

Fig S1. Pawley fit of the powder diffraction data to the structure of Ca₁₀Na₁₀[Te₉O₄₂](H₂O).

Fig. S2. The measured X-ray powder patterns of the products from high-T, high-P hydrothermal reactions of $Ca(NO_3)_2$ ·4H₂O, NaOH(aq), and TeO₂ in the molar ratio of Ca/Na/Te equal to (a) 0.5/5/1.5, (b) 0.8/5/1.5, and (c) 2/5/1.5, respectively. The product from reaction (a) is a single phase of $Ca_{10}Na_{10}[Te_9O_{42}](H_2O)$.

Fig. S3. The measured X-ray powder pattern of the product from a hydrothermal reaction at 210 °C (in black). Calculated powder pattern of α -CaTeO₃ (in red). Asterisks denote unidentified material.

Fig. S4. The infrared spectrum of Ca₁₀Na₁₀[Te₉O₄₂](H₂O) (KBr method).

Fig. S5. Energy dispersive X-ray spectrum of $Ca_{10}Na_{10}[Te_9O_{42}](H_2O)$. The peak at 2.1 keV is due to thin platinum coating on the crystal.

Fig. S1. Pawley fit of the powder diffraction data to the structure of $Ca_{10}Na_{10}[Te_9O_{42}](H_2O)$.

Fig. S2. The measured X-ray powder patterns of the products from high-T, high-P hydrothermal reactions of Ca(NO₃)₂·4H₂O, NaOH(aq), and TeO₂ in the molar ratio of Ca/Na/Te equal to (a) 0.5/5/1.5, (b) 0.8/5/1.5, and (c) 2/5/1.5, respectively. The product from reaction (a) is a single phase of Ca₁₀Na₁₀[Te₉O₄₂](H₂O).

Fig. S3. The measured X-ray powder pattern of the product from a hydrothermal reaction at 210 °C (in black). Calculated powder pattern of α-CaTeO₃ (in red). Asterisks denote unidentified material.

Fig. S4. The infrared spectrum of Ca₁₀Na₁₀[Te₉O₄₂](H₂O) (KBr method).

Fig. S5. Energy dispersive X-ray spectrum of $Ca_{10}Na_{10}[Te_9O_{42}](H_2O)$. The peak at 2.1 keV is due to thin platinum coating on the crystal.